
An Overview of the GXL Graph Exchange
Language�

Andreas Winter, Bernt Kullbach, and Volker Riediger

Universität Koblenz-Landau
Institut für Softwaretechnik
D-56016 Koblenz, Postfach 201602
mailto:(winter|kullbach|riediger)@uni-koblenz.de
http://www.gupro.de/(winter|kullbach|riediger)

Abstract.

GXL (Graph eXchange Language) is designed to be a standard exchange format for
graph-based tools. GXL is defined as an XML sublanguage, which offers support for
exchanging instance graphs together with their appropriate schema information in a
uniform format. Formally, GXL is based on typed, attributed, ordered directed graphs,
which are extended by concepts to support representing hypergraphs and hierarchical
graphs. Using this general graph model, GXL offers a versatile support for exchanging
nearly all kinds of graphs.
This report intends to give a short overview on the main features of GXL.

1 Motivation and Background

A great variety of software tools relies on graphs as internal data representa-
tion. A standardized language for exchanging those graphs offers a first step in
improving interoperability between these tools. For instance, a common graph in-
terchange format allows building a powerful reverse engineering workbench. Such
a reverse engineering workbench composes various graph-based tools like extrac-
tors (e. g. scanner, parser), abstractors (e. g. query tools, structure recognition
tools, slicing tools etc.), and visualizers (e. g. graph and diagram visualizer, code
browser). [22] gives an overview on existing combinations of tool components
used in various reverse engineering projects.

The development of GXL (Graph eXchange Language) aims at supporting
data interoperability between reverse engineering tools. GXL was ratified as
standard exchange format in reverse engineering at the Dagstuhl Seminar ”In-
teroperability of Reverse Engineering Tools” in January 2001 [4]. But since GXL
was developed as a general format for describing graph structures, it is appli-
cable in further areas of tool interoperability. Especially, GXL is used to define
the graph part in the exchange format GTXL (Graph Transformation eXchange
Language) [17], [34].
� This paper is an extended abstract of [37].

S. Diehl (Ed.): Software Visualization, LNCS 2269, pp. 324–336, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

An Overview of the GXL Graph Exchange Language 325

GXL originated in a merger of GRAph eXchange format (GraX) [7], Tuple
Attribute Language (TA) [21], and the graph format of the PROGRES graph
rewriting system [32]. The graph models used here were supplemented by ad-
ditional concepts to handle hierarchical graphs and hypergraphs. Furthermore,
GXL includes ideas from common exchange formats used in reverse enginee-
ring, including Relation Partition Algebra (RPA) [27] and Rigi Standard Format
(RSF) [38]. The development of GXL was also influenced by various formats
used in graph drawing, e. g. daVinci [10], GML [16], XGMML (eXtensible Graph
Markup and Modeling Language) [39], and GraphXML [20]. Thus, GXL covers
most of the important graph formats. GXL can be viewed as a generalization of
these formats.

Exchanging graphs with GXL deals with both instance graphs and their cor-
responding graph schemas. Firstly, GXL offers a versatile support for exchanging
all kinds of graphs based on typed, attributed, directed, ordered graphs including
hypergraphs and hierarchical graphs. Secondly, GXL offers means for exchanging
graph schemas representing the graph structure, i. e. the definition of node and
edge types, their attribute schemas and their incidence structure. Both, instance
graphs and graph schemas, are exchanged by XML documents (Extended Mar-
kup Language) [35].

This paper introduces into the basic concepts of GXL version 1.0 for exchan-
ging instance graphs (cf. section 2) and graph schemas (cf. section 3). The lan-
guage definition of GXL is given by its XML document type definition (DTD).
Section 4 summarizes the current usage of GXL.

A more comprehensive description of GXL is given in [37]. Up-to-date infor-
mation including tutorials and further GXL documents are collected at http:
//www.gupro.de/GXL.

2 Exchanging Graphs

Due to their mathematical foundation and algorithmic power, graphs are a com-
mon data structure in software engineering. Different graph models, e. g. direc-
ted graphs, undirected graphs, node attributed graphs, edge attributed graphs,
node typed graphs, edge typed graphs, ordered graphs, relational graphs, acyclic
graphs, trees, etc. or combinations of these graph models are utilized in many
software systems. To support interoperability of graph based tools, the under-
lying graph model has to be as rich as possible to cover most of these graph
models.

