
TOWARDS COLLABORATIVE SMART CITY MODELING
Dilshodbek Kuryazov, Christian Schönberg, Andreas Winter

Software Engineering Group, Carl von Ossietzky University of Oldenburg, Germany

Abstract. Recent technological advancements have led to an increasingly interconnected
world, with new, autonomous “smart” devices and services that permeate everyday life (Internet of
Things – IoT). This opens up a wide range of opportunities for new applications in diverse domains
such as developing smart cities, smart houses, smart cars, smart grid, smart traffic control, etc.
Simultaneously, these systems are reaching the new levels of complexity necessitating appropriate
engineering methodologies. Model-Driven Engineering provides the required foundations for
formally rigorous development of software-intensive systems.

Nowadays, model-driven approaches are extensively applied in designing, developing and
maintaining software architectures, systems and platforms for smart cities i.e. smart city
applications. As these smart city applications become huge and complex over time, collaborative
work of several experts is required to cope with development and evolution challenges arising from
smart city applications. This paper provides a comprehensive vision on applying model-driven
collaborative development and maintenance, new upcoming trends in collaborative modeling of the
IoT-based applications, and its adoption in developing smart city architectures.

1. Motivation
Technological advancement of recent years has brought up an increasing pervasiveness of

the interconnected network of smart devices. More and more devices are being equipped with
network connectivity to autonomously provide “smarter” services, forming the Internet of Things
(IoT) [1]. Applications are wide-ranging, and have variously been termed “Smart X”, including
Smart Homes, Smart Cars, Smart Factories (Industry 4.0), Smart Government, Smart City, Smart
Grid, Smart Traffic Control, and many more.

The concept of smart city arises from the need to manage, automate, optimize and explore
all aspects of a city that could be supported and optimized by information technologies. The
software paradigm IoT, being a core concept behind smart cities, is largely perceived as a collection
of interconnected “things” within smart cities.

IoT-based smart city applications are realized by interconnected systems of heterogeneous
hardware, software, and embedded systems: these cyber-physical systems introduce new levels of
complexity, requiring appropriate engineering methodologies to support formally rigorous software
systems and architectures development. Model-Driven Engineering (MDE) provides fitting
foundations and is considered as an enabling technology for advancing Smart X applications. Smart
City development is an extensive and complex endeavor, which requires intensive collaboration of
various stakeholders and experts from different technical and social domains. Intensive
collaboration by using model-driven approaches require broad support by appropriate tools and
techniques. But, the current state of collaborative MDE is still a long way from realizing its full
potential, and the adoption in industry and IoT remains limited.

A number of model-driven reference architectures [7] and models [14] are introduced for
smart city development, so far. These architectures and models contemplate smart city architectures
as a blueprint which provides an appropriate level of abstraction for the development process of
smart cities. Model-driven reference architectures and models are used to represent and define
different development aspects of smart city architectures gathering different views, viewpoints,
software components, communication protocols, sensors, activators, etc. in a single, huge
architecture. For instance, several model-driven approaches are investigated in [12] utilizing
different modeling language profiles (e.g. standard UML profiles [3]) in development of smart city
architectures. The standard UML profiles is also perfectly aligned in [15] for developing smart city
architectures based on Internet of Things.

MDE intends to improve the productivity of the design and development, maintenance
activities, and communication among various actors and stakeholders of a system. In MDE,

software models (e.g. in UML [3]), which also comprise source code, are the central artifacts. They
are well-suited for designing, developing and producing large-scale software projects, architectures
and applications for smart cities. Software models are the documentation and implementation of
software systems being developed and evolved [2]. MDE brings several main benefits such as
productivity boost and models become a single point of truth. Models are reusable and
automatically kept up-to-date with the source code they represent [2].

Models are constantly changed during their development and evolutionary life-cycle by
various developers and experts. They are constantly evolved and maintained, undergoing diverse
changes such as extensions, corrections, optimization, adaptations and other improvements. All
development and maintenance activities contribute to the evolution of software models resulting in
several subsequent and parallel revisions. During software evolution, models become large and
complex, raising a need for collaboration of several developers, designers and stakeholders (i.e.
collaborators) on shared models and architectures i.e. Collaborative MDE for Smart City.

A meta-model generic, modeling tool generic and flexible collaborative modeling
infrastructure was introduced in [4]. The associated technical support also focuses on providing a
catalog of supplementary, operative services which are underlying services for building
collaborative MDE tools for smart cities. This paper aims at providing vision and prospects to
applying collaborative MDE infrastructure to developing smart city applications.

