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Abstract—Software evolution projects need to be supported
by integrated toolchains, yet can suffer from inadequate tool
interoperability. Practitioners are forced to deal with technical
integration issues, instead of focusing on their projects’ actual
objectives. Lacking integration support, the resulting toolchains
are rigid and inflexible, impeding project progress. This paper
presents SENSEI, a service-oriented support framework for
toolchain-building, that clearly separates software evolution
needs from implementing tools and interoperability issues.
It aims to improve interoperability using component-based
principles, and provides model-driven code generation to partly
automate the integration process. The approach has been
prototypically implemented, and was applied in the context of
the Q-MIG project, to build parts of an integrated software
migration and quality assessment toolchain.

I. INTRODUCTION

Large software evolution, migration, reengineering, and mod-
ernization projects require a combination of different techniques
to analyze, reverse engineer, transform, and visualize (legacy)
software systems under evolution. As each project has different
goals, toolchains supporting their processes need to be tailored
individually to their specific requirements [1]. Many tools exist,
yet mostly only implement a single technique, and are usually
not designed for interoperability. The lack of interoperability
of software evolution tools is a general challenge of the field,
recognized as such, e.g. by Borchers [2], Sim [3], Miiller et al. [4],
Jin and Cordy [5], Mens et al. [6], as well as Ghezzi and Gall [7].

For each software evolution project, a toolchain has to be
built by selecting the techniques required, finding appropriate
tools implementing them (or creating custom tools), and then
integrating these tools. With little to no means of interoperability,
this involves creating a lot of glue code for adapters, data
transformers, and “wiring”, a tedious and error-prone task.
It yields brittle and inflexible toolchains, as extending or
changing the toolchain, or swapping one tool for an alternative
implementation, will require to also write new glue code.
Consequently, this code is also non-reusable, as it is usually
hard-wired to specific interfaces of the tools glued together.

This rigidness of ad-hoc-integrated toolchains poses a problem,
as software evolution projects must usually follow iterative
processes (e.g. SOAMIG [8]). Toolchains which cannot be easily
adapted and extended according to changing project parameters
impede experimentation, and slow down overall progress.

To address these toolchain-building challenges, practitioners
have to be freed from technical interoperability issues, as much
as possible. For this, an abstraction layer is needed, that clearly
separates the concerns of software evolution practitioners from
those of tool developers and integration specialists. Furthermore,
standardization mechanisms able to cover the whole field
of software evolution techniques and tools are needed for
better interoperability, and to promote reusability. In addition,

standardized, uniform interfaces enable automation of large
parts of actual tool integration, facilitating reduced effort and
rapid toolchain adaptation for increased project agility.

This paper presents the SENSEI approach (“Software
EvolutioN SErvices Integration”). Its core objective is the
provision of a support framework for the complete toolchain
creation process in software evolution projects.

Based on service-oriented principles, SENSEI introduces a
conceptual abstraction layer over software evolution tools, which
only reveals their provided functionality — its services, but hides
interoperability issues that arise due to different implementation
technologies and concrete data formats. Component-based
techniques are used to standardize tools behind unified interfaces.
Capabilities are introduced as a means to organize services, and to
declaratively specify properties required of services, or provided
by components. This information is leveraged to automatically
match services to appropriate component implementations,
which are then combined into an executable toolchain using
a model-driven transformation and code generation approach.

The data integration aspect (cf. Wasserman [9]), i.e.
integrating and synchronizing models of exchanged data, a
complex field of study in itself, is not a focus of SENSEI. It
is (to differing extents) addressed by other approaches [5],
[10]-[12], which can be considered complementary to SENSEI.

To show feasibility and applicability, SENSEI’s concepts and
automation tools have been prototypically implemented, and
have been used to build parts of the toolchain of the software
evolution project Q-MIG [13]. Q-MIG' was aimed at “building
a quality-driven, generic toolchain for software migration”.
To this end, both existing and newly developed tools had to
be integrated into a single, two-part toolchain: a migration
toolchain for COBOL-to-Java translation, and a complementing
quality control center, for the measurement, comparison, and
prediction of software quality of systems undergoing migration.
The project was run iteratively, and its course had to be adapted
several times due to unforseen circumstances, which also forced
the toolchains to be adapted, accordingly. The project will be
referred to throughout the paper as an example.

