
Mind Maps sans Frontières
Dilshod Kuryazov

Software Engineering Department
Urgench branch of TUIT

Urgench, Uzbekistan
kuryazov@se.uol.de

Florian Schmalriede
Software Engineering Group

University of Oldenburg
Oldenburg, Germany
schmalriede@se.uol.de

Christian Schönberg
Software Engineering Group

University of Oldenburg
Oldenburg, Germany
schoenberg@se.uol.de

Kevin Meyer
Software Engineering Group

University of Oldenburg
Oldenburg, Germany
kevin.meyer@uol.de

Andreas Winter
Software Engineering Group

University of Oldenburg
Oldenburg, Germany

winter@se.uol.de

Abstract—Collaborative development is becoming more and
more important and popular in everyday life. Development of any
system or project, idea, design, model, or realization by teams of
several experts promises high performance during development
and ensures a high quality of the developed system. For this
purpose, there is a need for advanced and elaborated tools for
collaborative design and development.

This paper presents the tool CMCM (Collaborative Mind- and
Concept-Mapping), which is used for collaborative modeling of
Mind Maps to show the feasibility of tool collaboration provided
by model differencing. CMCM manages Mind Maps through
models conforming to a self-developed modeling language for
Mind Maps. The CMCM modeling language differentiates be-
tween abstract, diagram and concrete syntax following the DD
(Diagram Definition) standard of the OMG. To support collabo-
rative modeling, instances of CMCM exchange model differences
conforming to the operator-based Difference Language (DL) via
the CoMo-X (Collaborative Modeling – eXtend) server. Macro
and micro versions of models are equally described with DL and
enable asynchronous as well as synchronous collaboration.

Using a self-reflective Mind Map of collaborative Mind Map-
ping as a use case, the functionality of CMCM is demonstrated,
the concepts behind CMCM are explained, and CMCM is
evaluated. The underlying approach is shown to be both effective
and efficient, as well as transferable to other modeling domains
and languages.

Index Terms—Collaborative Modeling, Collaborative Mind
Mapping, Macro-versioning, Micro-versioning, Real-time Syn-
chronization, Delta Language, Diagram Definition.

I. INTRODUCTION

Collaborative development is the creation of large and
complex software systems, projects, designs, models, and
ideas (i.e., artifacts) by teams of several domain and tech-
nical experts. All artifacts are produced during evolution
and maintenance. The complete model is stored in a central
repository; collaborators work simultaneously on distributed,
synchronized copies. The team-members usually work on the
shared projects in real-time.

There are many modeling languages that are used in the field
of software engineering, including the various UML diagram
types. In this paper, we focus on another modeling paradigm
that stresses the conceptual work of software engineering in

general: Mind Maps. As a feasibility study for developing
collaborative modeling tools, we present a tool CMCM (short
for Collaborative Mind- and Concept-Mapping) that allows
multiple users to work at possibly distributed locations on
the same Mind Map simultaneously – at the same time, or
asynchronously – at different times. We show that our tool
is both effective and efficient, due to an optimized way to
synchronize changes between collaborators.

Depending on the nature of interaction, collaborative devel-
opment systems can be divided into two main form s, namely
concurrent collaborative modeling and sequential collaborative
modeling [1], [2].

Synchronous Collaboration. Synchronous collaboration
indicates creating, modifying and maintaining huge and cen-
tralized artifacts, that are shared as copies among modelers in
real-time. The collaborators can be located in different places
geographically and work at the same time. The collaborators
can access the centralized and shared repository, and can
directly modify the artifacts on the central repository or on
their local copies. There are several approaches widely used
in the synchronous collaborative editing of textual documents,
for example Google Docs [3], Etherpad [4], or Overleaf [5].

As long as synchronization of changes occur in real-time,
performance of interaction matters. In synchronous collabo-
ration, the changes can be constantly detected by listening
to the users’ actions on a particular client system. They can
be represented in the form of a small set of model changes.
These changes are usually not stored, but synchronized directly
among collaborators. In contrast to textual document editing,
the increased performance of change synchronization is very
crucial in synchronous collaborative designing because of the
complex graph-like structure of the models. Thus, artifact
changes have to be identified continually, and represented
and synchronized using very compact notations. Synchronous
collaboration is enabled by micro-versioning [6], [7] in this
paper.