Such a common graph model is given by typed, attributed, directed, ordered
graphs (TGraphs) [6], [7]. TGraphs are directed graphs, whose nodes and edges
may be attributed and typed. Each type can be assigned an individual attri-
bute schema specifying the possible attributes of nodes and edges. Furthermore,
TGraphs are ordered, i. e. the node set, the edge set, and the sets of edges in-
cident to a node have a total ordering. This ordering gives modeling power to
describe sequences of objects (e. g. parameter lists) and facilitates the implemen-
tation of deterministic graph algorithms. In applying TGraphs to the sketched

326 A. Winter, B. Kullbach, and V. Riediger

graph models, not all properties of TGraphs have to be used to their full extent.
These graph models can be viewed as specializations of TGraphs. Exchanging
TGraphs with GXL is introduced in section 2.1

To offer support for hypergraphs and hierarchical graphs, TGraphs were ex-
tended by n-ary edges and by nodes and edges containing lower level graphs.
GXL language constructs for exchanging those extended graphs are sketched in
section 2.2. The complete GXL language definition in terms of an XML docu-
ment type definition is given in section 2.3.

2.1 Exchanging Typed, Attributed, Directed, Ordered Graphs

The UML object diagram (cf. [31]) in figure 1 shows a node and edge typed, node
and edge attributed, directed, ordered graph representing a program fragment on
ASG (abstract syntax graph) level. Function main calls function a = max(a, b)
in line 8 and function b = min(b, a) in line 19.

v1 : Function

name = "main"

v4 : Function

name = "max"

v6 : Variable

name = "a"

v7 : Variable

name = "b"

v5 : Function

name = "min"

v2 : FunctionCall v3 : FunctionCall

e1 : isCaller

line = 8

e2 : isCaller

line = 19

e3 : isCallee e4 : isCallee
e6 : isInput

e7 : isInput

e5: isInput e8 : isInput

{1}{1} {2}{2}

e9 : isOutput e10 : isOutput

Fig. 1. Typed, attributed, directed, ordered graph

The functions main, max and min are represented by nodes of type Func-
tion. These nodes are attributed with the functions’ name. FunctionCall nodes
represent the calls of functions max and min. FunctionCall nodes are associated
to the caller by isCaller edges and to the callee by isCallee edges. isCaller edges
are attributed with a line attribute showing the line number which contains the
call. Input parameters (represented by Variable nodes that are attributed with
the variables’ name) are associated by isInput edges. The ordering of parameter
lists is given by ordering the incidences of isInput edges pointing to FunctionCall
nodes. The first edge of type isInput incident to function call v2 (modeling the
call of max(a,b)) comes from node v6 representing variable a. The second edge
of type isInput connects to the second parameter b (node v7). The incidences

An Overview of the GXL Graph Exchange Language 327

of isInput edges associated with node v3 model the reversed parameter order.
Output parameters are associated to their function calls by isOutput edges.

Exchanging graphs like the one in figure 1 requires language constructs for
representing nodes, edges and their incidence relation. Furthermore, support for
describing type information and attribute values is needed.

<?xml version = ”1.0” ?>
<!DOCTYPE gxl

SYSTEM ”gxl-1.0.dtd”>
<gxl>
<graph id = ”simpleGraph”

edgeids = ”true”>
<type xlink:href =
”schema.gxl#Schema”/>
<node id = ”v1” >

<type xlink:href =
”schema.gxl#Function”/>
<attr name = ”name” >

<string>main</string>
</attr>

</node>
<node id = ”v2” >

<type xlink:href =
”schema.gxl#FunctionCall”/>

</node>
<node id = ”v3” >

<type xlink:href =
”schema.gxl#FunctionCall”/>

</node>
<node id = ”v4” >

<type xlink:href =
”schema.gxl#Function”/>
<attr name = ”name” >

<string>max</string>
</attr>

</node>
<node id = ”v5” >

<type xlink:href =
”schema.gxl#Function”/>
<attr name = ”name” >

<string>min</string>
</attr>

</node>

<node id = ”v6” >
<type xlink:href =
”schema.gxl#Variable”/>
<attr name = ”name” >

<string>a</string>
</attr>

</node>
<node id = ”v7” >

<type xlink:href =
”schema.gxl#Variable”/>
<attr name = ”name” >

<string>b</string>
</attr>

</node>
<edge id = ”e1”

from = ”v2” to = v1”>
<type xlink:href =
”schema.gxl#isCaller”/>
<attr name = ”line” >

<int>8</int>
</attr>

</edge>
<edge id = ”e2”

from = ”v3” to = v1”>
<type xlink:href =
”schema.gxl#isCaller”/>
<attr name = ”line” >

<int>19</int>
</attr>

</edge>
<edge id = ”e3”

from = ”v4” to = v2”>
<type xlink:href =
”schema.gxl#isCallee”/>

</edge>
<edge id = ”e9”

from = ”v6” to = v2”
<type xlink:href =
”schema.gxl#isOutput”>

</edge>

<edge id = ”e5”
from = ”v6” to = v2”
toorder = ”1”>
<type xlink:href =
”schema.gxl#isInput”/>