The remainder of this paper is structured as follows: Section II
elicits requirements for a support framework, along the steps
needed to build toolchains. Next, previous and related work
is presented in Section III, and assessed with respect to those
requirements. The SENSEI approach is detailed in Section IV.
Its prototype implementation, and its application to build the
Q-MIG toolchain, is explained in Section V. The paper closes
in Section VI with a summary of SENSEI’s contributions.

!Q-MIG was a joint venture of pro et con GmbH and the University of
Oldenburg. It was funded by the Central Innovation Program SME of the German
Federal Ministry of Economics and Technology — BMWi (KF3182501KM3).
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II. REQUIREMENTS

This section elicits requirements that a support framework for
software evolution toolchain creation has to meet, by breaking
the toolchain building process down into steps, and by analyzing
them for obstacles and opportunities for improvement.

The steps considered here are depicted in Figure 1, and will be
explained in detail in the following sections. The process can con-
ceptually be divided into specification and implementation phases.
Regardless whether there is such a strict separation of activities
in practice, each step has to be performed to some degree to yield
a working toolchain in the end. The actual tool integration is
broken down further into adapter creation, transformer creation,
and coordination logic creation, distinguishing between adapting
to common interface standards to enable invocation, transforming
data to tool-specific formats, and coordinate tools towards
executing in the desired order, respectively.

Two requirements have already been mentioned in the intro-
duction, and can be phrased for the process as a whole: One, the
framework must provide means for proper separation of concerns,
so different stakeholders can be supported properly (R1). And
two, because every software evolution project is different, and has
individual objectives and demands, a universally useful frame-
work must support the whole field of software evolution (R2).
The remainder of this section is outlined following the six prime
steps of the toolchain-building process, describing and analyzing
them for support framework requirements; all requirements are
summarized thereafter in Section II-G.

A. Task Identification

This step identifies the necessary tasks on the way towards
the defined goal. A task refers to an activity of the process that
needs to be performed to achieve the overall goal. For example,
creating side-by-side comparison charts for quality metrics of
COBOL and migrated Java systems, metrics have to be calculated
on COBOL (first task) and Java systems (second task), and the
results have to be presented as quality reports (third task).

Tasks can often be performed using standard software
evolution techniques, for which tools already exist. Such standard
techniques have to be inspected for their appropriateness given
project-specific needs, and alternatives have to be gathered and
compared. However, the information relevant for supporting the
decision for or against certain techniques and tools is not orga-
nized in a way which is easily queried for particular properties.
The support framework should therefore aid software evolution
practitioners in finding existing techniques relevant to a given
task (R3), and provide them with a means to describe required
properties of tasks in a standardized way for querying (R4).
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B. Task Coordination

Coordinating tasks appropriately has to be possible without
having to deal directly with implementation details of corre-
sponding tools, to separate concerns and facilitate automation.
Task coordination can be broken down into two sub-steps:

First, the tasks consume and produce data. To achieve
an overall goal, tasks have to build on each other’s results.
Therefore, a way to specify data flow is required (RS).

Second, the tasks have to be performed in a certain order
to achieve a common, meaningful goal. For simple, batch-like
data-processing jobs, a data-driven chain of tasks is sufficient.
More complex processes might require the definition of optional,
alternative, concurrent or iterative paths. Such workflows require
an additional means for control flow specification (R6).

C. Task Instantiation

This step represents decisions to be made for each task
whether to realize it with an existing tool, or implement a
custom one. A trade-off is to be made between the effort
required to implement a custom tool, and the level of control,
flexibility and adaptability a generic tool may not offer. However,
even with a readily available tool, the effort required to integrate
it into the overall toolchain can also be prohibitive.

Analogous to the issue of finding tasks in the first place,
matching them up with appropriate tools is not straight-forward,
because the information necessary is not arranged for the
purpose of software evolution toolchain building, so a framework
should provide support for discovering appropriate tools, given
the needed capabilities (R7).

Tool developers also need to be supported in providing
information about their tools’ capabilities, to make it easier for
software evolution practitioners to find appropriate tools (RS).

Another prerequisite for easy integration is the tools’ level of
interoperability. Tool developers can provide generic interoper-
ability means, whereas software evolution practitioners will focus
on integrating the tools according to their specific needs, leading
to tight coupling, and non-reusable integration logic. A support
framework for toolchain building therefore needs to aid tool
developers in making their tools directly compatible with it (R9).

