2023 24th International Conference on Control Systems and Computer Science (CSCS)

Analysis of Viewpoints for Modeling
Cyber-Physical Systems

Anca Daniela lonita
Automation and Industrial Informatics
University Politehnica of Bucharest
Bucharest, Romania
anca.ionita@upb.ro

Johannes Meier
Software Engineering Group
University of Oldenburg
Oldenburg, Germany
meier@se.uni-oldenburg.de

Christian Schonberg
Software Engineering Group
University of Oldenburg
Oldenburg, Germany
christian.schoenberg@uni-oldenburg.de

Andreas Winter
Software Engineering Group
University of Oldenburg
Oldenburg, Germany
winter@se.uni-oldenburg.de

Abstract— For modeling cyber-physical systems (CPS) there
is a multitude of languages to choose from, and often one needs
more than one of the existing languages to cover all concerns to
be considered. The design of CPS needs to go across languages,
pertaining to different paradigms, and creating overlapping and
combined challenges for reaching coherence. An appropriate se-
lection of languages for creating a new CPS requires an in-depth
analysis of the architecture viewpoints relevant to all the stake-
holders’ concerns. This paper identifies and analyzes a set of
viewpoints and their corresponding model kinds for UML and
two of its profiles, SysML and MARTE, well-known for their
applicability to cyber-physical systems. We discuss how the
viewpoint coverage and the relationships between them can lead
towards a recommendation system for choosing the right com-
bination of languages, to be used by educators and software ar-
chitects.

Keywords—View-Based Modeling, Cyber-Physical Systems,
Architecture Viewpoints, UML, SysML, MARTE

1. INTRODUCTION

Cyber-Physical Systems (CPS) represent one of the most
prominent trends in computer technology, establishing inte-
grated systems consisting of hardware and software compo-
nents [1]. They have evolved in conjunction with Internet of
Things (IoT) and various smart approaches, in manufacturing,
transportation, health care, buildings, emergency response. As
the world has become increasingly inter-related - due to ser-
vices, mobile devices, cloud computing, and wireless net-
works - CPS have highly proliferated, facing challenges like
scalability, composability, and heterogeneity. The state of
practice shows that, in the development of various CPS, one
uses a large variety of modeling languages, some descriptive,
others executable, corresponding to different paradigms. In
this context, our research question is why one selects a
language or another for designing a given CPS.

Modeling is considered fundamental to software and sys-
tems engineering and choosing the right language for the sys-
tem under development is not a simple task. Describing sys-
tems requirements is realized by multiple viewpoints that
frame the concerns relevant to all the stakeholders. A view-
point is a perspective from which a system is regarded. It de-
fines, based on concerns of stakeholders, which parts of the
system are regarded, and which are disregarded. The
ISO/IEC/IEEE standard 42010:2011 [2] considers that each
architectural viewpoint has one or more associated model
kinds that specify a notation for the viewpoint, as well as usage
conventions. Using these notations, concrete models can be

2379-0482/23/$31.00 ©2023 IEEE
DOI 10.1109/CSCS59211.2023.00057

319

created that belong to equally concrete views. Views are snap-
shots of the system under development from certain perspec-
tives, i.e., following viewpoints.

An in-depth analysis of viewpoints is essential for cyber-
physical systems because they integrate strongly interdepend-
ent, but interrelated parts, including “computation, network-
ing, and physical processes” [3]. Since CPS have a growing
number of sensors, actuators, communication channels and
processing nodes, their development involves lots of different
stakeholders, with lots of different concerns, which leads to
lots of different viewpoints. To support them all, and to model
all aspects of CPS, a systematic, multi-view and multi-para-
digm modeling [4] method should be investigated.

First, this paper identifies the most important CPS con-
cerns, framed by a set of broad viewpoints (Section II). How-
ever, to be able to differentiate between languages, one needs
to get to another level of detail and identify narrower view-
points, which have very specific types of diagrams that repre-
sent different model kinds. Then, Section III analyzes three
standard languages - Unified Modeling Language (UML),
Systems Modeling Language (SysML) and Modeling and
Analysis of Real-Time and Embedded systems (MARTE) -
and gives examples of applying them to describe cyber-phys-
ical systems, and section IV identifies a set of narrow view-
points provided by them. Finally, section V discusses the cov-
erage of these viewpoints by the three standard languages and
identifies challenges for preserving the overall model con-
sistency.