</edge>
<edge id = ”e6”

from = ”v7” to = v2”
toorder = ”2”>
<type xlink:href =
”schema.gxl#isInput”/>

</edge>
<edge id = ”e7”

from = ”v6” to = v3”
toorder = ”2”>
<type xlink:href =
”schema .gxl#isInput”/>

</edge>
<edge id = ”e8”

from = ”v7” to = v3”
toorder = ”1”>
<type xlink:href =
”schema.gxl#isInput”/>

</edge>
<edge id = ”e9”

from = ”v6” to = v2”
<type xlink:href =
”schema.gxl#isOutput”>

</edge>
<edge id = ”e10”

from = ”v7” to = v3”
<type xlink:href =
”schema.gxl#isOutput”>

</edge>
</graph>
</gxl>

Fig. 2. GXL representation of graph from figure 1

Figure 2 depicts the graph from figure 1 as GXL document. XML documents
start with specifying the XML version and the underlying document type defi-
nition, here ”gxl-1.0.dtd” (cf. figure 3). The body of a GXL document is enclosed
in <gxl> tags. The GXL document in figure 2 contains a graph with a unique
identifier ”simpleGraph”. The graph refers to its associated graph schema object
Schema (cf. section 3) stored in file schema.gxl.

Nodes and edges of a given graph are depicted by <node> and <edge> ele-
ments which can be addressed by their id attribute. Incidence information of ed-

328 A. Winter, B. Kullbach, and V. Riediger

ges including edge orientation is stored in from and to attributes within <edge>
tags. Ordering of incidences is also modeled here. Attributes fromorder and toor-
der represent the position of an edge in the incidence list of its start and target
node.

Node and edge types are represented by links pointing to the appropriate
schema information. These links are enclosed in <type> elements.

<node> and <edge> elements may additionally contain further attribute
information. <attr> elements describe attribute names and values. Like OCL
[36], GXL provides <bool>, <int>, <float>, and <string> attributes. Further-
more, enumeration values (<enum>) and URI-references (<locator>) to exter-
nally stored objects are supported. Attribute values might be substructured.
Here, GXL offers composite attributes like sequences (<seq>), sets (<set>),
multi sets (<bag>), and tuples (<tup>).

2.2 Exchanging Extended Graphs

In addition to typed, attributed, ordered, directed graphs, GXL provides the
exchange of hypergraphs and hierarchical graphs.

Hypergraphs contain n-ary edges (hyperedges) connecting not only two adja-
cent nodes. Hyperedges are exchanged by <rel> elements, containing references
to the incident graph objects. These references (tentacles) are stored in <relend>

elements (relation end).
Edges can be viewed as 2-ary hyperedges. Thus, in GXL, edge information

can be represented by binary hyperedges. Since graphs with (binary) edges are wi-
despread in software engineering and most applications deal with graphs instead
of hypergraphs, GXL offers both, the element <edge> for exchanging (binary)
edges and and the element <rel> for hyperedges.

Like binary edges, tentacles may be directed or undirected as well as ordered.
The ordering of tentacles incident to their target object and the ordering of
tentacles with respect to their hyperedge object is represented analogously to
the ordering of incident edges by using XML attributes.

Hierarchical graphs are graphs where nodes, edges, and hyperedges contain
further graphs. GXL supports exchanging hierarchical graphs by nesting those
inner graphs as <graph> elements in their enclosing node, edge, and hyperedge
representation.

2.3 GXL Document Type Definition

The language features of GXL for exchanging typed, attributed, directed, orde-
red graphs (cf. section 2.1) and extended graphs (cf. section 2.2) are summarized
in a conceptual model defining the graph model supported by GXL. The GXL
graph model is completely described at http://www.gupro.de/GXL/ (graph mo-
del) with its graph structure part and its attribute part.

Since GXL is an XML sublanguage, the GXL graph model had to be tran-
scribed into an XML document type definition (DTD) or an appropriate XML

http://www.gupro.de/GXL/

An Overview of the GXL Graph Exchange Language 329

schema definition. To keep GXL simple and less verbose, this translation was
done by hand. The resulting DTD (cf. figure 3, a commented version is given
at http://www.gupro.de/GXL (DTD)) requires only 18 XML elements. In con-
trast, an appropriate DTD generated with IBMs XMI Toolkit [23] according
the XML Metadata Interchange (XMI) principles for developing DTDs [26, sec-
tion 3] requires 66 elements for the GXL core and and additional 63 elements
for XMI and Corba related aspects.