D. Adapter Creation

This and the following two steps aim at combining all tools
into an integrated toolchain. Adapters are about the tools’
interfaces and the way they can be addressed. For example,
one tool might offer a command-line interface, another has
a programming interface (API) in a certain programming
language, and yet another can be accessed as a web service.
To enable different tools to interoperate with each other, or
be coordinated by some central controller, a translation is
needed, so that the tools can speak each others languages, or
are made to all speak a common “lingua franca”. This metaphor
of “speaking the same language” does not extend to data the
tools are exchanging, however, which is what transformers are
concerned with. To avoid having to create custom adapters, all
tools have to agree on a single interface standard (R10).

E. Transformer Creation

This step complements adapters with transformers to take
care of differing ways in handling data. There are different levels



of such a transformation, from just changing the representation
or format of the data (e.g. data marked up as XML vs. JSON),
to transforming the way the data is modeled (e.g. between tool-
or vendor-specific schemas for modeling an abstract syntax tree
of a Java program). Translating the data into something entirely
different (e.g. deriving a control-flow graph from an abstract
syntax tree) can be considered a task or tool in itself.

The creation of transformers is kept conceptually distinct
from the creation of adapters in the previous step: Adapters
are about imposing uniform interfaces so tools can be addressed
and controlled in a consistent, generic way. Transformers are
about the data that gets consumed, produced, and exchanged
between tools. Existing tools often expect their data in specific,
non-standardized formats, so to interoperate, data has to be
transformed to be exchanged.

The minimum requirement for a proper support framework
for toolchain building is to make transformers first-class citizens,
so they can be built in a standard way, and used to fill up a
library for future reuse (R11).

F. Coordination Logic Creation

This step concludes the toolchain building process by “tying
everything together”. It aims at the creation of an application
that encompasses all the tools, as well as the required adapters
and data transformers, implements the toolchain’s use cases,
and coordinates the tools accordingly, i.e. invokes them in the
right order, and passes data between them as specified. This
allows toolchains to be used as seamless, single entities.

When toolchains need to change because of evolving project
parameters, parts of the coordination logic usually have to be
adapted, or discarded and rewritten from scratch. This limits the
agility of software evolution projects. Therefore, practitioners
need to be able to evolve their toolchains at specification level,
only, to avoid being bogged down by interoperability issues. For
this, the actual, technical integration of tools, and the execution
of toolchains according to specifications must be completely
taken care of by the support framework (R12).

G. Summary

The first and last requirements are arguably special: The first
is a sine qua non for most of the following requirements. The
latter is the opposite, being enabled by the conditions set by the
previous requirements, and providing the most marked payoff
by demanding automation, to reduce effort and increase agility.

The requirements are used in the following to assess related
work, and delimit it from SENSEI, as well as to derive the
approach’s concepts and design decisions. While no claims
regarding the completeness of this list can be made, the
structured, step-by-step consideration of the whole process,
gives a certain measure of coverage.

III. RELATED WORK

Standard exchange file formats such as GXL [10] provide
basic support for creating interoperable tools (R9), but only
with respect to data exchange, not regarding control flow. Due
to its generic nature, GXL can be assumed to cover the whole
field of software evolution (R2), but GXL can only enforce
a common syntax on data. Each tool still has to be taught the
semantics used by other tools (R11).
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Workbenches include, e.g. Bauhaus [14] and GUPRO [15].
These systems come with a fixed set of tasks they support,
mostly limited to software analysis and reverse engineering,
with varying visualization capabilities. Software transformation,
restructuring, or refactoring are not supported, so that they
cannot cover complete software reengineering, migration, or
modernization projects (R2). These workbenches are not really
aimed at interoperability. They can be extended, but are built
under the assumption that all tools included adhere to the
infrastructural standards set by it. Additional tools would have
to be specifically designed for a particular workbench.

Scientific workflow frameworks provide means to define work-
flows out of several components. These frameworks are aimed at
processing and analyzing data (unstructured data, or simple tuple-
based data series), and not tailored towards software evolution.
Examples include Apache Taverna [16] and TraceLab [17].

Closer to this paper’s approach are SOFAS [7] in the
field of software evolution, and TIL [18], [19], which is
aimed at toolchain building support for regular software
development, especially in the domain of embedded systems.
Both achieve abstraction from technical details, and separation
of concerns (R1) with service-oriented principles.