Asynchronous Collaboration. Asynchronous collaboration
intends to identify changes between subsequent revisions
of artifacts, stores and reuses these changes when needed.

PREPRINT -- NOT FOR PUBLICATION OR DISTRIBUTION -- PREPRINT
D. Kuryazov, F. Schmalriede, C. Schönberg, K. Meyer, A. Winter: Mind Maps sans Frontières. In: Proceedings of the 2021 ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems Companion (MODELS-C), Workshop on Collaborative Modeling, 2021.

There are several source code-driven asynchronous collabo-
rative development approaches (also known as version control
systems) such as Subversion [8], Git [9], and others. These
asynchronous collaborative development systems for source
code are the best aid in handling development and evolution
of large-scale, complex and continually evolving software
systems. The same support is needed for designing and mod-
eling. For instance, while designing projects in asynchronous
collaboration, collaborators intend to store the current revision
of their model and reopen it at a later date or at another
location to continue development. Or collaborators are located
in different time zones and work at different times on the
project. These model management activities are facilitated by
macro-versioning [6], [7] in this paper.

Collaborative modeling requires both synchronous collabo-
ration in real-time and asynchronous collaboration by merg-
ing model variants created in a distributed manner. Since
managing both micro- and macro-versions is done by model
differences, both scenarios can be supported by a common
technical approach.

II. USE CASE

Mind Mapping is the process of structuring concepts in a
graphical manner [10]. Starting with a core concept in the cen-
ter, related and subordinate concepts are arranged around it on
branches. Further concepts are placed on additional branches
that originate at any of the existing concepts, forming a radial
tree structure. In addition to the hierarchical structure, cross
references can show directed connections between concepts.
Colors can be used to mark and differentiate separate aspects
[11].

Figure 1 shows an example of a Mind Map with four sub-
concepts around the center and three cross-references. Mind
Maps are used for structuring domain knowledge, thought
processes and brainstorming sessions. Mind Mapping can be
used by individuals in one-on-one sessions, but it is also an
appropriate approach to collect and structure ideas together.
Mapping the concepts in the structured manner of Mind Maps
ensures that all relevant aspects are considered and that all
aspects are arranged hierarchically.

As a running example in this paper, we will have the
authors map the concepts of collaborative Mind Mapping
itself. As not all of us reside in the same location (not even
in the same country), and as currently most of us work from
home, a tool for online collaborative Mind Mapping is needed.
Since collaborative modeling is a group activity that requires
discussion in addition to the shared model, at least one open
channel of communication is required. These channels are
provided separately from our tool approach, however, allowing
modelers to use their system of choice for the discussions.

The geographical distance varies widely between us, as does
the quality of the internet connection available. This leads to
large fluctuations in connection properties like latency and
capacity. In turn, this necessitates fast and efficient network
transmission of Mind Map data, and a modeling concept that is
largely tolerant of transmission delays and re-orderings. Local

changes need to be transferred in real-time to other parties
with a minimum of data volume.

For multiple users that model at the same time, the system
also needs to be robust versus conflicts. During modeling of
a Mind Map, many – sometimes conflicting – ideas are put
forward and added to the common model. When two changes
clash, e.g. because two people change the same concept to
different names, the system needs to be able to deal with this
situation.

Experiences with collaborative modeling of mind maps,
UML class diagrams [6], and UML activity diagrams [7] have
shown that conflicts do not affect synchronous collaboration
when small changes are shared immediately. The use of a
channel for parallel communication between the collaborators
also ensures that modeling surprises are avoided.

When multiple persons change aspects of a Mind Map, it
is also helpful to know who made a specific change. The
modeling system therefore needs to visualize the ownership of
all changes in some way. This allows for a targeted discussion
of specific aspects via the aforementioned communications
channels.

We solve these challenges using the Delta Language (DL)
approach, which is capable to sharing small and extensive
model differences, combined with a strict separation of ab-
stract, diagram and concrete syntax as described in section IV.