The remainder of this paper is structured as follows: Section 2 investigates existing model-
driven software and system design and development approaches for smart city applications. The
core concepts behind the proposed collaborative MDE infrastructure are explained in Section 3.
Section 4 portrays the expected benefits of applying collaborative MDE infrastructure to smart city
applications. This paper ends up in Section 5 by drawing some conclusions.

2. Model-Driven Engineering for Smart City: State of the Art
MDE has a much wider set of modeling techniques and a much more detailed separation of

different views and concerns [7]. For instance, components have well-defined interfaces and ports.
MDE benefits from its capabilities to model different, but integrated views and behavior of systems
which are eventually made executable for different platforms. The basic idea of the smart city
vision is the pervasive presence of a variety of things or objects such as sensors, actuators, mobile
phones, etc. which are able to interact with each other and cooperate with their pairs to reach
common goals [1][5]. This section shortly reviews MDE approaches and methodologies for
developing smart city applications that the collaborative MDE infrastructure can be applied to.

There are several MDE approaches for developing smart city applications, e.g. the Sirius-
based ThingML language [6]. These model-driven approaches provide very expressive modeling
language of systems, possibly with source code generation. As long as the main motivation for
MDE is to describe a system on a higher level of abstraction, this is usually done in UML and other
languages by diagrams modeling specific aspects or views of a system.

UML designer [9] is another domain-specific modeling framework built on the top of Sirius
and EMF. In UML designer, smart city architectures and models may describe its logical role of
classes by class diagrams, system-actor interactions by use case diagrams, architectural models by
component diagrams as well as deployment diagrams, which show the mapping of components to
physical entities. Behaviors can be described by sequence diagrams, by state machines and activity
diagrams. Activity diagrams describe the actions and object and control flows between actions.
State machine diagrams are used in several embedded domains to model the behavior of specific
objects e.g. the discrete behavior of components, in a model-driven environment, is usually defined
through finite state machines.

The research presented in [12] takes advantage of the MDE principles to build a holistic
development methodology involving a common, semantically expressive abstraction model, to
specify a smart space with its specific services. It proposes the Resource-Oriented and Ontology-
Driven Development (ROOD) methodology, which improves traditional MDE-based tools through
semantic technologies for rapid prototyping of smart spaces according to the IoT paradigm. In the

framework of ROOD, the Smart Space Modeling Language (SsML) was developed based on UML,
that defines a Domain Specific Model (DSL). It can be used for describing high-level behaviors,
interactions and context information of the entire smart space. It further defines the processing
aspects related to the sensing and actuating capabilities of the smart objects, as well as the context
model they manage; moreover, encapsulate these concepts into RESTful resources. The ROOD
approach is realized using Obeo Designer [13].

Lessons Learned. As explained above, there are already several domain-specific MDE
notations and tools that can be reused for designing, modeling and developing smart city
architectures and applications by distinguishing different design aspects and perspectives such as
views, viewpoints, components, communication protocols, etc. For the sake of interactivity by
collaborative development, maintenance and consistency, evolution and flexibility, they mostly lack
collaborative designing and development support by sharing the artifacts of smart city architectures,
models and applications among collaborators. The most existing tools use standard UML profiles by
defining their own notations. However, these tools are developed on the top of EMF – eclipse
modeling framework, Sirius and Obeo Designer using Ecore-based meta-modeling feature and
standard UML meta-models. The collaborative modeling infrastructure introduced in Section 3 will
be applied to these existing tools using their underlying meta-models.

3. Collaborative Modeling Approach
A meta-model and modeling tool generic as well as flexible collaborative MDE

infrastructure was introduced in [4]. The overall approach consists of a three-layer architecture
namely: language generation, service orchestration and applications. In order to use the
collaborative MDE infrastructure in any modeling domain, a difference language has to be
generated for each domain. After generating difference languages, other underlying services can be
orchestrated for building collaborative MDE applications for each domain language. These
techniques are also applicable to the collaborative MDE of smart city applications.

Language Generation. The collaborative modeling approach takes advantage of modeling
deltas [4] as difference documents for storing and exchanging model changes among collaborators.
Model changes in modeling deltas are represented by a textual, operation-based Difference
Language (DL). Formally, DL is a family of domain-specific languages. Specific DLs for domain-
specific modeling languages can be generated by DL Generator, importing the meta-models of
modeling languages. For instance, the approach is applied to UML class diagrams by importing the
UML class diagram meta-model in [4].

