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Abstract—Software evolution projects need to be supported
by integrated toolchains, yet can suffer from inadequate tool
interoperability. Practitioners are forced to deal with technical
integration issues, instead of focusing on their projects’ actual
objectives. Lacking integration support, the resulting toolchains
are rigid and inflexible, impeding project progress. This paper
presents SENSEI, a service-oriented support framework for
toolchain-building, that clearly separates software evolution
needs from implementing tools and interoperability issues.
It aims to improve interoperability using component-based
principles, and provides model-driven code generation to partly
automate the integration process. The approach has been
prototypically implemented, and was applied in the context of
the Q-MIG project, to build parts of an integrated software
migration and quality assessment toolchain.

I. INTRODUCTION

Large software evolution, migration, reengineering, and mod-

ernization projects require a combination of different techniques

to analyze, reverse engineer, transform, and visualize (legacy)

software systems under evolution. As each project has different

goals, toolchains supporting their processes need to be tailored

individually to their specific requirements [1]. Many tools exist,

yet mostly only implement a single technique, and are usually

not designed for interoperability. The lack of interoperability

of software evolution tools is a general challenge of the field,

recognized as such, e.g. by Borchers [2], Sim [3], Müller et al. [4],

Jin and Cordy [5], Mens et al. [6], as well as Ghezzi and Gall [7].

For each software evolution project, a toolchain has to be

built by selecting the techniques required, finding appropriate

tools implementing them (or creating custom tools), and then

integrating these tools. With little to no means of interoperability,

this involves creating a lot of glue code for adapters, data

transformers, and “wiring”, a tedious and error-prone task.

It yields brittle and inflexible toolchains, as extending or

changing the toolchain, or swapping one tool for an alternative

implementation, will require to also write new glue code.

Consequently, this code is also non-reusable, as it is usually

hard-wired to specific interfaces of the tools glued together.

This rigidness of ad-hoc-integrated toolchains poses a problem,

as software evolution projects must usually follow iterative

processes (e.g. SOAMIG [8]). Toolchains which cannot be easily

adapted and extended according to changing project parameters

impede experimentation, and slow down overall progress.

To address these toolchain-building challenges, practitioners

have to be freed from technical interoperability issues, as much

as possible. For this, an abstraction layer is needed, that clearly

separates the concerns of software evolution practitioners from

those of tool developers and integration specialists. Furthermore,

standardization mechanisms able to cover the whole field

of software evolution techniques and tools are needed for

better interoperability, and to promote reusability. In addition,

standardized, uniform interfaces enable automation of large

parts of actual tool integration, facilitating reduced effort and

rapid toolchain adaptation for increased project agility.

This paper presents the SENSEI approach (“Software

EvolutioN SErvices Integration”). Its core objective is the

provision of a support framework for the complete toolchain

creation process in software evolution projects.

Based on service-oriented principles, SENSEI introduces a

conceptual abstraction layer over software evolution tools, which

only reveals their provided functionality – its services, but hides

interoperability issues that arise due to different implementation

technologies and concrete data formats. Component-based

techniques are used to standardize tools behind unified interfaces.

Capabilities are introduced as a means to organize services, and to

declaratively specify properties required of services, or provided

by components. This information is leveraged to automatically

match services to appropriate component implementations,

which are then combined into an executable toolchain using

a model-driven transformation and code generation approach.

The data integration aspect (cf. Wasserman [9]), i.e.

integrating and synchronizing models of exchanged data, a

complex field of study in itself, is not a focus of SENSEI. It

is (to differing extents) addressed by other approaches [5],

[10]–[12], which can be considered complementary to SENSEI.

To show feasibility and applicability, SENSEI’s concepts and

automation tools have been prototypically implemented, and

have been used to build parts of the toolchain of the software

evolution project Q-MIG [13]. Q-MIG1 was aimed at “building

a quality-driven, generic toolchain for software migration”.

To this end, both existing and newly developed tools had to

be integrated into a single, two-part toolchain: a migration

toolchain for COBOL-to-Java translation, and a complementing

quality control center, for the measurement, comparison, and

prediction of software quality of systems undergoing migration.

The project was run iteratively, and its course had to be adapted

several times due to unforseen circumstances, which also forced

the toolchains to be adapted, accordingly. The project will be

referred to throughout the paper as an example.

The remainder of this paper is structured as follows: Section II

elicits requirements for a support framework, along the steps

needed to build toolchains. Next, previous and related work

is presented in Section III, and assessed with respect to those

requirements. The SENSEI approach is detailed in Section IV.