III. METHODOLOGY AND TOOL

Instead of relying on a shared screen, where one person
models while everybody else makes suggestions, we have
developed a true collaborative modeling tool for Mind Maps
called CMCM (short for Collaborative Mind- and Concept-
Mapping) [12]. It allows for simultaneous editing of the Mind
Map by different users, each with their own graphical client.
The clients are connected through a common server (our
CoMo-X Server, see section IV).

Using a server hosted by the University of Oldenburg and
a custom tool, we remain independent from international data
servers. This is an advantage when using collaborative mod-
eling for teaching, examination, or for international research
projects, as it allows us to comply with the requirements of
the General Data Protection Regulation (GDPR).

We will now describe a modeling session, where we created
a Mind Map for collaborative Mind Mapping using the CMCM
tool. During that session, we communicate via the video-
conferencing tool BigBlueButton [13], which is approved by
our respective universities.

A. Installation

You can download CMCM from https://uol.de/se?cmcm.
You will also find the installation instructions and software
dependencies there.

B. CMCM Tool

Using a modeling scenario, we will introduce the function-
ality and the user interface of the CMCM tool.

Upon startup, CMCM shows a generic sample Mind Map.
But before we can start collaborating, the collaborators have

Fig. 1. Running example: Mind Map about collaborative Mind Mapping.

Fig. 2. CMCM : Collaborative modeling.

to identify themselves to the server: Each of us clicks on
“Register” to create a new user identity, or on “Login” if
we already have one. We are then presented with a list of
Mind Map models that are available on the server. We can
either select one of these existing Mind Maps, or create a new
model.

One of us (Andreas) creates a new model, giving it the

name “Collaborative Mind Mapping”. All of us then select this
model from the list (refreshing the list as necessary) and click
“Open Model”. We are now presented with identical views of
the same Mind Map, which currently only consists of the root
concept that is initially named “Root”.
The final version of this Mind Map is shown in figure 1.

Andreas starts the brainstorming session by right-clicking

on the root concept, selecting “Change Title” from the context
menu, and changing the concept to “Collaborative MindMap-
ping”. Florian similarly changes the concept’s color to “red”
from the same context menu.

Christian creates a new branch by clicking on “Branch”,
then clicking on the concept from which to branch
the new sub-concept off. He calls the new sub-concept
“(Meta-) Models” and arranges to the top-left of the root
concept. At the same time in Uzbekistan, Dilshod creates a
new branch “Synchronization”, which he places to the bottom-
left of the root concept. To keep the concepts better apart, they
each choose a different color for their branch.

Figure 2 shows two of the clients at this point. The right-
hand client (Christian’s) also shows who added the “Abstract
Syntax” sub-concept as a mouse-over hint. Christian then
adds another sub-concept “Content” to the “(Meta-) Models”
branch. Florian takes this opportunity to add a cross-reference
between “Content” and “Abstract Syntax”: he clicks on the
“Cross Reference” button, then on the “Content” concept
as the source of the reference, and finally on the “Abstract
Syntax” concept as the target of the reference. To separate
it clearly from the sub-concept branches, he selects the color
“black” for this cross-reference. Labels for references and bi-
directional references are also possible.

At a later time, when the other collaborators have finished
their (synchronous) modeling session, Kevin adds a new
branch “User Interface”. This asynchronous collaboration is
seen by the other modelers when they open the Mind Map the
next time.

Other controls allow collaborators to undo or redo specific
actions (the “undo” and “redo” buttons, respectively), to save
the current Mind Map as an image file (“Export as PNG”), to
open another model (“Open Model”), to turn the grid of dots
on and off (“Grid”), and to save specific versions of the model
(“Save”).

The latter function is useful for storing interim versions
of the model that we can return to at a later date. This
function is not yet implemented on the server side, however.
We refer to these complete models that are stored as macro
versions, in contrast to the micro versions that are swapped
between clients and only contain the latest local changes.
Whenever a new client logs in and opens a model, they receive
the complete model as the optimized sum of micro versions
(minus superfluous changes like things that were overwritten
or deleted later).

Macro versioning also allows us to use our CMCM tool
for asynchronous modeling, as shown in the scenario above:
A collaborator can make changes to the Mind Map, while the
other users are offline. These changes will be shown in their
clients when they reconnect.