<!– extensions –>
<!ENTITY % gxl-extension ”” >
<!ENTITY % graph-extension ”” >
<!ENTITY % node-extension ”” >
<!ENTITY % edge-extension ”” >
<!ENTITY % rel-extension ”” >
<!ENTITY % value-extension ”” >
<!ENTITY % relend-extension ”” >
<!ENTITY % gxl-attr-extension ”” >
<!ENTITY % graph-attr-extension”” >
<!ENTITY % node-attr-extension”” >
<!ENTITY % edge-attr-extension”” >
<!ENTITY % rel-attr-extension ”” >
<!ENTITY % relend-attr-extension”” >

<!– attribute values –>
<!ENTITY % val ” locator | bool | int |

float | string | enum |
seq | set | bag | tup
% value-extension;” >

<!– gxl –>
<!ELEMENT gxl (graph* %gxl-extension;) >
<!ATTLIST gxl

xmlns:xlink CDATA #FIXED
”www.w3.org/1999/xlink”

%gxl-attr-extension; >

<!– type –>
<!ELEMENT type EMPTY>
<!ATTLIST type

xlink:type (simple) #FIXED ”simple”
xlink:href CDATA #REQUIRED >

<!– graph –>
<!ELEMENT graph (type? , attr* ,

(node | edge | rel)*
%graph-extension;) >

<!ATTLIST graph
id ID #REQUIRED
role NMTOKEN #IMPLIED
edgeids (true | false) ”false”
hypergraph (true | false) ”false”
edgemode (directed | undirected |

defaultdirected |
defaultundirected)
”directed”

%graph-attr-extension; >

<!– node –>
<!ELEMENT node (type? , attr*, graph*

%node-extension;) >
<!ATTLIST node

id ID #REQUIRED
%node-attr-extension; >

<!– edge –>
<!ELEMENT edge (type?, attr*, graph*

%edge-extension;) >
<!ATTLIST edge

id ID #IMPLIED
from IDREF #REQUIRED
to IDREF #REQUIRED
fromorder CDATA #IMPLIED
toorder CDATA #IMPLIED
isdirected (true | false) #IMPLIED
%edge-attr-extension; >

<!– rel –>
<!ELEMENT rel (type? , attr*, graph*, relend*

%rel-extension;) >
<!ATTLIST rel

id ID #IMPLIED
isdirected (true | false) #IMPLIED
%rel-attr-extension; >

<!– relend –>
<!ELEMENT relend (attr* %relend-extension;) >
<!ATTLIST relend

target IDREF #REQUIRED
role NMTOKEN #IMPLIED
direction (in | out | none) #IMPLIED
startorder CDATA #IMPLIED
endorder CDATA #IMPLIED
%relend-attr-extension; >

<!– attr –>
<!ELEMENT attr (type?, attr*, (%val;)) >
<!ATTLIST attr

id IDREF #IMPLIED
name NMTOKEN #REQUIRED
kind NMTOKEN #IMPLIED >

<!– locator –>
<!ELEMENT locator EMPTY >
<!ATTLIST locator

xlink:type (simple) #FIXED ”simple”
xlink:href CDATA #IMPLIED >

<!– attribute values –>
<!ELEMENT bool (#PCDATA) >
<!ELEMENT int (#PCDATA) >
<!ELEMENT float (#PCDATA) >
<!ELEMENT string (#PCDATA) >
<!ELEMENT enum (#PCDATA) >
<!ELEMENT seq (%val;)* >
<!ELEMENT set (%val;)* >
<!ELEMENT bag (%val;)* >
<!ELEMENT tup (%val;)* >

Fig. 3. GXL Document Type Definition

http://www.gupro.de/GXL

330 A. Winter, B. Kullbach, and V. Riediger

3 Exchanging Graph Schemas

Graphs only offer a plain structured means for describing objects (nodes) and
their interrelationship (edges, hyperedges). Graphs have no meaning of their
own. The meaning of graphs corresponds to the context in which they are used
and exchanged. The application and interchange context determines

– which node, edge, and hyperedge types are used,
– how nodes, edges, and hyperedges of given types are related,
– which attribute structures are associated to nodes, edges, and hyperedges,

and
– which additional constraints (like ordering of incidences, degree-restrictions

etc.) have to be complied.

This schematic data can be described by conceptual modeling techniques. Class
diagrams offer a suited declarative language to define graph classes with respect
to a given application or interchange context [7].

3.1 Describing Graph Classes by UML Class Diagrams

In GXL, graph classes are defined by UML class diagrams [31]. Figure 4 shows
a graph schema defining classes of graphs like the one given in figure 1. Node
classes (FunctionCall, Function, and Variable) are defined by classes. Edge clas-
ses (isCallee, isInput, and isOutput) are defined by associations. Attributed edge
classes (isCaller) are described by association classes. Like classes, they contain
the associated attribute structures. The orientation of edges is depicted by a
filled triangle (cf. [31, p. 155]. Multiplicities denote degree restrictions. Ordering
of incidences is indicated by the keyword {ordered}.