II. CPS CONCERNS

Cyber-physical systems have three groups of stakehold-
ers: software engineers, application domain engineers and
systems engineers. We represent their concerns, at a very
high level of granularity, in the conceptual model from Fig.
1. Software engineers are particularly interested in the cyber
concern, with the correspondent computational view, where
it is very important to represent the software architecture and
the diagrams are mainly graph-based. Domain specialists
have the physical concern, associated with the hardware
viewpoint and the representations of the topology and the net-
work graphs, plus the physical phenomena viewpoint, often
characterized based on differential equations. System engi-
neers are concerned by the system as a whole, related to the
control viewpoint, which uses mathematical modeling. We
thus notice that CPS need multiple architecture viewpoints,
for which the models conform to diverse paradigms.

Communication

Viewpoint

Time Viewpoint

F Com putational Viewpoint

~ Hardware Viewpoint

Deployment
Viewpoint B
g
§ S B
S 8 - o @
£ B Non-functional & S
3 s C iti = a
T 3 omposition & ¢
= E R = 2) b
Cyber Concern e E Viewpoint S & Physical Concern
8 \
< T8 \
=+ 5
S o
<

o Software
architecture
Software

. -graphs !
Engineer

- Control Viewpoint

Zero-Time Assumption

System Concern

o]

Systems
Engineer

\\

o topology / networks -

graphs
- Physical phenomena Viewpoint,
o differential equations
Domain

\ e _gﬂqineer

mathematics

Fig. 1. CPS Conceptual Model

Moreover, apart from the three concerns mentioned
above, there is a cross-cutting concern particularly related to
the non-functional properties, time management, deploy-
ment, and communication. We call this the integration con-
cern.

Fig. 2 represents the abstract syntax for the CPS concerns
identified above, using the concrete syntax of the UML class
diagrams. The two concepts that are the basis of the hierarchy
conform to the ISO/IEC/IEEE 42010:2011(E) standard,

Concern

together with the association between them. In addition, the
diagram includes the four concerns of the cyber-physical sys-
tems (cyber, physical, system and integration). The class hi-
erarchy from the right side represents the CPS stakeholders
(software engineer, domain engineer and systems engineer).
The representation also includes associations drawn as lines
and showing which are the concerns for each stakeholder. Let
us notice that all of them are connected to the Integration
Concern.

Stakeholder

Physical Concern

System Concern

Integration Concern

& «has
{subsets c} I_
Cyber Concern I : Software Engineer
‘ | «has
{subsets c} Domain Engineer
has
subsets c} Systems Engineer
«has
«has

Fig. 2. Abstract Syntax for the CPS Concerns

320

III. METHOD AND RELATED WORK

In a systematic literature review, Barisic et al. identified
16 different formalisms adopted for the design of cyber-phys-
ical systems [5], like Petri Nets, discrete events, temporal
logic, data flow, differential equations, bond graphs etc.
Moreover, according to their study, the most used modeling
languages in CPS development are UML and SysML, fol-
lowed by MARTE and Architecture Analysis & Design Lan-
guage (AADL) language.

Our research objective has been to investigate a large set
of languages used for modeling cyber-physical systems and
identify similarities and differences between them. The
analysis proved that, although there are many commonalities
of these languages, even within the same formalism the
languages differentiate from each other by some essential
details that correspond to narrow architecture viewpoints,
which may be of great importance for some applications and
not for others. Hence, the challenge is to properly differentiate
between these languages by identifying these narrow
viewpoints, as a starting point to defining selection rules and
creating a recommendation system. Their granularity was cho-
sen to allow a comparison between languages in order to:

e show the types of diagrams from different languages
(i.e., model kinds) that represent the same viewpoint
outline whether a language offers or not a representa-
tion for a given viewpoint
make the difference between similar types of diagrams
that cover a narrower or broader scope (i.e., one or sev-
eral viewpoints).

