
Sensei Applied: An Auto-Generated Toolchain for Q-MIG

Jan Jelschen, Johannes Meier, Andreas Winter
Carl von Ossietzky Universität, Oldenburg, Germany
{jelschen,meier,winter}@se.uni-oldenburg.de

1 Introduction

Large software evolution, migration, or reengineer-
ing endeavors require integrated tooling to support
their specific goals [1]. While some functionality is
project-specific, for many standard software evolution
tasks, tools are readily available. Those tools usually
provide little means for interoperability, making inte-
gration a tedious and error-prone struggle. Further-
more, software evolution projects must usually follow
iterative processes – even with fully elicited require-
ments, subjected legacy systems, being large, complex,
and undocumented, obscure the view to a clear path
through a project. Rigid, ad-hoc tool integration im-
pedes experimentation, encumbers adaption and exten-
sion, and overall slows down the project.

Sensei (Software EvolutioN SErvices Integra-
tion [2]) is a conceptual framework developed to ease
the toolchain-building process, by combining service-
oriented, component-based, and model-driven tech-
niques. Sensei provides the means and structures to
describe required functionality and their interplay as
services and orchestrations, respectively, and enables
automatic mapping to appropriate implementing com-
ponents and auto-generation of integration code.

The utility of Sensei has been put to the test by
using it to (re-)build the toolchain for the Q-MIG [3]
research project. This paper aims to demonstrate
Sensei’s advantages by explaining its application, and
comparing it to “manual” toolchain-building. To this
end, Section 2 gives a brief overview over the goals of
Q-MIG. Section 3 outlines the key principles of Sen-
sei, and how it is practically applied, using Q-MIG as
example. Section 4 exemplifies the utility of Sensei
regarding flexibility, reusability, and productivity us-
ing tooling-related issues that arose during the project.
The paper concludes with a summary in Section 5.

2 The Q-MIG Project

Q-MIG investigated quality dynamics of software
under language migrations from COBOL to Java.
Its objectives were to measure, compare and visu-
alize, as well as predict software migration quality.
Therefore, a Quality Control Center has been devel-
oped: a toolchain to complement an existing migration
toolchain in support of a) researchers studying migra-
tion quality, b) experts rating the inner quality of sys-
tems, and c) software migration consultants projecting
post-migration quality to improve migration tools, pro-
vide insights to clients, and choose migration strategies
and tooling according to quality goals. The required

tools and toolchains had been developed convention-
ally, first, as the Sensei tooling had not been ready
when the project commenced.

3 The SENSEI Approach Applied

The key aspects of Sensei can be summarized along
the utilized principles of service-oriented, component-
based, and model-driven paradigms, consolidated by
capabilities in an integrated meta-model. More detail
is given in the following, explaining the steps of apply-
ing Sensei (defining services, designing orchestrations,
adapting and registering components, and generating
toolchains), using Q-MIG as example.

Defining Services. First, the required functional-
ity has to be identified and described as services. In
Sensei, a service consists of a name and description of
its intended function, consumed inputs and produced
outputs with associated (abstract) data structures, and
capability classes (explained in the following).

Services can either be defined top-down or bottom-
up. The former approach identifies them from relevant
publications and diverse software evolution projects [5],
to create a catalog of generic, standardized services.
If available, services can be picked from the catalog
instead of being created for the project. Otherwise,
services can be created bottom-up, only for a project’s
required functionalities, giving full control over service
design, but potentially leading to project-specific ser-
vices with lower reuse value. This can be used, though,
to fill a catalog incrementally, and refine and generalize
its services in the process.

Lacking a comprehensive catalog, the bottom-up ap-
proach was chosen for Q-MIG. Services were identified
for parsing, calculating metrics, visualizing, learning
and predicting, as well as extracting and consolidating
data. All services were fitted with input and output
parameters, e.g. the parsing service’s input is source
code, and its output is a corresponding abstract syntax
tree. To be able to refine what kind of source code can
be parsed, the service also got a capability class named
programming language, with COBOL and Java among
the possible values. The parameter’s types can be re-
stricted according to a particular capability, e.g. Java
requires Java source code as input.

Designing Orchestrations. Once all service de-
scriptions are ready, they can be instantiated in an or-
chestration. A graphical editor [4] is available to sup-
port this task, so that service instances can be wired
up to define control and data flows. Service instances
can be nested in control structures to model concurrent
execution, or loops, for example.

{jelschen,meier,winter}@se.uni-oldenburg.de


The orchestration for Q-MIG’s quality measurement
starts with parsing. Next, a service to calculate a met-
ric is invoked once for each metric specified in the in-
put, using a loop, while concurrently, a service extracts
sub-system nesting information. Finally, the data is
consolidated and returned. The orchestration supports
COBOL and Java both, which is specified declaratively
using required capabilities; no branching was modeled.