SOFAS (Software Analysis as a Service) supports arranging
services in workflows for software analysis. It does not extend
to the whole field of software evolution (R2), as the framework
explicitly leverages the uniformity of analysis tools, by making
corresponding assumptions for simplification. In its area, SOFAS
provides ontology-based means of data integration, which is
explicitly excluded from this paper’s approach. The service term
is used to refer to RESTful implementations; as such, there
is no strong separation between implementation-agnostic service
specifications and implementing components.

TIL (Tool Integration Language) is service-oriented and uses
model-driven techniques for automatic generation of toolchain
integration code. It depends on standards set by OSLC (Open
Services for Lifecycle Collaboration) [20], which do not extend
to the field of software evolution (R2). Discovery and description
of relevant services by practitioners (R3, R4) is not covered.

In summary, approaches for toolchain-building support in and
outside the software evolution domain exist, and are partly built
around ideas which are also part of SENSEI. Using services and
their orchestration as high-level descriptions, and model-driven
techniques to derive toolchains has therefore been proven viable
for tool interoperability. However, these approaches have been tai-
lored for different application domains, are less generic than SEN-
SEI, or are limited to subfields of software evolution. To the best
knowledge of the author, the clear separation of services and com-
ponents, a key to increased flexibility and reuse, and the ability to
model required capabilities and have them automatically matched
to providing components, is unique to the SENSEI approach.

IV. THE SENSEI APPROACH

At the core of SENSEI lies the idea of software evolution
services: a standardized body of well-defined tasks and
techniques, serving as reference for tool development, and
enabling the creation of an integration framework, that allows
processes to be defined based on the orchestration of services.
A clear distinction is made between services and components
(cmp. e.g. [21]): The service term is used to refer to abstract
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descriptions of functionalities. Components are viewed as
concrete implementations of provided services.

A high-level overview of SENSEI is provided by Figure 2. On
the left, it shows the central artifacts the approach distinguishes:
service catalogs, service orchestrations, and component registries.

This distinction facilitates separation of concerns (R1) of
different stakeholders: Service catalogs are concerned with
standardization, curated by a catalog maintainer. Service orches-
trations are used by software evolution practitioners to model
processes to be tool-supported. Component registries provide
means for developers to describe their tools’ provided capabilities.

To leverage model-driven techniques, all artifacts have to be
represented by models conforming to meta-models. A centerpiece
of SENSEI is its integrated meta-model, whose main concepts are
illustrated in simplified form in Figure 3, consisting of three main
layers, each corresponding to one of SENSEI’s central artifacts.
Integrating these three layers are capabilities. SENSEI formalizes
capabilities as a central concept to control the granularity
level of service descriptions, and enable automatic mapping
of orchestrated services with required capabilities (service
instances), to components with matching provided capabilities.

The artifacts are used as input for a set of model-driven code
generation tools (cmp. Figure 2): a) A stub generator, to
assist tool developers in creating or adapting SENSEI-conforming
interfaces for their tools (R9), b) a composition finder, to match
services to implementing components providing required capabil-
ities (R7), inserting data transformers as needed (R11) and c) a
composition generator, to automatically produce an integrated,
executable toolchain (R12). In the following, the main artifacts
are explained in more detail, referring to covered requirements,
and their meta-model-based definition as depicted in Figure 3.
SENSEI’s automation tools are described in Section V.

For illustration, parts of a toolchain built in Q-MIG is used
as example. Its goal is quality measurement: given a set
of metrics, and a COBOL or Java software system, values
for all given metrics are to be produced, associated with the
sub-system elements (e.g. packages, files, classes, and methods
in the case of Java) they were calculated on.

A. Service Catalog

Having a catalog of software evolution services is a
fundamental prerequisite for all other concepts that make up
SENSEI, and thus it indirectly supports all requirements gathered
in Section II. It is mainly aimed at establishing an abstraction
layer to separate toolchain design from tool integration and
implementation (R1), providing a central directory to collect
services of the whole field of software evolution (R2), which
can be browsed for appropriate services for a given task or
activity (R3), and queried for standardized properties and

54

capabilities (R4). Data transformers are modeled as services,
as well, so transformer implementations can be collected in
the component registry for increased reusability (R11).

An existing, filled service catalog mainly supports rask
identification (Fig. 1). For the quality measurement example, four
services are identified: first, the source code has to be parsed to
provide an abstract syntax tree (AST), which is more appropriate
for further analysis. The next step is to actually calculate
metrics. At the same time, a simple kind of “re-architecting”
is needed to extract the basic structure, i.e. a hierarchy of
packages, files, classes, etc. (and corresponding concepts for
COBOL). Then, the measured metric values can be mapped to
the structural information to produce the desired output format.