Its prototype implementation, and its application to build the

Q-MIG toolchain, is explained in Section V. The paper closes

in Section VI with a summary of SENSEI’s contributions.

1Q-MIG was a joint venture of pro et con GmbH and the University of
Oldenburg. It was funded by the Central Innovation Program SME of the German
Federal Ministry of Economics and Technology – BMWi (KF3182501KM3).
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Fig. 1. Steps necessary to build toolchains.

II. REQUIREMENTS

This section elicits requirements that a support framework for

software evolution toolchain creation has to meet, by breaking

the toolchain building process down into steps, and by analyzing

them for obstacles and opportunities for improvement.

The steps considered here are depicted in Figure 1, and will be

explained in detail in the following sections. The process can con-

ceptually be divided into specification and implementation phases.

Regardless whether there is such a strict separation of activities

in practice, each step has to be performed to some degree to yield

a working toolchain in the end. The actual tool integration is

broken down further into adapter creation, transformer creation,

and coordination logic creation, distinguishing between adapting

to common interface standards to enable invocation, transforming

data to tool-specific formats, and coordinate tools towards

executing in the desired order, respectively.

Two requirements have already been mentioned in the intro-

duction, and can be phrased for the process as a whole: One, the

framework must provide means for proper separation of concerns,

so different stakeholders can be supported properly (R1). And

two, because every software evolution project is different, and has

individual objectives and demands, a universally useful frame-

work must support the whole field of software evolution (R2).

The remainder of this section is outlined following the six prime

steps of the toolchain-building process, describing and analyzing

them for support framework requirements; all requirements are

summarized thereafter in Section II-G.

A. Task Identification

This step identifies the necessary tasks on the way towards

the defined goal. A task refers to an activity of the process that

needs to be performed to achieve the overall goal. For example,

creating side-by-side comparison charts for quality metrics of

COBOL and migrated Java systems, metrics have to be calculated

on COBOL (first task) and Java systems (second task), and the

results have to be presented as quality reports (third task).

Tasks can often be performed using standard software

evolution techniques, for which tools already exist. Such standard

techniques have to be inspected for their appropriateness given

project-specific needs, and alternatives have to be gathered and

compared. However, the information relevant for supporting the

decision for or against certain techniques and tools is not orga-

nized in a way which is easily queried for particular properties.

The support framework should therefore aid software evolution

practitioners in finding existing techniques relevant to a given

task (R3), and provide them with a means to describe required

properties of tasks in a standardized way for querying (R4).

B. Task Coordination

Coordinating tasks appropriately has to be possible without

having to deal directly with implementation details of corre-

sponding tools, to separate concerns and facilitate automation.

Task coordination can be broken down into two sub-steps:

First, the tasks consume and produce data. To achieve

an overall goal, tasks have to build on each other’s results.

Therefore, a way to specify data flow is required (R5).

Second, the tasks have to be performed in a certain order

to achieve a common, meaningful goal. For simple, batch-like

data-processing jobs, a data-driven chain of tasks is sufficient.

More complex processes might require the definition of optional,

alternative, concurrent or iterative paths. Such workflows require

an additional means for control flow specification (R6).

C. Task Instantiation

This step represents decisions to be made for each task

whether to realize it with an existing tool, or implement a

custom one. A trade-off is to be made between the effort

required to implement a custom tool, and the level of control,

flexibility and adaptability a generic tool may not offer. However,

even with a readily available tool, the effort required to integrate

it into the overall toolchain can also be prohibitive.

Analogous to the issue of finding tasks in the first place,

matching them up with appropriate tools is not straight-forward,

because the information necessary is not arranged for the

purpose of software evolution toolchain building, so a framework

should provide support for discovering appropriate tools, given

the needed capabilities (R7).

Tool developers also need to be supported in providing

information about their tools’ capabilities, to make it easier for

software evolution practitioners to find appropriate tools (R8).

Another prerequisite for easy integration is the tools’ level of

interoperability. Tool developers can provide generic interoper-

ability means, whereas software evolution practitioners will focus

on integrating the tools according to their specific needs, leading

to tight coupling, and non-reusable integration logic. A support

framework for toolchain building therefore needs to aid tool

developers in making their tools directly compatible with it (R9).

D. Adapter Creation

This and the following two steps aim at combining all tools

into an integrated toolchain. Adapters are about the tools’

interfaces and the way they can be addressed. For example,

one tool might offer a command-line interface, another has

a programming interface (API) in a certain programming

language, and yet another can be accessed as a web service.

