
Towards a Catalogue of Software Evolution Services

Jan Jelschen, Andreas Winter

Carl von Ossietzky Universität, Oldenburg, Germany

{jelschen,winter}@se.uni-oldenburg.de

Abstract

Evolving large software systems comprises the ap-
plication of many different techniques to analyse, re-
verse engineer, visualize, and transform software sys-
tems. Tools supporting these activities mostly lack
interoperability support, and thus need to be wired
manually to facilitate desired tasks. This paper pro-
poses describing existing techniques as services, as a
prerequisite to create an interoperability framework
for software evolution tools.

1 Introduction

Software evolution encompasses all activities chan-
ging a software system after its deployment [2]. Soft-
ware migration aims at transferring software systems
from one platform or environment to another, with-
out changing functionality [5]. Enhancing software
quality is the goal of software reengineering or reno-
vation. These fields overlap in techniques and tools
used. Particular evolution projects, their objectives,
and single evolution tasks, determine the techniques
to be used and their composition in appropriate tool
chains. Concrete processes, workflows, tasks and en-
abling tool support need to be defined individually for
each evolution effort.

However, automating these processes often requires
a great amount of manual effort, wiring various tools
only providing single evolution techniques. Data inte-
gration, as defined by Wasserman [6], is available by
many techniques trough a common exchange file for-
mat (e.g. GXL [1]), which is still limited, compared
to sharing data via common (distributed) repositories.
Sophisticated interoperability requires direct tool in-
teraction (control integration) and flexible wiring of
tools for given workflows (process integration).

This paper views software evolution techniques as
services as a prerequisite to tool interoperability. The
level of abstraction of services enables loose coupling,
and thereby direct interoperability, flexible enough to
wire (orchestrate) services into workflows as needed.
Rather than developing an interoperability framework
from scratch, a service catalogue can be implemented
utilizing existing technologies from component-based
or service-oriented software engineering.

Section 2 describes a migration scenario as an ex-
ample of a tool-dependent, integrated process, as it
might occur in software evolution projects. The ex-

ample is used to identify services, and to deduce main
challenges for future research in Section 3. Section 4
concludes with an overview.

2 Working Scenario

Consider a project aiming at migrating a legacy
COBOL system to Java. It entails evaluating different
code translation tools by measuring the quality of the
resulting Java code and comparing it to the quality
of the COBOL code. In subsequent steps, Java code
might be analysed for code clones, and be restructured
to remove them.

Each of these activities is supported by one or more
services. Figure 1 depicts these services, and how they
depend on each other. First, the legacy COBOL sys-
tem needs to be parsed. Results of the parsing ser-
vice are used to evaluate metrics, and as input for a
translation to Java. The latter service is actually de-
picted twice in Figure 1 (highlighted in grey), as the
scenario involves comparing two different implemen-
tations. On the service-level, this is transparent – it
allows to exchange one implementation for the other
without affecting depending services. The service to
evaluate Java metrics is used twice, as well. It can
rely on both the results of the translation service and
those produced by applying clone detection and sub-
sequent clone removal services. The same holds for
generating Java source code.

This service view only incorporates application ser-
vices, as opposed to technical services, which provide
infrastructure. Both should be kept strictly separated
for reusability (cf. [4]).

A technical view is shown in Figure 2, evoking
ECMA’s Reference Model for Software Engineering
Framworks [3]. It makes some implementation as-

Parse
COBOL

Evaluate COBOL Metrics

Evaluate
Java Metrics

Detect
Clones

Remove
Clones

Evaluate
Java Metrics

Generate Java Source Code

Generate Java
Source Code

Translate
COBOL to Java

A

Translate
COBOL to Java

B

Figure 1: Services involved in the working scenario.



Figure 2: A technical view on the service architecture.

sumptions and reveals additional (technical) services:
a repository providing central data storage and re-
trieval has been chosen for data integration. Interac-
tion and communication between services is brokered
by an interoperability framework. The actual service
wiring is done by the framework at runtime.