The content of the service catalog is structured according to
the corresponding meta-model viewpoint (top layer in Figure 3).
A service has a name (e.g. “Calculate Metric”) and
a description, as well as arbitrarily many input and output
parameters. Calculate Metric is modeled with two inputs,
to accept a metric and a software system, and one output to
return the calculated values. Apart from services, the catalog
contains a type hierarchy of data structures, to which the
services’ parameters refer. Standardization of data structures
is not a part of SENSEI, so the meta-model serves only to
establish different types and specializations by unique names.

The software system input of Calculate Metric istyped
as AST. Its sub-types include Java-AST and COBOL-AST. Notice
that no information regarding technical representation is stored
at this level — this is deferred to the component registry. Data
structures could serve as an extension point for data integration
approaches (e.g. based on universal meta-models [11], reference
meta-models [12] or ontologies [5]) to complement SENSEI, but
it can function without it, relying on reusable data transformers.

Services further possess capability classes, consisting of one
or more capabilities. In the catalog, capabilities serve to control
service granularity. Calculate Metric, for example, repre-
sents a commonly used technique in software evolution, yet as a
service it is too generic to be useful in concrete projects, where
specific metrics (e.g. SLOC, cyclomatic complexity, etc.) need
to be calculated over systems written in a certain programming
language (e.g. Java, COBOL, etc.). Calculate Metric has
an input parameter for metrics, but that does not mean that imple-
mentations of the service can be expected to support every soft-
ware metric conceivable. Instead of cluttering the catalog with a
service for each possible combination of metric and programming
language, capabilities enable the modeling of “degrees of diver-
gence”. Calculate Metric has two capability classes: pro-
gramming language (COBOL, Java, etc.) and supported metrics
(SLOC, McCabe, etc.)?. The Parse service only has the former.

There is one more important concept in the catalog’s
meta-model, which connects service capabilities with their
parameters and data structures: restrictions. Restrictions are
interpreted like logical predicates, modeling the relationship
between data (sub-)types and capabilities. Calculate
Metric has a restriction defined for its software system
input parameter, connected to the capability COBOL (of class
programming language) and the data structure COBOL AST,

Note that this is a simplified example. In practice, additional aspects, like
the supported version of a programming language, might have to be considered.
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saying: “if the capability is COBOL, then the type of the
parameter must be the (more restrictive) sub-type COBOL-AST.”
This mechanism is leveraged on the service orchestration level
(Section IV-B) to substitute explicit control flow specification
with a declarative approach based on required capabilities.

While there often is a direct relationship between a service’s
capabilities and its ports’ data types, made explicit by
restrictions, capabilities are used to declare properties requested
of a service, and can be independent of data types. For example,
a code clone detection service could have a capability class for
the types of clones [22] it is able to recognize, which should
not have an impact on the kind of input and output data.

To fill the service catalog, either a top-down or a bottom-up
approach can be used. The former approach identifies services
from relevant publications and diverse software evolution
projects, to create a catalog of generic, standardized services.
Services can be picked from the catalog instead of being created
for the project. A top-down process for service discovery
and description, based on mining publication databases and
clustering techniques, is presented by Jelschen [23], along with
classification schemes and a corresponding description model,
details which have been omitted here (Figure 3) for clarity.

Lacking a comprehensively filled catalog, services can be
created bottom-up instead, only for a project’s required function-
alities, giving full control over service design, but potentially
leading to project-specific services with lower reuse value. E.g.,
in the Q-MIG example, the sub-system level (package, file, etc.)
is assumed to be coded into metrics (which is why it does not rely
directly on the structure extraction) in a project-specific manner.
Still, this approach can be used to fill a catalog incrementally,
and refine and generalize its services in the process.

B. Service Orchestration

The service orchestration viewpoint (middle layer in Fig. 3)
caters to the concerns of software evolution practitioners (R1),
i.e. finding appropriate services (R3) based on descriptions
dictated by project-specific needs (R4), and designing processes
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Excerpt of SENSEI’s integrated meta-model, depicting its layers (viewpoints) and their core concepts.

in terms of services and their data (R5) and control flow (R6)
interoperation. The service catalog supports part of these
requirements, but is used by software evolution practitioners
less directly, and in a read-only fashion.

Service orchestrations represent the task coordination step
(Fig. 1). A graphical representation of an orchestration for the
quality measurement example is visible in the center of the
editor screen-shot in Figure 4.