Function

name : string

Variable

name : string

FunctionCall
isCallee

0 ..*

1

1

0 ..* 0 ..*
0 ..*

isCaller

line : int

{ordered}

isCaller

isInput

isOutput

1

0 ..*

Fig. 4. Graph schema (UML class diagram)

In a similar way, UML class diagrams offer language constructs to model
classes of hyperedges (diamonds) and classes of attributed hyperedges (diamonds
with an associated class). The definition of hierarchical graphs requires an ad-
ditional language construct representing graph classes themselves. This is done
by <<GraphClass>> stereotypes.

To offer up-to-date conceptual modeling power, the GXL schema notation
provides generalization of node-, edge-, and hyperedge classes as well as aggre-
gation and composition by using the appropriate UML notation.

An Overview of the GXL Graph Exchange Language 331

3.2 Describing Graph Classes by Graphs

Since UML class diagrams are structured information themselves, they may be
represented as graphs as well. For exchanging graph schemas in GXL, UML class
diagrams are transfered into equivalent graph representations. Thus, instance
graphs and schemas are exchanged with the same type of document, i. e. XML
documents matching the GXL DTD (cf. section 2.3).

In contrast to the strategy proposed by XML Meta Data Interchange (XMI)
[26], GXL schemas are not exchanged by XML documents according to the
Meta Object Facility (MOF) [25]. XMI/MOF offers a general, but very verbose
format for exchanging UML class diagrams as XML streams. By generating indi-
vidual document type definitions to a given UML class diagram, it also supports
exchanging instance graphs as XML documents. Next to its exaggerated verbo-
sity, which contradicts the requirement for exchange formats of as compact as
possible documents, the XMI/MOF approach requires different types of docu-
ments for representing schema and instance graphs. Especially in applications
dealing with schema information on instance level (e. g. in tools for editing and
analyzing schemas), this leads to the disadvantage of different documents repre-
senting the same information, one on instance level (as XML document) and one
on schema level (as XML DTD). The GXL approach treats schema and instance
information in exactly the same way. Schema and instance graphs are exchanged
according to the DTD given in Figure 3.

name = "isCallee"
isAbstract = false
isDirected = true

name = "isInput"
isAbstract = false
isDirected = true

name = "isCaller"
isAbstract = false
isDirected = true

e1 : to
limits = (0,-1)

isOrdered = false

name = "Function"
isAbstract = false

name = "Variable"
isAbstract = false

v7: AttributeClass
name = "line"

v9 : Int

v8: AttributeClass
name = "name"

v10 : String

e3 : to
limits = (0,-1)

isOrdered = false

e2 : from
limits = (1,1)

isOrdered = false

e4 : from
limits = (1,1)

isOrdered = false

e7 : hasAttribute

e8 : hasDomain

e9 : hasAttribute e10 : hasAttribute

e11 : hasDomain

name = "isOutput"
isAbstract = false
isDirected = true

e11 : to
limits = (0,-1)

isOrdered = false

e6 : from
limits = (0,-1)

isOrdered = false

e12 : from
limits = (1,1)

isOrdered = false

isCallee :
EdgeClass

isCaller :
EdgeClass

isInput :
EdgeClass

isOutput :
EdgeClass

Function :
NodeClass

Variable :
NodeClass

schema: GraphClass
name = "Schema"

e5 : to
limits = (0,-1)

isOrdered = true

FunctionCall :
NodeClass

name = "FunctionCall"
isAbstract = false

contains

Fig. 5. Graph schema (schema graph)

332 A. Winter, B. Kullbach, and V. Riediger

Figure 5 depicts the transformation of the class diagram in figure 4 into a
node and edge typed, node and edge attributed, directed graph. Node classes,
edge classes, attributes and their domains are modeled by nodes of suitable
node types. Their attributes describe further properties. Interrelationships bet-
ween surrogates of these classes are represented by edges of proper types. Attri-
bute information is associated with surrogates of node classes, edge classes and
associations by hasAttribute and hasDomain edges. from and to edges model in-
cidences of associations including their orientation. Multiplicities of associations
are stored in limits-attributes. The boolean attribute isOrdered indicates ordered
incidences.

Further attribute types and extended concepts like graph hierarchy, classes of
hyperedges, aggregation and composition, generalization and default attribute
values are modeled analogously.