The part of the research presented in this paper concerns
UML, which is a general modeling language and a standard
in object-oriented modeling, and two of its profiles — SysML
and MARTE, also adopted as standards by the same organi-
zation - Object Management Group. These profiles were se-
lected because they include extensions with metaclasses that
are specific to systems’ modeling, real-time and embedded
systems, and because they are widely used. Therefore, they
are very important for CPS and have multiple applications in
real-life; several examples are given below.

As a general modeling language, UML (Unified Modeling
Language) can also be employed for modeling cyber-physi-
cal systems [6]. As an example, UML activity diagrams are
used to model the behavior of a robot, whose executability
was realized with a Moka engine, based on f{UML (The Foun-
dational Subset for Executable UML Models) [7]. UML was
also extended in profiles like SysML and MARTE, introduc-
ing concepts for a more advanced modeling of CPS.

SysML (Systems Modeling Language) reuses a part of
UML, including sequence, state machine, use case and pack-
age diagrams. UML class and composite structure diagrams
are extended to blocks, internal block diagrams, and alloca-
tions of behavior/structure to blocks, plus other modeling el-
ements that keep the correspondence between similar models
with more and less details. There is also the possibility to in-
troduce constraints that define mathematical formulas, ap-
plied on a large variety of parameters - like mass, response
time, availability, security, cost - and may be used for trade-
off analysis [8]. SysML allows for the extension by custom-
ized viewpoints and views, as well as profiling. The standard
was extended in a framework for designing time-sensitive
CPS, applied in [3] for simulating a rotorcraft Unmanned

321

Aerial Vehicle (UAV). An academic example of SysML
models based on four different resources - a machine, a robot,
a conveyor and a pump - is presented in [9].

MARTE (Modeling and Analysis of Real-Time and Em-
bedded systems) adds specific and detailed modeling capabil-
ities concerning non-functional properties, time, resource
modeling, allocation, and model annotations useful for the
analysis of performance. This language, used in conjunction
with UML, is applicable for modeling systems that are time-
critical, resource-critical, reactive to the environment, char-
acterized by intensive data computations, or controlling phys-
ical objects or processes [10]. A case study for a quadcopter
presented in [11] adds MARTE-specific elements to its UML
model, e.g., the spatial distribution of a controller, the time
scheduling for the actions that have to be performed on the
controller, and the clock constraints for synchronization.

IV. VIEWPOINTS ANALYSIS

This section presents a set of narrow viewpoints identified
for UML, SysML and MARTE and their correspondent model
kinds / types of diagrams, which are relevant for CPS model-
ing. Section A describes viewpoints supported by UML, some
of which are also covered by SysML and MARTE. These
viewpoints were derived by deeply analyzing the model kinds
of these modeling languages to allow a comparison between
them, as presented in Section III. Section B presents a set of
viewpoints that can only be specified in SysML and MARTE
and are not supported by UML, or not in sufficient detail. The
necessity for expressing the CPS architecture from such a
point of view would indicate that UML is not appropriate
enough and the designer should choose SysML or MARTE,
instead or in addition. A summary of all these viewpoints and
the correspondent model kinds is presented in Table I.

A. Viewpoints Supported by UML

This section mainly presents the viewpoints covered by
UML, but it also identifies the situations where SysML or
MARTE provide more modeling elements for the same
model kind, or even additional types of diagrams, thus sup-
porting a more detailed design.

The Data viewpoint focuses on static systems aspects,
i.e., the types of entities - described together with their prop-
erties, the operations that may change them - and the relation-
ships between these entities. The model kinds used in this
viewpoint govern information models (for entities repre-
sented in an abstract way) or data models (for entities at a low
level of abstraction). For instance, the description of the value
range, the precision, the mean deviation, and the update in-
terval of a sensor are described in the Data viewpoint.