Adapting and Registering Components. To
be usable with Sensei, components have to conform
to their services’ interfaces. The service-to-component
mapping is not one-to-one: for example, the parsing
service is implemented by two different components,
one for parsing Java, and one for COBOL. Data extrac-
tion and consolidation, as well as metric calculation are
implemented in a single component.

Generating Toolchains. Lastly, the toolchain
generator SCAffolder (targeting SCA: “Service Com-
ponent Architecture” as component framework) is fed
with the artifacts resulting from the previous steps. It
will try to find matches for each service instance in
the orchestration. It may select multiple components
to realize a single service with different capabilities,
and generate appropriate branching logic. SCAffolder
leverages service capabilities and associated data type
restrictions on them to invoke the right implementation
at runtime based on concrete input data.

4 Evaluation

This section compares the conventional toolchain-
building approach with Sensei, again using Q-MIG
as example. The comparison is structured according
to the criteria flexibility, reusability, and productivity.
Three exemplary issues that arose during Q-MIG have
been picked to illustrate relevance and particular ad-
vantages of Sensei: (1) To integrate a clone detec-
tor for the number of cloned lines metric within the
toolchain, technical interoperability issues became a
major selection criterion. A Java tool was selected, be-
cause it was the easiest to integrate. (2) Some project
members had less experience in object-oriented pro-
gramming, leading to architecture violations. (3) Due
to legal restrictions, parts of the toolchain had to be
run by, and on the premises of, the project’s industry
partner. The distributed part could not be automated,
introducing manual steps, communication overhead be-
tween the partners, and a rigorous release process.

Flexibility. Sensei enables a technology-indepen-
dent choice of existing tools (1), as it abstracts from
interoperability and implementation issues. The target
platform SCA offers support for different implementa-
tion languages. This helps less experienced develop-
ers (2) to create components with familiar techniques,
strictly isolated from other parts of the toolchain. The
high abstraction level also enables non-programmers
(e.g. data scientists, analysts) to partake in design-
ing toolchains. And it abstracts from deployment con-
cerns, easing toolchain distribution (3).

Reusability. Reuse is facilitated through Sensei
by building up a library of components, with interfaces
standardized through a service catalog. With Sensei,

adapters will rest with the tools, whereas in Q-MIG (1),
it was natural to keep them somewhat “buried” and
mixed in within the metric calculation code.

Productivity. Sensei decreases development ef-
fort partly through automation (code generation), and
by avoiding redundant developments through added
flexibility and easier reuse. E.g., while external
tools (1) still have to be adapted to Sensei’s infras-
tructure, it only has to be done once (possibly even
by the tool vendor). The application to Q-MIG has
shown that small changes can sometimes be imple-
mented more quickly without Sensei’s imposed struc-
ture, but their accumulation may lead to declining
evolvability of the toolchain.

The inability to create a gapless, fully integrated
toolchain in Q-MIG (3) highlights its importance, as
the manual procedures lead to misunderstandings, and
markedly slowed down turnarounds. While Sensei
does not currently support distributed toolchains, it
can be extended towards it, providing full toolchain
control without the need of human intervention. Here
though, it remains unclear whether full integration
would have been permissible from a legal point of view.

5 Summary

Sensei structures and partly automates toolchain
building to support (not only) software evolution
project processes. It facilitates flexibility and reuse,
and can thereby help save time and effort. Its applica-
tion to a concrete project is a first proof of viability.

Achieving the same advantages building toolchains
“conventionally”, e.g. by adhering to principles like
loose coupling and encapsulation, or by “only” us-
ing a particular component framework requires more
foresight, very disciplined development, and additional
implementation effort – something that is hard to
keep up under the pressures of a time- or budget-
constraint project and evolving conditions and require-
ments. Sensei enforces the required structures, and re-
duces the overall effort through automated integration
code generation. The overhead of defining services and
adapting component interfaces required at the outset
is set off by integration automation. In the long term,
it is expected to pay off due to increased reusability.

References

[1] S. E. Sim, “Next generation data interchange:
Tool-to-tool application program interfaces,” in
WCRE, 2000, pp. 278–280.

[2] J. Jelschen, “SENSEI: Software Evolution Service
Integration,” in Software Evolution Week (CSMR-
WCRE). Antwerp: IEEE, Feb. 2014, pp.
469—-472.

[3] G. Pandey, J. Jelschen, D. Kuryazov, and A. Win-
ter, “Quality Measurement Scenarios in Software
Migration,” in Softwaretechnik Trends, vol. 34,
no. 2. Bonn: GI, 2014, pp. 54–55.

[4] J. Meier, “Editoren für Service-Orchestrierungen,”
master’s thesis, University of Oldenburg, 2014.

[5] J. Jelschen, “Discovery and Description of Soft-
ware Evolution Services,” Softwaretechnik-Trends,
vol. 33, no. 2, pp. 59–60, May 2013.


	Introduction
	The Q-MIG Project
	The Sensei Approach Applied
	Evaluation
	Summary