To enable different tools to interoperate with each other, or

be coordinated by some central controller, a translation is

needed, so that the tools can speak each others languages, or

are made to all speak a common “lingua franca”. This metaphor

of “speaking the same language” does not extend to data the

tools are exchanging, however, which is what transformers are

concerned with. To avoid having to create custom adapters, all

tools have to agree on a single interface standard (R10).

E. Transformer Creation

This step complements adapters with transformers to take

care of differing ways in handling data. There are different levels
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of such a transformation, from just changing the representation

or format of the data (e.g. data marked up as XML vs. JSON),

to transforming the way the data is modeled (e.g. between tool-

or vendor-specific schemas for modeling an abstract syntax tree

of a Java program). Translating the data into something entirely

different (e.g. deriving a control-flow graph from an abstract

syntax tree) can be considered a task or tool in itself.

The creation of transformers is kept conceptually distinct

from the creation of adapters in the previous step: Adapters

are about imposing uniform interfaces so tools can be addressed

and controlled in a consistent, generic way. Transformers are

about the data that gets consumed, produced, and exchanged

between tools. Existing tools often expect their data in specific,

non-standardized formats, so to interoperate, data has to be

transformed to be exchanged.

The minimum requirement for a proper support framework

for toolchain building is to make transformers first-class citizens,

so they can be built in a standard way, and used to fill up a

library for future reuse (R11).

F. Coordination Logic Creation

This step concludes the toolchain building process by “tying

everything together”. It aims at the creation of an application

that encompasses all the tools, as well as the required adapters

and data transformers, implements the toolchain’s use cases,

and coordinates the tools accordingly, i.e. invokes them in the

right order, and passes data between them as specified. This

allows toolchains to be used as seamless, single entities.

When toolchains need to change because of evolving project

parameters, parts of the coordination logic usually have to be

adapted, or discarded and rewritten from scratch. This limits the

agility of software evolution projects. Therefore, practitioners

need to be able to evolve their toolchains at specification level,

only, to avoid being bogged down by interoperability issues. For

this, the actual, technical integration of tools, and the execution

of toolchains according to specifications must be completely

taken care of by the support framework (R12).

G. Summary

The first and last requirements are arguably special: The first

is a sine qua non for most of the following requirements. The

latter is the opposite, being enabled by the conditions set by the

previous requirements, and providing the most marked payoff

by demanding automation, to reduce effort and increase agility.

The requirements are used in the following to assess related

work, and delimit it from SENSEI, as well as to derive the

approach’s concepts and design decisions. While no claims

regarding the completeness of this list can be made, the

structured, step-by-step consideration of the whole process,

gives a certain measure of coverage.

III. RELATED WORK

Standard exchange file formats such as GXL [10] provide

basic support for creating interoperable tools (R9), but only

with respect to data exchange, not regarding control flow. Due

to its generic nature, GXL can be assumed to cover the whole

field of software evolution (R2), but GXL can only enforce

a common syntax on data. Each tool still has to be taught the

semantics used by other tools (R11).

Workbenches include, e.g. Bauhaus [14] and GUPRO [15].

These systems come with a fixed set of tasks they support,

mostly limited to software analysis and reverse engineering,

with varying visualization capabilities. Software transformation,

restructuring, or refactoring are not supported, so that they

cannot cover complete software reengineering, migration, or

modernization projects (R2). These workbenches are not really

aimed at interoperability. They can be extended, but are built

under the assumption that all tools included adhere to the

infrastructural standards set by it. Additional tools would have

to be specifically designed for a particular workbench.

Scientific workflow frameworks provide means to define work-

flows out of several components. These frameworks are aimed at

processing and analyzing data (unstructured data, or simple tuple-

based data series), and not tailored towards software evolution.

Examples include Apache Taverna [16] and TraceLab [17].

Closer to this paper’s approach are SOFAS [7] in the

field of software evolution, and TIL [18], [19], which is

aimed at toolchain building support for regular software

development, especially in the domain of embedded systems.

Both achieve abstraction from technical details, and separation

of concerns (R1) with service-oriented principles.

SOFAS (Software Analysis as a Service) supports arranging

services in workflows for software analysis. It does not extend

to the whole field of software evolution (R2), as the framework

explicitly leverages the uniformity of analysis tools, by making

corresponding assumptions for simplification. In its area, SOFAS

provides ontology-based means of data integration, which is

explicitly excluded from this paper’s approach. The service term

is used to refer to RESTful implementations; as such, there

is no strong separation between implementation-agnostic service

specifications and implementing components.