The Data Flow viewpoint focuses on the movement and
the storage of data, within a process made of activities that
transform input data and produce output data, without con-
sidering their sequencing or parallelism. An example for this
viewpoint is the data transfer from a sensor (as described
above) to an actor, through a series of processing nodes.

The Control Flow viewpoint focuses on the sequencing of
activities within a process, also including decisions, condi-
tions, iteration, timing, parallelism, and handling events. The
description of the logic governing the processing nodes men-
tioned above is an example for the Control Flow viewpoint.

The State Flow viewpoint focuses on the states and the
transitions between them, driven by discrete external events,

or automatically triggered after the finalization of activities, packages for Non-functional Proper-

and guarded by various conditions. An example is the defini- ties. Modeling (NFPs) and Value

tion of states in which a sensor or a processing node can be in, Specification Language (VSL)

and how to transition between these states. P— Generic Quantitative Analysis Mod-
o N pon-functional | \ARTE | eling (GQAM)

The Interaction viewpoint focuses on the way the entities P Schedulability Analysis Modeling
inside and outside the system (at various levels of granulari- (SAM)
ties) communicate (e.g., based on synchronous or asynchro- Performance ~ Analysis Modeling
nous messages) and how they influence each other. (PAM)

The Communication viewpoint, related to Interaction, Generic Resource Modeling (GRM)
shows the structure of information interchanged by entities Detailed Resource Modeling (DRM)
that communicate and the rules or protocols for transmitting Software R Modeling (SRM
this information. Apart from the UML communication dia- Resources MARTE oftware Resource Modeling (SRM)
grams, MARTE adds message and flow-oriented communica- Hardware ~ Resource Modeling
tion modeling to its general component models. (HRM)

High-Level Application Modeling
TABLE L SUMMARY OF MODEL KINDS FOR EACH VIEWPOINT (HLAM)
Allocation extensions applied to
. . . o SysML Block Definition Diagram, Internal
Viewpoint Language Model Kinds / Descriptions Allocation Block Diagram and Activity Diagram
Object Diagram MARTE Allocation Package
Data UML
Class Diagram Scheduling Package
Scheduling MARTE
Activity Diagram Allocation Package
UML
Data Flow Information Flows Package))))
— The Timing viewpoint focuses on the time scale in a more
SysML Activity Diagram precise way than the simple ordering on the timeline, includ-
UML Activity Diagram ing information about time durations and constraints that char-
Control Flow — acterize interactions or state changes. It thus considers:
SysML Activity Diagram
¢ logical time, showing causality
UML State Machine Diagram ¢ synchronous time based on the simultaneity with clock
State Flow instants
SysML State Machine Diagram . .
e real-time duration values.
Sequence Diagram . L . i
— Several model kinds are UML timing diagrams (also describ-
. UML Communication Diagram ing the Interaction) and the more complex time modeling ex-
Interaction
Interaction Tables tensions from MARTE, like multiple time bases, clocks, time
: values, duration values; for a more precise specification,
SysML Sequence Diagram MARTE is also accompanied by CCSL (Clock Constraint
UML Communication Diagram Specification Language) and Clocked Value Specification
Communication MARTE Generic Component Model (GCM) Language (CVSL).
Package The Software Assembly Structure viewpoint only consid-
UML Timing Diagram ers the software parts. One assumes that a software entity (be
Timing Time Modeling packages, CCSL and it a class, a component, or a subsystem) may be composed of
MARTE CVSL several parts but, at the same time, it can hide its parts and
. expose interfaces for becoming a part in a larger assembly.
UML Component Diagram N . . .
P ¢ Multiple examples of model kinds are available in UML,
Software As- Block Definition Diagram SysML and MARTE, as shown in Table I.
sembly Struc- SysML ‘ . . .
ture Internal Block Diagram The Internal Structure viewpoint focuses on the properties
MARTE Generic Component Model (GCM) that are inside an entity and how they are connected to each
package other; it may also show the structure of the collaboration be-
Internal Strue- | UML Composite Structure Diagram tween ’the pal‘LS for fulfilling a goal. Two mode;l kinds that e}):-
ture SysML Internal Block Diagram press it are the UML (;ornposue structure diagram and the
SysML internal block diagram.
Deployment UML Deployment Diagram . . .
The Deployment viewpoint shows the assignment of soft-
UML Use Case Diagram ware parts to the hardware that supports the execution, some-
Functional Re- Use Case Diagram times by using seyeral intermediate conceptual or pll_y51gal el-
quirements SysML ements, like environments or platforms. A model kind is the
Requirement Diagram deployment diagram in UML / SysML.
Non-functional . . . R . .
R::uir:rfléﬁ?sa SysML Requirement Diagram The Functional Requirements viewpoint covers the func-
— tionality expected by external entities - like humans, hard-
SysML Parametric Diagrams ware, or other systems - from the system to be developed; the