C. Performance and Efficiency

The micro versions (modeling deltas) in synchronous col-
laborative designing are represented by the operations of
Difference Language (DL) [14]. This enables quick synchro-
nization of changes between the collaborators in real-time.

The model changes represented by small, textual operations
provide high performance in change synchronization in syn-
chronous collaboration. The high performance by DL-based
change representations avoids conflicts in real-time.

According to the general language design, DL serves as
a common change representation and exchange format for
various services of asynchronous and synchronous collabo-
rative development. The synchronous and asynchronous col-
laborative designing use cases take advantage of the same
common change representation approach enabling a single
point of truth. The same underlying change representation is
also utilized to store the differences between several sequential
revisions of a model in asynchronous collaborative develop-
ment.

IV. SOLUTION

Each instance of CMCM maintains its own model to rep-
resent a Mind Map. The models conform to a self-developed
meta-model that consists of a Mind Map Modeling Language
(M3L) and a Mind Map Modeling Language Diagram Inter-
change (M3L DI). Changes to a model are encoded using a DL
(Difference Language) generated for M3L/M3L DI according
to [14]. In encoded form, the changes are synchronized with
the CoMo-X (Collaborative Modelling – eXtend) Server [15].
The CoMo-X Server serves as a single point of truth for the
model. It distributes the changes as micro versions to all other
instances of CMCM of the collaborators in a session. The
instances of CMCM apply these changes to their respective
local copy of the model. Accordingly, the models and thus the
Mind Maps are synchronized between the collaborators of a
session.

A. Modeling Language

Before a collaborative modeling session can start, the col-
laborators must agree on the modeling language. A modeling
language specifies the modeling concepts and their possible
combinations as well as the representation of these. Accord-
ingly, collaborators can interpret and modify a representation
of a model according to the chosen modeling language. Ad-
ditionally, modeling software must present models to collab-
orators so that they can understand and, if necessary, modify
the models. In CMCM the designed modeling language (cf.
figure 3) for the description of Mind Maps is implemented.

a) Abstract syntax of Mind Maps: The three modeling
elements root, branch and cross reference are needed for
modeling Mind Maps. A root is used to describe a main
concept that defines the focus of the Mind Map. Starting
from the root, branches can be used to describe concepts
that are related to the main concept. Branches can in
turn be supplemented by further branches to associate the
corresponding concepts with further concepts. Together, the
root and branches of Mind Maps form a tree-like struc-
ture. Cross references can be used to relate two different
branches and thus their concepts. In order to specify the
relationship between two concepts more precisely, a cross
reference is provided with a concept and a direction. Roots,

(UML)

Element

M3L

Element

text: String

TermBranch Root

CrossReference

 bidirectional: Boolean

M3L DI

DiagramElement

Diagram

Style

color: Color

Shape

Edge

Label

(DI)

DiagramElement

(DI)

Diagram

 name: String

(DI)

Style

(DI)

Shape

 bounds: Bounds [0..1]

(DI)

Edge

waypoint: Point [*]

 source

*

1

 target

 *

 1

 branch 1

 *

 owningElement

 ownedElement

0..1

 *

 owningElement

 ownedElement

1

 0..1

 target

*
 0..1

 localStyle

 1 0..1

 sharedStyle

* 0..1

 source *
1

 branch 1

 *

 source

*

1

 target

 *

 1

 owningElement

 ownedElement

0..1

 *

 modelElement *

 0..1

 localStyle

 1 0..1

 sharedStyle

* 0..1

 owningElement

 ownedElement

1

 0..1

 source *
1

 target

*
 0..1

Fig. 3. Abstract syntax (package M3L) and diagram syntax (package M3L DI) embedded into UML and DD.

branches, cross references and their combination describe
the connection of several concepts in a structured way. These
modeling elements form the abstract syntax (cf. package M3L
in figure 3) of Mind Maps.

b) Concrete syntax of Mind Maps: The root of a Mind
Map is represented by an ellipse. Inside the ellipse, the main
concept described by the root is rendered as text. Branches
are rendered as rounded rectangles, connected by lines to the
root or to another branch. The concepts of the branches
are rendered as text inside the rectangle. Cross references
are rendered as lines that are placed between two branches.
Their direction is indicated with an arrowhead. Along the
representing line of a cross reference, the (optional) concept
of that cross reference is rendered as text. The placement of
individual elements in a representation of a Mind Map is not
predetermined and can be freely chosen by the collaborators.
It is possible to move or enlarge the ellipse and texts. Ellipses,
lines, arrowheads, texts and their placement form the contrete
syntax (cf. figure 4) of Mind Maps.