As identified in Section 2, the most existing MDE tools are developed on the top of EMF –
eclipse modeling framework using Ecore-based meta-modeling feature. DL will be applied to the
existing MDE tools (e.g. currently, to UML designer, to ThingML which is an EMF- and Sirius-
based [10] domain-specific modeling tool [9] and to SsML in future). Specific DSL will be derived
from the EMF-based Ecore meta-model [8] based on the standard UML profiles.

Service Orchestration. In order to embed the collaborative MDE support behind the
existing MDE tools for smart city architectures, there is a need for several operational services to
perform certain collaborative modeling operations. These operations might, for instance, be
calculating modeling deltas by listening for changes or comparing subsequent revisions, applying or
propagating modeling deltas on models, etc. The collaborative MDE infrastructure [4] further
provides a catalog of supplementary services that can recognize the DL syntax as well as
manipulate and reuse DL-based modeling deltas. After generating a specific DL for a domain-
specific modeling language, these services can be orchestrated in order to perform certain
operations in collaborative MDE of smart city architectures. In the following, these services and
their orchestrations are utilized in collaborative modeling support for smart city architectures.

Applications. In the collaborative development of smart city architectures, the overall
infrastructure of collaborative MDE has to provide two main scenarios: (1) interactivity of
collaborators; (2) consistency of centralized artifact repositories. On the one hand, providing
interactivity among collaborators is a main concern. Collaborators may use domain-specific MDE

tools for working on their local workspaces. But, there must be a support for joining/opening
centralized and shared smart city architectures and working on it in parallel with other
collaborators. Simultaneously, the changes, they make on their copies of model, should be
synchronized with other parallel instances in real-time, which is referred as interactivity. On the
other hand, smart city architectures and models have to be stored in the centralized and persistent
repositories. It allows for storing the histories of architectures and models under development and
evolution. Repositories can then store and persist models and their histories safely for further reuse
and manipulations.

The collaborative MDE infrastructure [4] introduces two main scenarios of collaborative
MDE namely micro-versioning and macro-versioning. Micro-versioning together with domain-
specific MDE tools enables interactivity of several designers and developers (by concurrent
collaboration) on the shared and centralized model-driven smart city architectures. Macro-
versioning provides the consistency of model-driven smart city architectures. It is a centralized
modeling delta repository with model management features such as opening working copies of
models, reverting their revisions, storing complete model and their revisions, etc.

4. Expected Benefits
The central theme in this paper is to contribute towards a needs-based improvement of

collaborative MDE techniques, methods, and tools, and researching novel, smart modeling
techniques and applications, to address challenges posed by future software-intensive systems in the
framework of smart city architectures and models. Some of the most important challenges include
the following:

Interactivity: The interconnected world enables global software engineering, with
developer teams being distributed over long distances already becoming a common practice. For
incremental and agile model-driven development and engineering, this highlights a need for truly
model-driven collaborative work, and tools for collaborative development of smart city
architectures. The micro-versioning is to be considered as a main foundation for providing
interactivity support, treating a centralized model as a single point of truth. Synchronization of
changes will be eased by exchanging small DL-based modeling deltas. The various domain-specific
MDE tools (e.g. UML Designer, ThingML, SsML, etc.) which are running on different platforms
can communicate with each other in terms of DL.

Consistency: Both the heterogeneity and the high complexity of cyber-physical systems
make integrated views and models of diverse development artifacts and their interrelationships
indispensable. Model consistency and integration needs to occur both throughout evolutionary life-
cycle of the systems/models under development. With collaborative modeling, the histories of
evolving smart city architectures are consistently preserved in modeling delta repositories by
macro-versioning for further reuse and analysis. The DL syntax fully satisfies MDE concepts and
provides consistency of modeling deltas as well as models under development and evolution.

Flexibility: Smart city applications are dynamic, fast-evolving, and based on
heterogeneous parts, e.g. realized as micro-services. This raises a need for technology-agnostic
approaches to integrate diverse subsystems, flexibly. MDE can be applied for model-driven systems
integration, bridging the gap between service and implementation layers using model
transformations, while preserving separation of concerns. DL does not rely on any specific
underlying implementation or technical space being fully independent from underlying problem
domain. The DL-based modeling deltas may form MDE artifacts confirming to a given meta-model,
that can represent complete systems and their changes. The collaborative MDE infrastructure [4]
fully provide the suitable model-driven collaborative development for smart city applications.