GXL documents, representing instance graphs of a given graph schema re-
fer to those nodes of the equivalent schema graph representing node classes
(NodeClass) and edge classes (EdgeClass). The graph class itself is represented
by a GraphClass node. This node is connected by contains edges to all surro-
gates of node and edge classes defined in this graph class. Schema references
in GXL-documents refer to these GraphClass nodes in GXL schema graphs (cf.
the type element of graph simpleGraph in figure 2). In figure 5 nodes representing
these class definitions are shaded. These items are refered to by the instance
graph in figure 1.

GXL views edges as first class objects which have their own identity, might be
typed and attributed, and might be included in a generalization hierarchy. Thus,
surrogates of associations and associated classes have to be connected to furt-
her information. For generality and simplicity reasons GXL schema graphs are
restricted to ordinary typed, attributed, directed graphs. Hence, this edge-like
information is represented by nodes as well. Although the GXL DTD provides
edges connecting edges, GXL schema graphs do not use this feature.

The graph class of correct GXL schema graphs is represented as a GXL
schema. A UML diagram representing thisGXL metaschema is presented with its
graph part, its attribute part, and its value part at http://www.gupro.de/GXL/
(meta schema).

Each UML class diagram defining a GXL graph schema can be represented by
a graph (schema graph) matching the GXL metaschema. Thus, schema graphs
are instances of the GXL metaschema. They are exchanged like all instance
graphs (cf. section 2) referring to a GXL document, here representing the GXL
metaschema. Since the schema graph representing the GXL metaschema is an
instance of itself, it is exchanged by a self referring GXL document.

4 Using GXL

At the Dagstuhl seminar on ”Interoperability of Reverse Engineering Tools”
GXL version 1.0 was ratified as the standard exchange format in reverse enginee-
ring [4]. Currently, various groups in software (re)engineering are implementing

http://www.gupro.de/GXL/

An Overview of the GXL Graph Exchange Language 333

GXL import and export facilities to their tools (e. g. Bauhaus [1], Columbus [8],
CPPX [3], Fujaba [11], GUPRO [18], PBS [28], RPA (Philips Research), PROG-
RES [29], Rigi [30], Shrimp [33]). Others are going to implement tools to support
working with GXL. For instance, a framework for GXL Converters [12] and an
XMI2GXL translator [40] were developed at Univ. BW München. Further ac-
tivities deal with providing graph query machines (GReQL, Univ. Koblenz) to
GXL graphs or GXL-based graph databases (Univ. Aachen).

An important feature of GXL is its support for exchanging schema informa-
tion. Based on this capability, reference schemas for certain standard applications
in reverse engineering are currently under development. These activities address
reference schemas for data reverse engineering (DRE, Univ. Namur, Paderborn,
Victoria), the Dagstuhl Middle Model [24] or abstract syntax graph models for
C++ [3], [9].

Furthermore, groups developing graph transformation tools (e. g. GenSet [15],
PROGRES [29]) or graph visualization tools (e. g. GVF [19], Shrimp [33], yFiles
[41]) already use GXL or pronounced to use GXL. At University of Toronto,
GXL is applied within an undergraduate software engineering course to create
a graph editor/layouter [5].

GXL also serves as foundation to define further graph oriented exchange for-
mats. Thus, GXL defines the graph part in the exchange format GTXL (Graph
Transformation eXchange Language) [17], [34]. Activities in the graph drawing
community also deal with the development of an exchange format for graph
layout [13]. In a panel on graph exchange formats at Graph Drawing 2001 in
Vienna [14] GXL and GraphML [2] were discussed and compared. There is evi-
dence of combining the structure part of GXL with the graph layout part and
the modularization part of GraphML to form a general and comprehensive graph
exchange format.

5 Conclusion

The previous sections gave a short introduction in the GXL Graph eXchange
Language version 1.0 and its current applications.

Summarizing, GXL offers an already widely used XML sublanguage for inter-
changing typed, attributed, directed ordered graphs including hypergraphs and
hierarchical graphs including their appropriate schemas. By focusing on graph
structure, GXL provides the core for defining a family of special suited graph
exchange formats.

Acknowledgment. We would like to thank the GXL co-authors Richard C.
Holt, Andy Schürr, and Susan Sim for various fruitful discussions on the de-
velopment of GXL, and Oliver Heinen and Kevin Hirschmann for realizing the
GXL web-site and for implementing the GUPRO related GXL tools. Thanks
to Rainer Koschke for many interesting discussions on interchange formats in
reverse engineering, and some helpful remarks to improve this paper. Thanks to

334 A. Winter, B. Kullbach, and V. Riediger

all the users of GXL, who currently applying and testing GXL 1.0 in their tools.
Their experience will be a significant aid to improve GXL.