In MOF-based modeling languages [16], such as UML
[17], the modeling concepts and their combination, called
abstract syntax, are described by MOF conforming models,
called meta-models. The Diagram Definition (DD) standard
[18] of the OMG offers a MOF compatible framework which
integrates representation aspects into meta-model. This makes
it possible to describe the representation of a model and to
exchange it in the same way as models. The DD standard
differentiates between layout information, called diagram
syntax, and the representation of individual elements, called
concrete syntax. When describing a MOF-based modeling
language according to the DD standard, the diagram syntax is
associated with the abstract syntax of the modeling language.
By mapping the diagram syntax associated with the abstract
syntax to graphical elements, the concrete syntax is described.
The framework given by the DD standard uses three packages:

Diagram Common (DC), Diagram Interchange (DI)
and Diagram Graphics (DG). The DC package includes
elements shared by the DI and DG packages. For example,
the DC package includes the description of points with an X
and Y coordinate. In the DI package, elements describing a
diagram syntax are included and associated with each other.
A modeling language can refer to the elements in the DI
package and specialize them according to the required diagram
syntax. The DG package describes graphical elements such
as ellipses that can be referenced by a mapping to define
the concrete syntax of a modeling language. Due to the
possibility to exchange representations of models like models
and the separation between abstract syntax, diagram syntax
and concrete syntax, the modeling language of CMCM is
described according to the DD standard.

On the left side in figure 3 the package M3L is used
to describe the abstract syntax of Mind Maps. The classes
Root, Branch and CrossReference are representing the
equivalent modeling elements of Mind Maps. Each modeling
element of a Mind Map can be provided with a text. From
a root as well as from a branch there can be any number of
branches. Branches can be connected with cross references. A
cross reference can be unidirectional or bidirectional.

On the right side in figure 3 the package M3L DI is
used to describe the diagram syntax of Mind Maps. A Mind
Map is composed of shapes and edges. Shapes are diagram
elements whose position and size can be adjusted. Thus, the
position and size of a root can be described by a shape.
Edges are diagram elements that form a line and are positioned
by specifying multiple points. Edges always have a diagram
element as a source and can connect two diagram elements
with the specification of a target. Thus, edges are suitable
for positioning branches and cross references. Shapes and
edges can be labeled to display text. The position and size of
the labels can also be adjusted, as with shapes. All diagram

 : Root

text : String = Collaborative MindMapping

 : Shape

bounds : Bounds = {150, 150, 60, 30}

: Label

bounds : Bounds = {155, 155, 50, 20}

 : Text

 : Group

 : Ellipse

center : Point = {180, 165}

radii : Dimension = {30, 15}

data : String = Collaborative MindMapping

bounds : Bounds = {155, 155, 50, 20}

Map Draw

Collaborative MindMapping

abstract syntax diagram syntax concrete syntax

Fig. 4. Abstract syntax, diagram syntax, and concrete syntax for the root concept in the use case (without color).

elements are color-able by a local and / or shared style. If a
diagram element does not have a local style, then it uses the
shared style of itself or its owner.

Figure 4 shows the interrelations between abstract syntax,
diagram syntax and concrete syntax, using the root element as
an example. The concept “Collaborative MindMapping” from
the model in figure 1 is of type Root (abstract syntax). It has a
Shape and a Label (diagram syntax) with given coordinates,
but the concrete form of that shape is not yet specified. This
is achieved by mapping the concept to the Ellipse and
Text types (concrete syntax), respectively. Ellipse and text
specify the exact form and shape of the graphical element,
and combined with the layout data the element can now be
drawn. For other elements of a Mind Map, a simultaneous
approach is used. From the combination of an element of the
diagram syntax and an element of the abstract syntax, whose
connection is given by an association, the concrete syntax of
this combination can be uniquely derived. A mapping realizes
the concrete syntax by instantiating elements of the package
DG of DD.