5. Conclusions and Future Work
This paper has demonstrated a promising vision and prospects to applying collaborative

MDE infrastructure [4] to engineering and developing the smart city applications. As long as there
are already sufficient domain-specific MDE and development tools for smart cities, development of

such tools is out of the scope, here. But these approaches lacking support for collaboration, which
will be provided as an add-on to the given tools, by the techniques presented in that paper.

The collaborative MDE infrastructure was already successfully applied to designing and
developing UML class diagrams and successfully evaluated by the teams of Uzbek and German
collaborators (with the server and collaborators located at the University of Oldenburg and
collaborators located at Urgench branch of Tashkent University of Information Technologies). The
tool can be downloaded and tested at [16]. Currently, collaborative MDE infrastructure explained in
Section 3 is being applied to UML designer and, in future, to ThingML which is an EMF- and
Sirius-based [10] domain-specific modeling tool [9] as well as SsML – Smart space Modeling
Language.

References
[1] L. Atzori, A. Iera and G. Morabito: The internet of things: A survey. Computer networks, 54(15),

pp. 2787-2805. y. 2010.
[2] A. Kleppe, J. Warmer and W. Bast: MDA Explained: The Model Driven Architecture: Practice

and Promise. Addison-Wesley Longman Publishing Co., Inc., Boston, USA, 2003.
[3] J. Rumbaugh, I. Jacobson and G. Booch: Unified Modeling Language (UML) Reference

Manual. Pearson Higher Education, 2004.
[4] D. Kuryazov, A. Winter and R. Reussner: Collaborative Modeling Enabled by Version Control,

In: I. Schaefer, D. Karagiannis, A. Vogelsang (eds): Modellierung 2018, Lecture Notes in
Informatics (LNI), vol. P-280, pp. 183-198, Bonn, Gesellschaft für Informatik (GI), Feb. 2018.

[5] D. Giusto, A. Iera, G. Morabito and L. Atzori (Eds.): The Internet of Things. Springer, 2010.
[6] F. Franck, et al.: MDE to manage communications with and between resource-constrained

systems. MDE Languages and Systems. Springer Berlin Heidelberg, pp. 349-363, 2011.
[7] Kateule, Ruthbetha; Winter, Andreas: Architectural Design of Sensor based Environmental

Information Systems for Maintainability, Springer, Magdeburg, 2018.
[8] D. Steinberg, F. Budinsky, E. Merks, M. Paternostro: EMF: Eclipse Modeling Framework.

Addison-Wesley Longman Publishing Co., Inc., 2008.
[9] Obeo Network: UML designer. http://www.umldesigner.org/, visited on 02.10.2017.
[10] V. Viyović, M. Maksimović, and B. Perisić: Sirius: A rapid development of DSM graphical

editor. 18th International Conference on Intelligent Engineering Systems (INES), IEEE, pp.
233-238. July, 2014.

[11] F. Fleurey, M. Brice, and S. Arnor: A model-driven approach to develop adaptive firmwares. In
Proceedings of the 6th International Symposium on Software Engineering for Adaptive and
Self-Managing Systems, pp. 168-177. ACM, 2011.

[12] I. Corredor, A. Bernardos, J. Iglesias, J.Casar: Model-driven methodology for rapid deployment
of smart spaces based on resource-oriented architectures. Sensors, 12(7), pp.9286-9335. 2012.

[13] Obeo Designer, 2016. Domain Specific Modeling for Software Architects.
[14] C. Yin, Z. Xiong, H. Chen, J. Wang, D. Cooper, and B. David: A literature survey on smart

cities. Science China Information Sciences, 58(10), pp. 1-18, 2015.
[15] K. Thramboulidis and F. Christoulakis: UML4IoT—A UML-based approach to exploit IoT in

cyber-physical manufacturing systems. Computers in Industry, 82, pp. 259-272, 2016.
[16] Project Group: Real-time collaborative modeling tool for UML class diagrams, Software

Engineering Group, Carl von Ossietzky University of Oldenburg, Germany, 2014, URL:
https://pg-kotelett.informatik.uni-oldenburg.de:8443/build/stable/