The central concept of this part of the SENSEI meta-model
(Fig. 3) is the service instance: whereas the catalog contains
service “blueprints”, its instances represent concrete usages
or invocations in particular scenarios, with certain capabilities
selected. The example orchestration contains a service instance
(rounded boxes with an encircled “S”-symbol in Fig. 4) for
each service introduced before, to which they conform. E.g.
parameters of services dictate their instance’s ports (small boxes
on the service instance’s borders). Ports can be connected by
data flows, e.g. the Parse instance outputs an AST, which is
used as input for the instances of both Calculate Metric
and Extract Structure.

Control flow is dictated by the order in which service instances
appear in an orchestration (the meta-model’s corresponding asso-
ciation is ordered; in Fig. 4, this is represented by grey arrows).
Special kinds of orchestrations exist to represent conditional
branching, concurrency, and loops. The corresponding classes are
omitted from Fig. 3 for clarity, but examples are shown in Fig. 4:
Calculate Metric and Extract Structure can run
concurrently. Calculate Metric is furthermore executed
once for each metric using the map control structure to split
collection-typed input data, run the nested orchestration once for
each input element, and then map its results back into a collection.

Services instances are refined by specifying required
capabilities. This allows software evolution practitioners to
choose one capability from each of the service’s capability
classes to create a capability tuple, representing a specific
functionality. To express that the Calculate Metric
instance must be able to evaluate metrics on both Java and



COBOL code, and calculate McCabe on both languages, and
SLOC on Java only, capability tuples would look like this:

Java COBOL Java
McCabe ) > \ McCabe ) > \ SLOC /]

This mechanism allows to specify what functionality is
required declaratively, i.e. without having to state how it is
provided, and is thus completely independent of tools and
their implementation and integration. The required capabilities
could be provided by a single tool, or (for example) by three,
each providing the functionality represented by one of the
capability tuples. In the example, there is only a single instance
of Parse, with capability tuples (COBOL) and (Java). The
Q-MIG project had individual parsers for each language, though.
The selection is taken care of by SENSEI’s tooling using the

information provided by restrictions from the service catalog,
and runtime introspection of input data to determine its type.

C. Component Registry

The component registry is a separate viewpoint (bottom layer
in Fig. 3) aimed at tool developers (R1), to register their tools
with SENSEI, and describe their functionality (R8). Data trans-
formers are registered as implementations of the corresponding
transformer services, as well, increasing their reusability (R11).

A component registry supports task instantiation (Fig. 1): it
provides the necessary infrastructure and information to automate
this step completely. In the quality measurement example, there
are three components: parsers for COBOL and Java (“COBOL-
FE”, “JavaFE”), and the custom-built MetricCalculator.

Components are associated to one or more service instances
(Fig. 3), not directly to catalog services: They generally do not
implement a service’s whole spectrum of possible functionality,
but provide a subset of it. This is declared using provided
capabilities, reusing the mechanism for required capabilities.

In Q-MIG, MetricCalculator actually implemented all
services of the quality measurement example, except for Parse,
i.e. a single component can implement multiple services. For
Parse it is the other way around, as both parser components
implement it, but none to the full extent required by the service
instance in the orchestration, i.e. COBOLFE declares only
(COBOL) as capability, and JavaFE only (Java).

Service instances of orchestrations, and those used to
describe what functionality a component provides, are separate.
Finding matches between the two is done automatically by the
composition finder, described in Section V.

The component registry further requires data definitions to
be specified for each parameter of each implemented service,
to map the conceptual data structures defined in the service
catalog to concrete technical realizations. For example, JavaFE
outputs an AST in a proprietary XML format. MetricCalculator
uses the same model, but requires a TGraph [24] format.

A special kind of service, “DDTransform”, representing
data transformers, takes care of such discrepancies. In the
Q-MIG example, there are actually two more components which
implement this service, each realizing a data transformation
from XML-ASTs to TGraph-ASTs, one for COBOL, the other
for Java (specified by capabilities). If available in the registry,
SENSEI will insert them automatically on data flows.
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V. APPLICATION

With the information from a service catalog, an orchestration,
and a component registry as input, a set of tools for model-driven
code generation (cf. Fig. 2) automate the actual tool integration
work. The composition finder matches orchestrated service
instances to implementing components, which provide the
required capabilities (R7), and automatically inserts data
transformers into the data flow where needed (R11). The
stub generator supports tool developers in providing SENSEI-
compatible tool interfaces (R9), and enforces conformance to
the target framework’s component model to provide uniform
interfaces (R10). The composition generator transforms the
input models into code, referencing the components found by
the composition finder, and invoking them in a manner and
order conforming to the orchestration. The generated code is
embedded in an appropriate component framework, and can
be compiled into executable toolchains (R12).