In CMCM, changes to the model of the abstract as well
as the diagram syntax are exchanged. The concrete syntax
of Mind Maps is fixed and therefore does not need to be
exchanged. It is ensured that all collaborators who are familiar
with Mind Maps can interpret the Mind Maps in CMCM.
In addition, the volume of data that has to be exchanged in
case of model changes is reduced. It is only necessary to
exchange changes to models describing the abstract syntax
and the diagram syntax.

B. Difference Language (DL)

Difference Language (DL) is a family of operation-
based domain-specific languages dedicated to represent model
changes in the form of modeling deltas. Specific DLs for
representing modeling deltas within a particular modeling
domain are derived from the meta-models of these modeling
languages. In the application in this paper, a specific DL is
generated from the abstract and diagram syntax as described
in figure 3 for describing changes in the Mind Map modeling
language. The DL generator is language-agnostic, i.e., it does
not rely on a particular modeling language. The DL-based
collaborative modeling approach can be applied to a wide
range of modeling languages by generating specific DLs.

Figure 3 (package M3L) depicts the content part (i.e. abstract
syntax) of the Mind Map modeling language. In graphical
modeling, each modeling object has design information such

as ratio, size, and position, also called layout information.
Figure 3 (package M3L DI) portrays the layout part (i.e.
diagram syntax) for the content part, which is changeable
by collaborators. The layout part of the meta-model depicts a
subset of the Graphical Modeling Framework (GMF) notation
[19], which supports notations for developing visual modeling
editors. The meta-model in figure 3 includes all content
(M3L) and layout (M3L DL) aspects that can be manipulated
by collaborators. Thus, model differences occurring during
collaboration refer only to the data specified in figure 3.
The specific DL for the CMCM meta-model is generated by
the DL generator service explained in [14]. While generating
the specific DLs, the DL generator inspects all meta-classes.
For each of these meta-classes, it iterates over the attributes
and collects those that are changeable and not marked as
persistent identifiers. For each meta-class, the DL generator
generates creation and deletion operations. For each attribute
of these meta-classes, the DL generator generates a change
operation. In general terms, the DL generator applies three
basic operations: create and delete for each meta-class and
change for each attribute of a given meta-model. Relationships
are treated as attributes of meta-classes.

The concrete DL used in CMCM is derived directly from
the CMCM meta-model (cf. figure 3), covering content,
graphical representation and the corresponding mapping. Each
concept (classes, attributes, etc.) from the meta-model is
associated with the appropriate operations (e.g., add, change,
or delete) [14].

Creating a new branch “Visualization”, moving it to the top-
right of the root, and then changes the color to “green” can
be represented as a set of operators like the following:

<r-id>.createBranch(Title ‘‘Visualization’’)
<b-id>.change(X ‘‘395.3333435058594’’,

Y ‘‘60.333343505859375’’)
<b-id>.change(Color ‘‘0x8fbc8fff’’)

The first line creates a new branch under the root. The root
is identified by its ID, shown here simply as <r-id>. The
next two lines change attributes of the new branch (represented
by its ID shown as <b-id>): both the x- and y-coordinates
are changed when the new branch is moved to a new location.
In the last line, the color attribute of the branch is changed to
a value representing “green”.

The result is shown in figure 1 in the top-right quarter.

C. Micro and Macro Versions
During synchronous collaboration, model changes are de-

tected by a listener service in the modeling client and are
described by micro versions using the DL operator syntax. In
asynchronous collaboration, model changes are calculated by
model differencing tools [14] and stored as macro versions by
DL operations.

In case of synchronous collaboration, modeling deltas con-
sist of a small set of model changes, whereas they represent a
larger set of model differences in asynchronous collaboration.
Modeling deltas consisting of small changes in synchronous
collaboration are referred to as micro-versions, whereas they
are referred to as macro-versions in asynchronous collabora-
tive designing. The CMCM tool enables synchronous collab-
oration use case by micro-versioning, whereas asynchronous
collaboration is built on macro-versioning. Since micro and
macro versions are exchanged through the same DL notation,
model differences in synchronous and asynchronous collabo-
ration can be handled using the same techniques.