322

entities are only considered in terms of their roles played in

respect with the system; the viewpoint is also interested of the
internal functionality that realizes the externally accessible
functionality. The use case diagram in UML / SysML repre-
sents a well-known model kind.

B. Additional Viewpoints Supported by SysML and MARTE

This section identifies viewpoints (essential for some
CPS) that are not covered by UML, leading to the clear need
to use its specialized profiles like SysML or MARTE.

The Non-functional Requirements viewpoint focuses on
non-functional properties that are prescribed for the cyber-
physical system. SysML supports a model kind for it with its
requirements diagrams, where one does not make the func-
tional / non-functional difference.

The Non-functional Properties viewpoint covers what
conditions, constraints or criteria are characteristic or de-
signed for an entity, including their precise specification for
quantitative analysis. Some model kinds are the parametric
diagram from SysML and MARTE package for non-func-
tional properties modeling, together with the language for
specifying values. MARTE provides a more detailed support
for quantitative analysis modeling of workload, observers,
and resources, with attributes relevant for real-time systems,
like host demand, delay, throughput; even more specific
quantitative annotations are available for the schedulability,
and for the performance of best-effort and soft-real-time em-
bedded systems.

The Resources viewpoint focuses on the system entities
that offer services, like memory, timers, clocks, processing
devices, communication media, concurrent execution arbiters
etc. They may be software or hardware, physical or logical,
and they are often modeled for CPS, where resource availa-
bility may be limited. MARTE supports several model kinds
for this viewpoint with generic and detailed resource model-
ing, and the differentiation between modeling elements for
software (including multi-tasking) and hardware; it also adds
specific resources for managing concurrency and real-time,
within the high-level application modeling.

The Allocation viewpoint focusses on the cross-relation-
ships between elements that may pertain to different models,
for allocating behavior, structure, or flows, generally by map-
ping logical to physical parts from the execution platform. It
may be relevant in various cases: allocating computations to
processing elements, data to memories, control dependencies
to communication resources. MARTE introduces a dedicated
model kind for Allocation that represents spatial distribution
to resources (see Table I).

The Scheduling viewpoint focuses on the temporal ar-
rangement of units of execution (e.g., activities, tasks, pro-
cesses, threads) at run-time, under concurrency conditions
over the same resources. It also considers policies, algorithms,
and synchronization resources. MARTE covers this viewpoint
in two model kinds: the Scheduling package and the Alloca-
tion package, which also considers the scheduling of the allo-
cated algorithmic parts (e.g., threads, tasks etc.).

V. DISCUSSION

After describing and exemplifying the set of viewpoints
from Section III, we discuss below whether they are covered
by only one or by several of the modeling languages under
study (see Section A) and how difficult it is to distinguish

323

these viewpoints from each other (see Section B). The result-
ing challenge, to automatically keep the overlapping view-
points consistent to each other, is motivated in Section C.

A. Comparison of CPS Viewpoints Coverage for UML,
SysML, and MARTE

The narrow viewpoints identified for UML, SysML and
MARTE and presented in Section III are not orthogonal.
Some of them are overlapping and some are included in other
viewpoints, but we considered them important for differenti-
ating between the modeling languages under study. Table II
shows the viewpoints coverage for UML, SysML and
MARTE. The main observation for CPS modeling is that all
the three languages may be required, since each of them pro-
vides at least one viewpoint that is not covered by the others.
This comparison may be a starting point for deciding on the
choice of the most appropriate modeling language, or of a
combination of them, in respect with the set of viewpoints
framed by the stakeholders’ concerns.