TIL (Tool Integration Language) is service-oriented and uses

model-driven techniques for automatic generation of toolchain

integration code. It depends on standards set by OSLC (Open

Services for Lifecycle Collaboration) [20], which do not extend

to the field of software evolution (R2). Discovery and description

of relevant services by practitioners (R3, R4) is not covered.

In summary, approaches for toolchain-building support in and

outside the software evolution domain exist, and are partly built

around ideas which are also part of SENSEI. Using services and

their orchestration as high-level descriptions, and model-driven

techniques to derive toolchains has therefore been proven viable

for tool interoperability. However, these approaches have been tai-

lored for different application domains, are less generic than SEN-

SEI, or are limited to subfields of software evolution. To the best

knowledge of the author, the clear separation of services and com-

ponents, a key to increased flexibility and reuse, and the ability to

model required capabilities and have them automatically matched

to providing components, is unique to the SENSEI approach.

IV. THE SENSEI APPROACH

At the core of SENSEI lies the idea of software evolution

services: a standardized body of well-defined tasks and

techniques, serving as reference for tool development, and

enabling the creation of an integration framework, that allows

processes to be defined based on the orchestration of services.

A clear distinction is made between services and components

(cmp. e.g. [21]): The service term is used to refer to abstract

53



Model-Driven Code Generation

Composition 

Generator

Composition 

Finder Stub 

Generator
Component 

Stubs

Toolchain

Service 

Orchestration

Service 

Catalog

Component 

Registry

Fig. 2. Artifacts and automation tools in SENSEI’s toolchain generation process.

descriptions of functionalities. Components are viewed as

concrete implementations of provided services.

A high-level overview of SENSEI is provided by Figure 2. On

the left, it shows the central artifacts the approach distinguishes:

service catalogs, service orchestrations, and component registries.

This distinction facilitates separation of concerns (R1) of

different stakeholders: Service catalogs are concerned with

standardization, curated by a catalog maintainer. Service orches-

trations are used by software evolution practitioners to model

processes to be tool-supported. Component registries provide

means for developers to describe their tools’ provided capabilities.

To leverage model-driven techniques, all artifacts have to be

represented by models conforming to meta-models. A centerpiece

of SENSEI is its integrated meta-model, whose main concepts are

illustrated in simplified form in Figure 3, consisting of three main

layers, each corresponding to one of SENSEI’s central artifacts.

Integrating these three layers are capabilities. SENSEI formalizes

capabilities as a central concept to control the granularity

level of service descriptions, and enable automatic mapping

of orchestrated services with required capabilities (service

instances), to components with matching provided capabilities.

The artifacts are used as input for a set of model-driven code

generation tools (cmp. Figure 2): a) A stub generator, to

assist tool developers in creating or adapting SENSEI-conforming

interfaces for their tools (R9), b) a composition finder, to match

services to implementing components providing required capabil-

ities (R7), inserting data transformers as needed (R11) and c) a

composition generator, to automatically produce an integrated,

executable toolchain (R12). In the following, the main artifacts

are explained in more detail, referring to covered requirements,

and their meta-model-based definition as depicted in Figure 3.

SENSEI’s automation tools are described in Section V.

For illustration, parts of a toolchain built in Q-MIG is used

as example. Its goal is quality measurement: given a set

of metrics, and a COBOL or Java software system, values

for all given metrics are to be produced, associated with the

sub-system elements (e.g. packages, files, classes, and methods

in the case of Java) they were calculated on.

A. Service Catalog

Having a catalog of software evolution services is a

fundamental prerequisite for all other concepts that make up

SENSEI, and thus it indirectly supports all requirements gathered

in Section II. It is mainly aimed at establishing an abstraction

layer to separate toolchain design from tool integration and

implementation (R1), providing a central directory to collect

services of the whole field of software evolution (R2), which

can be browsed for appropriate services for a given task or

activity (R3), and queried for standardized properties and

capabilities (R4). Data transformers are modeled as services,

as well, so transformer implementations can be collected in

the component registry for increased reusability (R11).

An existing, filled service catalog mainly supports task

identification (Fig. 1). For the quality measurement example, four

services are identified: first, the source code has to be parsed to

provide an abstract syntax tree (AST), which is more appropriate

for further analysis. The next step is to actually calculate

metrics. At the same time, a simple kind of “re-architecting”

is needed to extract the basic structure, i.e. a hierarchy of

packages, files, classes, etc. (and corresponding concepts for

COBOL). Then, the measured metric values can be mapped to

the structural information to produce the desired output format.