D. Main Components
The CMCM tool uses several independent services and

orchestrations of these services. Generally, the tool is built
based on a repository-style client server architecture pattern.
Specifically, the server consists of a synchronizer service and a
modeling repository. For synchronous collaboration, the client
side of the tool is made of a change listener, a change applier
and an editor service. Asynchronous collaboration requires a
difference calculator service and a synchronizer [14, p. 125ff].

• Modeling Editor. A modeling editor is the main feature
of the CMCM tool. It is used to design system models
by end users. The editors open models from the server
providing an option to select which model users want to
develop.

• Change Listener. A change listener service is a part of
each client instance of the tool. It listens for changes
users make in the modeling editor of their tool instances.
The listener detects every single change made by users
on their editors. The detected changes are constantly sent
to the server in order to synchronize them with other
parallel instances of the model under development. The
model changes are contained in deltas and synchronized
using the operations of the Difference Language.

• Calculator. Comparison between model versions is done
on the server. In asynchronous collaboration a new model
variant is compared to the current version. Model dif-
ferences are manifested by the Difference Language and
synchronized to the resulting merged model version.

• Applier. Like the change listener service, a change
applier service is also a part of each client instance
of the tool. While the model changes are detected by
the change listener service and synchronized among the
several model instances by a synchronizer server, these
changes are applied to other model instances by this
change applier service once they are delivered to other
clients.

• Synchronizer. A synchronizer service is located at the
server. It synchronizes changes in modeling deltas among
all collaborators of a particular model under development.

• Model Repository. A model repository is located on the
server side. It serves to store models and their histories.
The model repository consists of only modeling deltas
namely active deltas and difference deltas [14]. The
active deltas describe the active revisions of model under
development, whereas difference deltas describe changes
between subsequent revisions of system models.

V. HANDS-ON SESSION

During the practical session, we plan to model a Mind Map
about collaborative modeling. All participants should have at
least a passing familiarity with the subject, so we anticipate
no content-related difficulties. Anyone who installs the CMCM
tool can therefore participate. For installation instructions, see
section III-A.

As a result, we expect a well thought-out Mind Map
about the topics of the workshop, re-capturing the information
learned by all participants. We also expect an in-depth test of
our approach and our tooling. Identifying bugs and missing
features is the first part of this test, followed by identifying fea-
tures that work well but could be improved upon. This includes
extending our experiences concerning modeling conflicts: are
they rare enough to be irrelevant for practical applications, or
do they occur occasionally for larger groups of participants?

Parallel to the technical evaluation, we are also interested
in best practices for collaborative modeling:

• What is the best mode of communication?
Possible solutions include audio only, audio and video,
text chat, and breakout rooms. Depending on the number
of workshop participants, different communication modes
can be used.

• What is the best way to deal with alternative modeling
ideas, where one person wants to model something in a
different way than another?
Possible solutions include discussion, majority vote, and
split/fork of the model.

• How can we deal with headstrong people who do not
adhere to the group’s decisions? How do we deal with
actual sabotage?
Possible solutions include banning, restricting rights, and
social influence.

The outcome of the hands-on session will be an initial
Mind Map of the workshop content, including some ideas and
strategies for improving the CMCM tool and the associated
collaborative modeling process.

VI. CONCLUSION

This paper presented the CMCM tool for collaborative
modeling of Mind Maps. The tool allows for synchronous and
asynchronous modeling. It uses model differences, encoded via
the operators of Delta Language, to transmit model changes
from a client to the server, which in turn sends the changes to
all other clients. The server acts as the single point of truth.

Micro versions, resulting during synchronous collaborations,
are sufficiently small to be shared simultaneously, without
interfering with the common work.

While theoretically possible, no conflicting change infor-
mation has been observed on the server during our extensive
tests. Tools following the DL-principle have been used exper-
imentally by more than ten users located over long distances
(Africa, Asia and Europe), all connecting to the same server
located in Germany. During these experiments, the tool has
shown sufficiently high performance by synchronization of
small DL-based modeling deltas [7].

Larger sets of delta language operators (macro versions),
contain the entire model, which e.g. is sent to each newly
connected client. They also support model exchange during
asynchronous collaborations and serve as interim safe states
that can be restored at a later date. In theory, any state of the
model can be restored at any time by backtracking the micro
versions, but in practice macro versions are more convenient
because they can be applied more efficiently when explicitly
marking a tagged branch.