To show feasibility and applicability, the concepts of SENSEI
have been implemented, and the resulting, prototypical toolchain-
building support framework has been used to recreate parts of the
Q-MIG toolchain. This section first describes, how the SENSEI
meta-model has been realized technically, and presents the editors
which have been build for easier filling of the service catalog, reg-
istering components, and graphically modeling of orchestrations.
Then, SCAffolder is introduced, a prototype implementation of
the model-driven code generation tools of SENSEI, targeting the
Service Component Architecture (SCA) as component framework.

A. SENSEI Models and Editors

To represent the SENSEI meta-model and its instances,
JGraLab’s TGraphs [24] are used, providing meta-modeling
facilities, query and transformation languages (GReQL and
GReTL, respectively), and tooling. This includes a bridge to
the alternative technological space spanned by the ECore-based
Eclipse Modeling Framework (EMF) [25]. The TGraph infrastruc-
ture is essential for the code generator SCAffolder (Section V-B).

An editor for SENSEI models has been created using
the Eclipse Sirius [26] framework, based on a previous
prototype [27]. A screenshot of the resulting editor is shown
in Figure 4. The editor manages models as instances of the
meta-model as a whole. The edited service catalog, orchestration,
and component registry can therefore be saved to a single file,
which SCAffolder accepts as input.

The meta-model’s three viewpoints are kept separated in the
editor. In the left pane, a tree-view of the service catalog is
visible, showing data structure hierarchies and services with
input and output parameters. The component registry can be
viewed, browsed, and edited in a similar manner.

The orchestration view has been equipped with a graphical
editor. An example of an orchestration is depicted in the
center of Figure 4, corresponding to the quality measurement
example introduced earlier. The editor allows to graphically
model control and data flow (differentiated by color in the tool),
orchestrating service instances (rounded boxes), which can be
picked from a palette on the right. Required capabilities can be
selected, and are listed inside the corresponding box, as visible
on the Parse service instance on the left. Also visible are several
concepts of the underlying meta-model, that have been omitted
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from the simplified depiction of the meta-model in Figure 3
for clarity: E.g. control flow blocks to model concurrency,
and a map-operator to split up array-typed input data, execute
the nested orchestration once for each element, and map the
results back into an output array. Here, this is used to invoke
the CalculateMetric-service once per metric listed in the input.

B. SCAffolder

SCAffolder is a demonstrator implementing the model-
driven code generation tools of SENSEI, which support the
implementation phase of the toolchain-buiding process (cf. Fig 1).
It uses the TGraph-library JGraLab, the graph transformation
language GReTL, and Apache Velocity [28] templates for
code generation. SCAffolder targets the Service Component
Architecture (SCA) as infrastructure framework, as it provides
means to integrate tools realized in a wide range of programming
languages and for different platforms, requiring only lightweight
wrapping for conformance to its component model. SCAffolder
complements the platform-independent SENSEI meta-model
with a platform-specific SCA application meta-model.

SCAffolder takes an instance of the SENSEI meta-model as
input, i.e. a service catalog, an orchestration, and a component
registry, and transforms it to an SCA model. First, the service
instances of the orchestration each have to be paired up with
one or more components from the registry, providing their
required capabilities. Furthermore, data compatibility has to be
ensured, or remedied with the insertion of transformers, where
possible. The result is called a composition of components,
which together can realize the service orchestration. Finding
a composition for a given orchestration has initially been
implemented in GReTL, yet it soon became evident that a
model transformation language is an ill fit for such a task.