The content of the service catalog is structured according to

the corresponding meta-model viewpoint (top layer in Figure 3).

A service has a name (e.g. “Calculate Metric”) and

a description, as well as arbitrarily many input and output

parameters. Calculate Metric is modeled with two inputs,

to accept a metric and a software system, and one output to

return the calculated values. Apart from services, the catalog

contains a type hierarchy of data structures, to which the

services’ parameters refer. Standardization of data structures

is not a part of SENSEI, so the meta-model serves only to

establish different types and specializations by unique names.

The software system input of Calculate Metric is typed

as AST. Its sub-types include Java-AST and COBOL-AST. Notice

that no information regarding technical representation is stored

at this level – this is deferred to the component registry. Data

structures could serve as an extension point for data integration

approaches (e.g. based on universal meta-models [11], reference

meta-models [12] or ontologies [5]) to complement SENSEI, but

it can function without it, relying on reusable data transformers.

Services further possess capability classes, consisting of one

or more capabilities. In the catalog, capabilities serve to control

service granularity. Calculate Metric, for example, repre-

sents a commonly used technique in software evolution, yet as a

service it is too generic to be useful in concrete projects, where

specific metrics (e.g. SLOC, cyclomatic complexity, etc.) need

to be calculated over systems written in a certain programming

language (e.g. Java, COBOL, etc.). Calculate Metric has

an input parameter for metrics, but that does not mean that imple-

mentations of the service can be expected to support every soft-

ware metric conceivable. Instead of cluttering the catalog with a

service for each possible combination of metric and programming

language, capabilities enable the modeling of “degrees of diver-

gence”. Calculate Metric has two capability classes: pro-

gramming language (COBOL, Java, etc.) and supported metrics

(SLOC, McCabe, etc.)2. The Parse service only has the former.

There is one more important concept in the catalog’s

meta-model, which connects service capabilities with their

parameters and data structures: restrictions. Restrictions are

interpreted like logical predicates, modeling the relationship

between data (sub-)types and capabilities. Calculate

Metric has a restriction defined for its software system

input parameter, connected to the capability COBOL (of class

programming language) and the data structure COBOL AST,

2Note that this is a simplified example. In practice, additional aspects, like
the supported version of a programming language, might have to be considered.
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Fig. 3. Excerpt of SENSEI’s integrated meta-model, depicting its layers (viewpoints) and their core concepts.

saying: “if the capability is COBOL, then the type of the

parameter must be the (more restrictive) sub-type COBOL-AST.”

This mechanism is leveraged on the service orchestration level

(Section IV-B) to substitute explicit control flow specification

with a declarative approach based on required capabilities.

While there often is a direct relationship between a service’s

capabilities and its ports’ data types, made explicit by

restrictions, capabilities are used to declare properties requested

of a service, and can be independent of data types. For example,

a code clone detection service could have a capability class for

the types of clones [22] it is able to recognize, which should

not have an impact on the kind of input and output data.

To fill the service catalog, either a top-down or a bottom-up

approach can be used. The former approach identifies services

from relevant publications and diverse software evolution

projects, to create a catalog of generic, standardized services.

Services can be picked from the catalog instead of being created

for the project. A top-down process for service discovery

and description, based on mining publication databases and

clustering techniques, is presented by Jelschen [23], along with

classification schemes and a corresponding description model,

details which have been omitted here (Figure 3) for clarity.

Lacking a comprehensively filled catalog, services can be

created bottom-up instead, only for a project’s required function-

alities, giving full control over service design, but potentially

leading to project-specific services with lower reuse value. E.g.,

in the Q-MIG example, the sub-system level (package, file, etc.)

is assumed to be coded into metrics (which is why it does not rely

directly on the structure extraction) in a project-specific manner.

Still, this approach can be used to fill a catalog incrementally,

and refine and generalize its services in the process.

B. Service Orchestration

The service orchestration viewpoint (middle layer in Fig. 3)

caters to the concerns of software evolution practitioners (R1),

i.e. finding appropriate services (R3) based on descriptions

dictated by project-specific needs (R4), and designing processes

in terms of services and their data (R5) and control flow (R6)

interoperation. The service catalog supports part of these

requirements, but is used by software evolution practitioners

less directly, and in a read-only fashion.