TABLE I ANALYSIS OF VIEWPOINTS COVERAGE
Viewpoint Modeling Language
UML SysML MARTE

Data X
Data Flow X X
Control Flow X X
State Flow X X
Interaction X X
Communication X X
Timing X X
Software Assembly Structure X X X
Internal Structure X X
Deployment X X
Functional Requirements X X
Non-functional Requirements X
Non-functional Properties X X
Resources X
Allocation X X
Scheduling X

B. Distinction between Viewpoints

Within the same viewpoint, some model kinds introduce
more details than others, either within the same modeling lan-
guage or within different ones. Within the same language,
one possibility is to have two types of diagrams, allowing one
to define simpler models with one type of diagram and then
refine them with another type of diagram. Another possibility
is to have a single type of diagram, like the component dia-
gram in UML, and to specify more or less details at modeling
time. Moreover, some of the UML diagrams (model kinds)
cover more than one of the narrow viewpoints identified
above (see Table I). Since viewpoints with different degrees
of abstraction are required to support the needs of stakehold-
ers with different technical backgrounds, the criteria to dis-
tinguish between viewpoints target not only the scope de-
scribed, but also the level of abstraction.

The Deployment viewpoint is included in the Allocation
viewpoint, as the types of elements that are bound are less
general than for allocation; it considers the distribution of
concrete software elements from the physical world to hard-
ware or execution environments, whereas the allocation may
also be done for various logical parts of structural or behav-
ioral nature. André et al. give a comparative presentation of
allocation models, including UML deployments, as well as
the approaches of allocation from SysML and MARTE [12].

The Allocation, Resources and Scheduling viewpoints are
overlapping, like in concurrent systems, where processes are
allocated to resources and their run-time execution is sched-
uled for the resource they were allocated to. Here, vague dis-
tinctions between viewpoints result from overlaps of the
viewpoints regarding the described concepts.

The Non-functional Properties viewpoint is strongly re-
lated to the Non-functional Requirements one, but it is con-
cerned of elements necessary for quantitative analysis and de-
sign. For Non-functional Properties one can also identify
many narrower viewpoints that are strictly focused on one
specific non-functional property (e.g., adaptability, cost, reli-
ability, energy, security, safety, stability etc.), but specific
model kinds for such narrow viewpoints are not consecrated.
This viewpoint is generally linked to crosscutting concerns,
as the non-functional properties may characterize a large va-
riety of modeling elements describing functional aspects.
Again, several viewpoints have overlaps and describe con-
nected concepts of the same CPS together.

C. Combination and Consistency of Overlapping View-
points

As discussed above, multiple viewpoints are required to
describe different aspects of cyber-physical systems and to
support different stakeholders. Since the viewpoints are often
not orthogonal to each other regarding the modeling scope
and the level of abstraction, the same concepts can be de-
scribed by several viewpoints in the same or a similar way.
This leads to the challenge of selecting an appropriate set of
languages and viewpoints, as discussed in Section A.

The next challenge is to keep the corresponding views of
the selected viewpoints consistent to each other, when mod-
eling a concrete CPS. If one developer changes the CPS using
the first view(point), the views presented to other developers
have to be changed accordingly, preferable in an automatic
way. Since different views represent different aspects of a
single architecture description of the CPS, changes to a single
viewpoint must also be made to the underlying description,
which in turn must affect all other related viewpoints.

Additionally, since lots of different view(point)s are re-
quired to describe different aspects of a system, as shown for
cyber-physical systems in Table II, the relation(ship)s be-
tween view(point)s have to be made clear and explicit. For
example, the Functional Requirements regarding the data ex-
changed between different sensors have to correspond to
what is realized in the Data view. If the modeled data or the
requirements change, the traceability would help to change
the dependent information accordingly, and to understand the
system and its design decisions in general.