The following section discusses observations from
the scenario regarding key challenges and obstacles.

3 Challenges

Realizing a service catalogue and a correspond-
ing interoperability framework requires the following
steps: First, a rigorous service description template
is required. The service descriptions are to be used
as contracts, against which tools can be build. They
also provide significant information needed for ser-
vice composition. Services have to be identified to
fill the catalogue, which will be used to guide the de-
sign of the interoperability framework, by determining
what kind of services are available, how they relate,
and what their requirements are. High-level interop-
erability can be implemented using existing frame-
works. Since most software evolution services are
data-centric, a repository is to be used for data in-
tegration. Its design has to take into account the size
of real-world legacy systems, performance issues, and
different data formats specific to individual services.

Service Description Drawing from component-
based and service-oriented software engineering ap-
proaches, the following common concepts making up
a service are identified: Operations, which can be in-
voked by other services, the operations’ data formats
for inputs and outputs, references to other services,
and protocols governing invocation constraints. In
addition, a (formal) description of the services’ be-
haviour is required. Data schemata can be specified
using meta-models (see “Repository Design”).

Service Identification Techniques for inclusion
in the service catalogue are identified by review-
ing publications in the field of software evolution,
and analysing real-world migration and renovation
projects. Existing successful usage examples guide
which services to include, to prevent the catalogue
from being cluttered with services of marginal signif-

icance. Complex services are decomposed into sub-
services, to identify common parts in different tech-
niques. A reasonable level of minimal granularity has
to be defined, to avoid degradation into trivial “micro-
services”.

Repository Design As software evolution services
are used to analyse or modify legacy systems, they
have to access it. Furthermore, services will often
build on each others results. Due to the large amounts
of data involved, passing it entirely from service to
service is inadequate. Therefore, a common reposi-
tory is required to handle and optimize data exchange,
and store data in an appropriate base format. At the
same time, many services require data in task-specific
formats to deliver results with optimal performance.
Such task-specific views on the data need to be pro-
vided by the repository or separate services, as well
as the means to reflect possible changes back into the
base repository. This will be approached by meta-
modelling (cf. [7]), requiring rigorous descriptions of
the services’ input and output formats, and corre-
sponding transformations. Model-driven software en-
gineering offers appropriate technologies to this end.

4 Outlook

The scenario presented in this paper is used as base
for a first prototypical interoperability framework, to
substantiate requirements and refine the approach.
Once more groundwork has been established, and the
service description template has been refined, more
software evolution scenarios will be analysed, and used
to fill the catalogue with services. The finished cata-
logue will serve both as a taxonomy of the field, and
as specification for an interoperability framework for
software evolution tools.

References

[1] R. C. Holt, A. Schürr, S. Elliot Sim, A. Winter. GXL:
A graph-based standard exchange format for reengi-
neering. SoCP, 60(2):149–170, 2006.

[2] IEEE ISO. International Standard - ISO/IEC 14764
IEEE Std 14764-2006 - Software Engineering - Soft-
ware Life Cycle Processes - Maintenance. IEEE,
2nd edition, Sept. 2006.

[3] NIST/ECMA. Reference Model for Frameworks of
Software Engineering Environments. NIST Special
Publication 500-211, August 1993.

[4] J. Siedersleben. Moderne Softwarearchitektur. dpunkt-
Verlag, 2005.

[5] H. M. Sneed. 20 Years of Software-Reengineering: A
Résumé. In R. Gimnich, U. Kaiser, J. Quante, A. Win-
ter, editors, Workshop Software Reengineering, LNI
126, pages 115–124. GI, 2008.

[6] A. Wasserman. Tool Integration in Software Engineer-
ing Environments. In Software Engineering Environ-
ments, pages 137–149. Springer, 1990.

[7] A. Winter and J. Ebert. Using Metamodels in Service
Interoperability. In Software Technology and Engineer-
ing Practice, 2005. 13th IEEE International Workshop
on, pages 147–158. IEEE, 2006.