References

1. Bauhaus: Software Architecture, Software Reengineering, and Program Un-
derstanding. http://www.informatik.uni-stuttgart.de/ifi/ps/bauhaus/
(01.09.2001).

2. U. Brandes, M. Eiglsperger, I. Herman, M. Himsolt, and M. S. Marschall. GraphML
Progress Report, Structural Layer Proposal. In to appear: Graph Drawing 2001
(Proceedings). 2001.

3. CPPX: Open Source C++ Fact Extractor.
http://swag.uwaterloo.ca/˜cppx/ (01.09.2001).

4. J. Ebert, K. Kontogiannis, J. Mylopoulos: Interoperability of Reverse Engineering
Tools. http://www.dagstuhl.de/DATA/Reports/01041/ (18.04.2001), 2001.

5. S. Easterbrook. CSC444F: Software Engineering I (Fall Term 2001), University of
Toronto. http://www.cs.toronto.edu/˜sme/CSC444F/ (15.09.2001), 2001.

6. J. Ebert and A. Franzke. A Declarative Approach to Graph Based Modeling.
In E. Mayr, G. Schmidt, and G. Tinhofer, editors. Graphtheoretic Concepts in
Computer Science, LNCS 903. Springer, Berlin, pages 38–50. 1995.

7. J. Ebert, B. Kullbach, and A. Winter. GraX – An Interchange Format for Re-
engineering Tools. In Sixth Working Conference on Reverse Engineering, IEEE
Computer Society, Los Alamitos, pages 89–98, 1999.

8. R. Ferenc, F. Magyar, Á. Beszédes, Á. Kiss, and M. Tarkiainen. Columbus - Tool
for Reverse Engineering Large Object Oriented Software Systems. In Proceedings
SPLST 2001, Szeged, Hungary
(http://www.inf.u-szeged.hu/˜ferenc/research/ferencr_columbus.pdf,
(01.09.2001)), pages 16–27. June 2001.

9. R. Ferenc, S. Elliott Sim, R. C. Holt, R. Koschke, and T. Gyimòthy. Towards a
Standard Schema for C/C++. In Eighth Working Conference on Reverse Enginee-
ring. IEEE Computer Society, Los Alamitos, pages 49–58. 2001.

10. M. Fröhlich and M. Werner. daVinci V2.0.x Online Documentation.
http://www.tzi.de/˜davinci/docs/ (18.04.2001), June 1996.

11. Fujaba: From UML to Java and back again.
http://www.uni-paderborn.de/cs/fujaba/ (01.09.2001).

12. GCF - a GXL Converter Framework.
http://www2.informatik.unibw-muenchen.de/GXL/triebsees/index.htm
(01.09.2001).

13. Satellite Workshop on Data Exchange Formats 8th Int. Symposium on Graph
Drawing (GD 2000).
http://www.cs.virginia.edu/˜gd2000/gd-satellite.html (14.09.2001), 2001.

14. Graph Drawing (GD 2001), Vienna.
http://www.ads.tuwien.ac.at/gd2001/ (06.12.2001), September 23.-26., 2001.

15. GenSet: Design Information Fusion.
http://www.cs.uoregon.edu/research/perpetual/dasada/Software/GenSet
/index.html (01.09.2001).

16. The GML File Format.
http://www.infosun.fmi.uni-passau.de/Graphlet/GML/index.html
(18.04.2001).

http://www.informatik.uni-stuttgart.de/ifi/ps/bauhaus/
http://swag.uwaterloo.ca/~cppx/
http://www.dagstuhl.de/DATA/Reports/01041/
http://www.cs.toronto.edu/~sme/CSC444F/
http://www.inf.u-szeged.hu/~ferenc/research/ferencr_columbus.pdf
http://www.tzi.de/~davinci/docs/
http://www.uni-paderborn.de/cs/fujaba/
http://www2.informatik.unibw-muenchen.de/GXL/triebsees/index.htm
http://www.cs.virginia.edu/~gd2000/gd-satellite.html
http://www.ads.tuwien.ac.at/gd2001/
http://www.infosun.fmi.uni-passau.de/Graphlet/GML/index.html

An Overview of the GXL Graph Exchange Language 335

17. Graph Transformation System Exchange Language.
http://tfs.cs.tu-berlin.de/projekte/gxl-gtxl.html (18.08.2001).

18. GUPRO: Generic Understanding of Programs. http://www.gupro.de/
(01.09.2001).

19. GVF - The Graph Visualization Framework . http://www.cwi.nl/InfoVisu/
(01.09.2001).

20. I. Herman and M. S. Marshall. Graph XML – An XML based graph interchange
format. Report INS-0009, Centrum voor Wiskunde en Informatica, Amsterdam,
April 2000.