Service orchestrations represent the task coordination step

(Fig. 1). A graphical representation of an orchestration for the

quality measurement example is visible in the center of the

editor screen-shot in Figure 4.

The central concept of this part of the SENSEI meta-model

(Fig. 3) is the service instance: whereas the catalog contains

service “blueprints”, its instances represent concrete usages

or invocations in particular scenarios, with certain capabilities

selected. The example orchestration contains a service instance

(rounded boxes with an encircled “S”-symbol in Fig. 4) for

each service introduced before, to which they conform. E.g.

parameters of services dictate their instance’s ports (small boxes

on the service instance’s borders). Ports can be connected by

data flows, e.g. the Parse instance outputs an AST, which is

used as input for the instances of both Calculate Metric

and Extract Structure.

Control flow is dictated by the order in which service instances

appear in an orchestration (the meta-model’s corresponding asso-

ciation is ordered; in Fig. 4, this is represented by grey arrows).

Special kinds of orchestrations exist to represent conditional

branching, concurrency, and loops. The corresponding classes are

omitted from Fig. 3 for clarity, but examples are shown in Fig. 4:

Calculate Metric and Extract Structure can run

concurrently. Calculate Metric is furthermore executed

once for each metric using the map control structure to split

collection-typed input data, run the nested orchestration once for

each input element, and then map its results back into a collection.

Services instances are refined by specifying required

capabilities. This allows software evolution practitioners to

choose one capability from each of the service’s capability

classes to create a capability tuple, representing a specific

functionality. To express that the Calculate Metric

instance must be able to evaluate metrics on both Java and
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COBOL code, and calculate McCabe on both languages, and

SLOC on Java only, capability tuples would look like this:
(

Java

McCabe

)

,

(

COBOL

McCabe

)

,

(

Java

SLOC

)

.

This mechanism allows to specify what functionality is

required declaratively, i.e. without having to state how it is

provided, and is thus completely independent of tools and

their implementation and integration. The required capabilities

could be provided by a single tool, or (for example) by three,

each providing the functionality represented by one of the

capability tuples. In the example, there is only a single instance

of Parse, with capability tuples (COBOL) and (Java). The

Q-MIG project had individual parsers for each language, though.

The selection is taken care of by SENSEI’s tooling using the

information provided by restrictions from the service catalog,

and runtime introspection of input data to determine its type.

C. Component Registry

The component registry is a separate viewpoint (bottom layer

in Fig. 3) aimed at tool developers (R1), to register their tools

with SENSEI, and describe their functionality (R8). Data trans-

formers are registered as implementations of the corresponding

transformer services, as well, increasing their reusability (R11).

A component registry supports task instantiation (Fig. 1): it

provides the necessary infrastructure and information to automate

this step completely. In the quality measurement example, there

are three components: parsers for COBOL and Java (“COBOL-

FE”, “JavaFE”), and the custom-built MetricCalculator.

Components are associated to one or more service instances

(Fig. 3), not directly to catalog services: They generally do not

implement a service’s whole spectrum of possible functionality,

but provide a subset of it. This is declared using provided

capabilities, reusing the mechanism for required capabilities.

In Q-MIG, MetricCalculator actually implemented all

services of the quality measurement example, except for Parse,

i.e. a single component can implement multiple services. For

Parse it is the other way around, as both parser components

implement it, but none to the full extent required by the service

instance in the orchestration, i.e. COBOLFE declares only

(COBOL) as capability, and JavaFE only (Java).
Service instances of orchestrations, and those used to

describe what functionality a component provides, are separate.

Finding matches between the two is done automatically by the

composition finder, described in Section V.

The component registry further requires data definitions to

be specified for each parameter of each implemented service,

to map the conceptual data structures defined in the service

catalog to concrete technical realizations. For example, JavaFE

outputs an AST in a proprietary XML format. MetricCalculator

uses the same model, but requires a TGraph [24] format.

A special kind of service, “DDTransform”, representing

data transformers, takes care of such discrepancies. In the

Q-MIG example, there are actually two more components which

implement this service, each realizing a data transformation

from XML-ASTs to TGraph-ASTs, one for COBOL, the other

for Java (specified by capabilities). If available in the registry,

SENSEI will insert them automatically on data flows.