This early prototyping experience resulted in identifying the
Composition Finder as a separate entity in SENSEI’s tooling.
Meier [27] investigated constraint-solving approaches towards
this task, and produced a composition finder implementation
using Prolog. Clearly establishing composition finding as a
prerequisite step to the model transformation process also
makes it easier to interrupt it early in case no composition
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4 Service Catalog

Screenshot of the editor for visually designing SENSEI orchestrations.

can be found, e.g. if there are no appropriate components for a
particular service instance, or there are data transformers missing.
The composition finder will try to chain data transformers, if
no single transformer providing direct conversion from one
component’s output format to another’s input format is available.
The core of SCAffolder realizes the composition generator.
The transformation to an SCA model is based on creating a
single new component, called composer, which references all
the components provided by the composition finder (which
looked them up in the component registry). The composer is
realized as a Java program. It gets filled, for example, with
variable declarations to hold and pass on data, based on the
orchestration’s data flows, and with method invocations to call
components’ functionalities, corresponding to the services.
The composer assumes that the referenced components
provide SCA-conforming interfaces. SCAffolder can generate
the required SCA boilerplate code to base tool wrappers on
(Toolstub Generator). No orchestration is needed for this, only
a service catalog and one or more component descriptions.
SCAffolder integrates with the Maven [29] build and
dependency management tool. It can be used as a Maven plugin
to integrate toolchain-creation and execution into a larger build
process. A Maven archetype is provided, as well, which can
be used to create a new Maven project referencing a SENSEI
meta-model instance. When built, SCAffolder will automatically
be invoked to generate the toolchain integration code, before
Maven will compile and package the project, constituting
the toolchain. Currently, SCAffolder generates an application
program interface, but it can easily be extended to also provide
a command-line or graphical user interface on top of that. Large
parts of that would be static, and could be provided as a library.

VI. CONCLUSION

This paper presented SENSEI, a framework to support
toolchain-building in software evolution projects. It is based
on service-oriented and component-based principles to separate
toolchain specification from tool interoperability issues, and uses
model-driven code generation to partly automate integration.



SENSEI shares some commonalities with related approaches
like SOFAS and TIL: SOFAS is focused on software analysis,
whereas SENSEI makes no constricting assumptions to be able to
target the complete field of software evolution. Other differences
include a focus on RESTful web services, whereas SENSEI
is, on a conceptual level, completely technology-agnostic. Its
prototypical implementation (SCAffolder) is based on SCA
(Service Component Architecture), which supports REST as
one of many binding technologies. As far as can be told from
publications on SOFAS, it enacts (interprets) its orchestrations
at runtime. SENSEI uses a code generator, instead. SOFAS goes
beyond SENSEI in terms of semantic data integration using
an ontology-based approach, while SENSEI intentionally uses
a more primitive approach to identify data of different kinds,
but without a means to describe its concepts in more detail.
SOFAS still requires data transformers, but they always map
to the existing ontologies, facilitating standardization. SENSEI is
specifically designed to be complemented by such mechanisms.

TIL is not aimed at software evolution at all, but at integrating

software development toolchains in the area of embedded systems.
Like SENSEI, TIL uses a model-driven code generation approach.

It also provides a custom, graphical editor for modeling data
and control flow of toolchains. While SENSEI is process-centric,
TIL’s semantics are mapped to state machines [18], and thus
are reactive and event-driven. TIL’s backing meta-model is
fundamentally different from the SENSEI meta-model. For
example, no distinction between services and components exists,
focusing instead directly on concepts on the tool level. Both
implementations target SCA, however, TIL relies on OSLC
standards, which do not cover software evolution.

A distinctive feature of SENSEI is its capability concept,
which enables to partly specify software evolution service
orchestrations declaratively, reducing complexity, and can
provide automatic data type conversion, as well as automatic
discovery of tools appropriate for a specified task.

So far, experiences with using SENSEI and SCAffolder to
model and generate parts of the Q-MIG toolchains indicate
that, without pre-existing service catalogs and corresponding
component registries, an initial modeling overhead is created.
With both artifacts becoming filled, this is expected to be offset
by increased reusability of previously defined services and
already registered components. The same can be said for the
effort required to build the toolchain.

The effort to adapt the toolchain is greatly reduced once the
infrastructure is in place. Extending an existing toolchain can
be as simple as declaring an additional capability requirement:
for example, to extend the quality measurement toolchain with
a basic ability to also analyze SQL code, the Parse and
Calculate Metric instances only have to be equipped
with an additional (SQL) capability tuple. This is, off course,
assuming that corresponding tools are available, and have been
made available to the SENSEI framework. This ability to flexibly
modify toolchains allows to react to changes during a project’s
run quickly, thus facilitating project agility.

The SENSEI-based Q-MIG toolchain is currently being
extended to include additional services and tools. Furthermore,
SENSEI will be used to create toolchains for analyzing and
optimizing the energy efficiency of (mobile) applications [30],
to further confirm its general applicability and usefulness.
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