21. R. C. Holt. An Introduction to TA: The Tuple-Attribute Language.
http://plg.uwaterloo.ca/˜holt/papers/ta.html (18.4.2001), 1997.

22. R. C. Holt, A. Winter, and A. Schürr. GXL: Toward a Standard Exchange Format.
In Seventh Working Conference on Reverse Engineering. IEEE Computer Society,
Los Alamitos, pages 162–171. 2000.

23. XMI Toolkit 1.15 (Updated on: 25.04.2000).
http://alphaworks.ibm.com/tech/xmitoolkit (01.09.2001), 2000.

24. T. Lethbridge, E. Plödereder, S. Tichelar, C. Riva, and P. Linos. The Dagstuhl
Middle Level Model (DMM). internal note, 2001.

25. Meta Object Facility (MOF) Specification.
http://www.omg.org/technology/documents/formal/mof.htm (02.09.2001),
March 2000.

26. XML Meta Data Interchange (XMI) Specification.
http://www.omg.org/technology/documents/formal/xmi.htm (01.09.2001), No-
vember 2000.

27. R. Ommering, L. van Feijs, and R. Krikhaar. A relational approach to support
software architecture analysis. Software Practice and Experience, 28(4):371–400,
April 1998.

28. PBS: The Portable Bookshelf. http://swag.uwaterloo.ca/pbs/ (01.09.2001).
29. A Graph Grammar Programming Environment - PROGRES. http:

//www-i3.informatik.rwth-aachen.de/research/projects/progres/main.html
(01.09.2001).

30. RIGI: a visual tool for understanding legacy systems.
http://www.rigi.csc.uvic.ca/ (01.09.2001).

31. J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Refe-
rence Manual. Addison Wesley, Reading, 1999.

32. A. Schürr, A. J. Winter, and A. Zündorf. PROGRES: Language and Environment.
In H. Ehrig, G. Engels, H.-J. Kreowski, and G. Rozenberg, editors. Handbook on
Graph Grammars: Applications, Languages, and Tools, volume 2, World Scientific,
Singapore, pages 487–550. 1999.

33. ShriMP Views: simple Hierarchical Multi-Perspective.
http://www.shrimpviews.com/ (01.09.2001).

34. G. Taenzer. Towards Common Exchange Formats for Graphs and Graph Transfor-
mation Systems. In Proceedings UNIGRA satellite workshop of ETAPS’01. 2001.

35. Extensible Markup Language (XML) 1.0. W3C recommendation, W3C XML Wor-
king Group, http://www.w3.org/XML/ (17.04.2001), February 1998.

36. J. B. Warmer and A. G. Kleppe. The Object Constraint Language : Precise Mo-
deling With UML. Addison-Wesley, 1998.

37. A. Winter. Exchanging Graphs with GXL. In to appear: Graph Drawing 2001
(Proceedings). 2001.

38. K. Wong. RIGI User’s Manual, Version 5.4.4.
http://www.rigi.csc.uvic.ca/rigi/ (18.04.2001), 30. June 1998.

http://tfs.cs.tu-berlin.de/projekte/gxl-gtxl.html
http://www.gupro.de/
http://www.cwi.nl/InfoVisu/
http://plg.uwaterloo.ca/~holt/papers/ta.html
http://alphaworks.ibm.com/tech/xmitoolkit
http://www.omg.org/technology/documents/formal/mof.htm
http://www.omg.org/technology/documents/formal/xmi.htm
http://swag.uwaterloo.ca/pbs/
http://www.rigi.csc.uvic.ca/
http://www.shrimpviews.com/
http://www.w3.org/XML/
http://www.rigi.csc.uvic.ca/rigi/

336 A. Winter, B. Kullbach, and V. Riediger

39. Extensible Graph Markup and Modeling Language).
http://www.cs.rpi.edu/˜puninj/XGMML/ (19.08.2001), 2001.

40. XIG - An XSLT-based XMI2GXL-Translator.
http://ist.unibw-muenchen.de/GXL/volk/index.htm (01.09.2001).

41. yFiles - Interactive Visualization of Graph Strucutres.
http://www-pr.informatik.uni-tuebingen.de/yfiles/ (01.09.2001).

http://www.cs.rpi.edu/~puninj/XGMML/
http://ist.unibw-muenchen.de/GXL/volk/index.htm
http://www-pr.informatik.uni-tuebingen.de/yfiles/

	Motivation and Background
	Exchanging Graphs
	Exchanging Typed, Attributed, Directed, Ordered Graphs
	Exchanging Extended Graphs
	GXL Document Type Definition

	Exchanging Graph Schemas
	Describing Graph Classes by UML Class Diagrams
	Describing Graph Classes by Graphs

	Using GXL
	Conclusion