In CMCM, any Mind Map can currently be edited by any
registered user simultaneously. We plan to add a more compre-
hensive access-management, including asynchronous collab-
oration support. For asynchronous collaboration, a merging-
mechanism for models is also required. In case of accidental
deletes or erroneous edits, the entire diagram history is stored
on the server, so any change made to a diagram by any user
can be reversed later. The general DL-based approach can be
integrated into open source tools, as shown for the no longer
supported UML Designer [6]. Further activities will migrate
these ideas to further UML-tools.

Currently, CMCM allows a – conceptually limitless – group
of collaborators to develop and discuss Mind Maps. It can be
deployed on premise, thus satisfying regulatory demands of
the GDPR, if used with a trusted server. Users can model
all relevant aspects of Mind Maps, including branches and
colors. They can undo and redo changes, and track the authors
of each Mind Map branch. The strict separation between
abstract, diagram and concrete syntax allows for efficient
synchronization of changes and provides easy adaptability of
our approach to other modeling languages.

REFERENCES

[1] C. A. Ellis, S. J. Gibbs, and G. Rein, “Groupware: some issues and
experiences,” Communications of the ACM, vol. 34, no. 1, pp. 39–58,
1991.

[2] G. Booch and A. W. Brown, “Collaborative development environments,”
Adv. Comput., vol. 59, no. 1, pp. 1–27, 2003.

[3] W. Zhou, E. Simpson, and D. P. Domizi, “Google docs in an out-of-
class collaborative writing activity.” International Journal of Teaching
and Learning in Higher Education, vol. 24, no. 3, pp. 359–375, 2012.

[4] R. A. Calvo, S. T. O’Rourke, J. Jones, K. Yacef, and P. Reimann,
“Collaborative writing support tools on the cloud,” IEEE Transactions
on Learning Technologies, vol. 4, no. 1, pp. 88–97, 2010.

[5] “Overleaf: Collaborative document writing,” http://overleaf.com, last
accessed 2021.

[6] M. Appeldorn, D. Kuryazov, and A. Winter, “Delta-driven collaborative
modeling.” in MODELS Workshops, 2018, pp. 293–302.

[7] D. Kuryazov, A. Winter, and R. Reussner, “Collaborative modeling
enabled by version control,” Modellierung 2018, 2018.

[8] B. Collins-Sussman, B. W. Fitzpatrick, and C. M. Pilato, Version control
with subversion. ” O’Reilly Media, Inc.”, 2004.

[9] T. Swicegood, Pragmatic version control using Git. Pragmatic Book-
shelf, 2008.

[10] T. Buzan, Mind Map Mastery: The Complete Guide to Learning and
Using the Most Powerful Thinking Tool in the Universe. Watkins
Publishing, 2018.

[11] S. Edwards and N. Cooper, “Mind mapping as a teaching resource,” The
clinical teacher, vol. 7, no. 4, pp. 236–239, 2010.

[12] K. Meyer, “Kollaboratives Mind- und Concept-Mapping,” Bachelor’s
Thesis, University of Oldenburg, Germany, 2021.

[13] BigBlueButton Inc., “BigBlueButton,” https://bigbluebutton.org/, 2021.
[14] D. Kuryazov, “Model difference representation,” Ph.D. dissertation,

University of Oldenburg, 2019. [Online]. Available: http://oops.
uni-oldenburg.de/3938/1/kurmod19.pdf

[15] T. Sprock, “Repository Managementsystem für Delta Language,” Mas-
ter’s thesis, University of Oldenburg, Germany, 2020.

[16] Object Management Group, “Meta Object Facility (MOF) 2.5.1 Core
Specification,” https://www.omg.org/spec/MOF/2.5.1, 2019.

[17] ——, “OMG Unified Modeling Language (OMG UML), Superstructure,
Version 2.4.1,” https://www.omg.org/spec/UML/2.5.1, 2017.

[18] ——, “Diagram Definition (DD), Version 1.1,” https://www.omg.org/
spec/DD/1.1, 2015.

[19] Eclipse Foundation, “Graphical Modeling Project (GMP),” https://www.
eclipse.org/modeling/gmp/, 2018.