V. APPLICATION

With the information from a service catalog, an orchestration,

and a component registry as input, a set of tools for model-driven

code generation (cf. Fig. 2) automate the actual tool integration

work. The composition finder matches orchestrated service

instances to implementing components, which provide the

required capabilities (R7), and automatically inserts data

transformers into the data flow where needed (R11). The

stub generator supports tool developers in providing SENSEI-

compatible tool interfaces (R9), and enforces conformance to

the target framework’s component model to provide uniform

interfaces (R10). The composition generator transforms the

input models into code, referencing the components found by

the composition finder, and invoking them in a manner and

order conforming to the orchestration. The generated code is

embedded in an appropriate component framework, and can

be compiled into executable toolchains (R12).

To show feasibility and applicability, the concepts of SENSEI

have been implemented, and the resulting, prototypical toolchain-

building support framework has been used to recreate parts of the

Q-MIG toolchain. This section first describes, how the SENSEI

meta-model has been realized technically, and presents the editors

which have been build for easier filling of the service catalog, reg-

istering components, and graphically modeling of orchestrations.

Then, SCAffolder is introduced, a prototype implementation of

the model-driven code generation tools of SENSEI, targeting the

Service Component Architecture (SCA) as component framework.

A. SENSEI Models and Editors

To represent the SENSEI meta-model and its instances,

JGraLab’s TGraphs [24] are used, providing meta-modeling

facilities, query and transformation languages (GReQL and

GReTL, respectively), and tooling. This includes a bridge to

the alternative technological space spanned by the ECore-based

Eclipse Modeling Framework (EMF) [25]. The TGraph infrastruc-

ture is essential for the code generator SCAffolder (Section V-B).

An editor for SENSEI models has been created using

the Eclipse Sirius [26] framework, based on a previous

prototype [27]. A screenshot of the resulting editor is shown

in Figure 4. The editor manages models as instances of the

meta-model as a whole. The edited service catalog, orchestration,

and component registry can therefore be saved to a single file,

which SCAffolder accepts as input.

The meta-model’s three viewpoints are kept separated in the

editor. In the left pane, a tree-view of the service catalog is

visible, showing data structure hierarchies and services with

input and output parameters. The component registry can be

viewed, browsed, and edited in a similar manner.

The orchestration view has been equipped with a graphical

editor. An example of an orchestration is depicted in the

center of Figure 4, corresponding to the quality measurement

example introduced earlier. The editor allows to graphically

model control and data flow (differentiated by color in the tool),

orchestrating service instances (rounded boxes), which can be

picked from a palette on the right. Required capabilities can be

selected, and are listed inside the corresponding box, as visible

on the Parse service instance on the left. Also visible are several

concepts of the underlying meta-model, that have been omitted
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Fig. 4. Screenshot of the editor for visually designing SENSEI orchestrations.

from the simplified depiction of the meta-model in Figure 3

for clarity: E.g. control flow blocks to model concurrency,

and a map-operator to split up array-typed input data, execute

the nested orchestration once for each element, and map the

results back into an output array. Here, this is used to invoke

the CalculateMetric-service once per metric listed in the input.

B. SCAffolder

SCAffolder is a demonstrator implementing the model-

driven code generation tools of SENSEI, which support the

implementation phase of the toolchain-buiding process (cf. Fig 1).

It uses the TGraph-library JGraLab, the graph transformation

language GReTL, and Apache Velocity [28] templates for

code generation. SCAffolder targets the Service Component

Architecture (SCA) as infrastructure framework, as it provides

means to integrate tools realized in a wide range of programming

languages and for different platforms, requiring only lightweight

wrapping for conformance to its component model. SCAffolder

complements the platform-independent SENSEI meta-model

with a platform-specific SCA application meta-model.

SCAffolder takes an instance of the SENSEI meta-model as

input, i.e. a service catalog, an orchestration, and a component

registry, and transforms it to an SCA model. First, the service

instances of the orchestration each have to be paired up with

one or more components from the registry, providing their

required capabilities. Furthermore, data compatibility has to be

ensured, or remedied with the insertion of transformers, where

possible. The result is called a composition of components,

which together can realize the service orchestration. Finding

a composition for a given orchestration has initially been

implemented in GReTL, yet it soon became evident that a

model transformation language is an ill fit for such a task.

This early prototyping experience resulted in identifying the

Composition Finder as a separate entity in SENSEI’s tooling.

Meier [27] investigated constraint-solving approaches towards

this task, and produced a composition finder implementation

using Prolog. Clearly establishing composition finding as a

prerequisite step to the model transformation process also

makes it easier to interrupt it early in case no composition

can be found, e.g. if there are no appropriate components for a

particular service instance, or there are data transformers missing.

The composition finder will try to chain data transformers, if

no single transformer providing direct conversion from one

component’s output format to another’s input format is available.

The core of SCAffolder realizes the composition generator.

The transformation to an SCA model is based on creating a

single new component, called composer, which references all

the components provided by the composition finder (which

looked them up in the component registry). The composer is

realized as a Java program. It gets filled, for example, with

variable declarations to hold and pass on data, based on the

orchestration’s data flows, and with method invocations to call

components’ functionalities, corresponding to the services.

The composer assumes that the referenced components

provide SCA-conforming interfaces. SCAffolder can generate

the required SCA boilerplate code to base tool wrappers on

(Toolstub Generator). No orchestration is needed for this, only

a service catalog and one or more component descriptions.

SCAffolder integrates with the Maven [29] build and

dependency management tool. It can be used as a Maven plugin

to integrate toolchain-creation and execution into a larger build

process. A Maven archetype is provided, as well, which can

be used to create a new Maven project referencing a SENSEI

meta-model instance. When built, SCAffolder will automatically

be invoked to generate the toolchain integration code, before

Maven will compile and package the project, constituting

the toolchain. Currently, SCAffolder generates an application

program interface, but it can easily be extended to also provide

a command-line or graphical user interface on top of that. Large

parts of that would be static, and could be provided as a library.

VI. CONCLUSION

This paper presented SENSEI, a framework to support

toolchain-building in software evolution projects. It is based

on service-oriented and component-based principles to separate

toolchain specification from tool interoperability issues, and uses

model-driven code generation to partly automate integration.
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SENSEI shares some commonalities with related approaches

like SOFAS and TIL: SOFAS is focused on software analysis,

whereas SENSEI makes no constricting assumptions to be able to

target the complete field of software evolution. Other differences

include a focus on RESTful web services, whereas SENSEI

is, on a conceptual level, completely technology-agnostic. Its

prototypical implementation (SCAffolder) is based on SCA

(Service Component Architecture), which supports REST as

one of many binding technologies. As far as can be told from

publications on SOFAS, it enacts (interprets) its orchestrations

at runtime. SENSEI uses a code generator, instead. SOFAS goes

beyond SENSEI in terms of semantic data integration using

an ontology-based approach, while SENSEI intentionally uses

a more primitive approach to identify data of different kinds,

but without a means to describe its concepts in more detail.

SOFAS still requires data transformers, but they always map

to the existing ontologies, facilitating standardization. SENSEI is

specifically designed to be complemented by such mechanisms.
TIL is not aimed at software evolution at all, but at integrating

software development toolchains in the area of embedded systems.

Like SENSEI, TIL uses a model-driven code generation approach.

It also provides a custom, graphical editor for modeling data

and control flow of toolchains. While SENSEI is process-centric,

TIL’s semantics are mapped to state machines [18], and thus

are reactive and event-driven. TIL’s backing meta-model is

fundamentally different from the SENSEI meta-model. For

example, no distinction between services and components exists,

focusing instead directly on concepts on the tool level. Both

implementations target SCA, however, TIL relies on OSLC

standards, which do not cover software evolution.
A distinctive feature of SENSEI is its capability concept,

which enables to partly specify software evolution service

orchestrations declaratively, reducing complexity, and can

provide automatic data type conversion, as well as automatic

discovery of tools appropriate for a specified task.
So far, experiences with using SENSEI and SCAffolder to

model and generate parts of the Q-MIG toolchains indicate

that, without pre-existing service catalogs and corresponding

component registries, an initial modeling overhead is created.

With both artifacts becoming filled, this is expected to be offset

by increased reusability of previously defined services and

already registered components. The same can be said for the

effort required to build the toolchain.
The effort to adapt the toolchain is greatly reduced once the

infrastructure is in place. Extending an existing toolchain can

be as simple as declaring an additional capability requirement:

for example, to extend the quality measurement toolchain with

a basic ability to also analyze SQL code, the Parse and

Calculate Metric instances only have to be equipped

with an additional (SQL) capability tuple. This is, off course,

assuming that corresponding tools are available, and have been

made available to the SENSEI framework. This ability to flexibly

modify toolchains allows to react to changes during a project’s

run quickly, thus facilitating project agility.
The SENSEI-based Q-MIG toolchain is currently being

extended to include additional services and tools. Furthermore,

SENSEI will be used to create toolchains for analyzing and

optimizing the energy efficiency of (mobile) applications [30],

to further confirm its general applicability and usefulness.
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