Summarizing, new approaches and supporting frame-
works are required for a unified and consistent modeling of

324

the entire CPS with many different viewpoints. This also cor-
responds to solutions from [13].

VI. CONCLUSION

Based on the analysis of viewpoints that may be modeled
with UML, SysML and MARTE, this paper identified two
important challenges for modeling CPS. The first challenge
is to select the modeling languages and types of diagrams
(model kinds) that cover all the stakeholders’ needs; the anal-
ysis and results of this paper simplify this selection and con-
firm that a combination of UML, MARTE and SysML may
be required to cover all the concerns (see Table II). Future
work will also consider combinations of languages that go
across different paradigms. As such a selection may become
more complex, it leads towards the necessity of a recommen-
dation system to be available for educators and CPS design-
ers. The second challenge is to keep the consistency between
overlapping or related view(point)s, which has to be auto-
mated and supported by new approaches and frameworks.

REFERENCES

Platzer, A. (2018). Cyber-Physical Systems: Overview. In: Logical
Foundations of Cyber-Physical ~Systems. Springer, Cham.
https://doi.org/10.1007/978-3-319-63588-0_1

IEEE Computer Society, Architecture Working Group, “Systems and
software engineering — Architecture description ISO/IEC/IEEE
420107, 2011.

M. Morelli, “A System-Level Framework for the Design of Complex
Cyber-Physical Systems from Synchronous-Reactive Models”, Corso
di perfezionamento in Tecnologie Innovative, Scuola Superiore
Sant’Anna di Studi Universitari e di Perfezionamento, 2014-2015.

Carreira, P., Amaral, V., Vangheluwe, H. (2020). Multi-Paradigm
Modelling for Cyber-Physical Systems: Foundations. In: Carreira, P.,
Amaral, V., Vangheluwe, H. (eds) Foundations of Multi-Paradigm
Modelling for Cyber-Physical =~ Systems. Springer, Cham.
https://doi.org/10.1007/978-3-030-43946-0_1

Ankica Barisi¢, Ivan Ruchkin, DuSan Savi¢, Mustafa Abshir Mo-
hamed, Rima Al-Ali, Letitia W. Li, Hana Mkaouar, Raheleh Eslampa-
nah, Moharram Challenger, Dominique Blouin, Oksana Nikiforova,
Antonio Cicchetti, Multi-paradigm modeling for cyber—physical sys-
tems: A systematic mapping review, Journal of Systems and Software,
Volume 183, 2022, 111081.

“OMG® Unified Modeling Language® (OMG UML®)”, Version
2.5.1, December 2017.

K. Suri, A. Cuccuru, J. Cadavid, S. Gerard, W. Gaaloul, and S. Tata,
“Model-based Development of Modular Complex Systems for Accom-
plishing System Integration for Industry 4.0.”, in Proc. of the 5th Int.
Conf. on Model-Driven Engineering and Software Development
(MODELSWARD), pp. 487-495, 2017.

“OMG Systems Modeling LanguageTM”, Version 1.7, August 2022.

S. Kanthabhabhajeya, P. Falkman, and B. Lennartson, “System Mod-
eling Specification in SysML and Sequence Planner Language - Com-
parison Study”, in Proc. of the 14th IFAC Symposium on Information
Control Problems in Manufacturing, Vol. 65, issue 6, pp. 1543-1550,
May 23-25, 2012.

[10] “UML Profile for MARTE: Modeling and Analysis of Real-Time Em-
bedded Systems”, Version 1.2, formal/19-04-01, April 2019.

[11] F. Mallet, E. Villar, and F. Herrera, “MARTE for CPS and CPSoS:
Present and Future, Methodology and Tools”, in S. Nakajima et al.
(eds.), Cyber-Physical System Design from an Architecture Analysis
Viewpoint, Springer, pp. 81-108, 2017.

C. André, F. Mallet, and R. de Simone, “Modeling Time(s)”, in G. En-
gels, B. Opdyke, D.C. Schmidt, F. Weil (eds.), Int. Conf on Model
Driven Engineering Languages and Systems (MODELS), 2007. Lec-
ture Notes in Computer Science, vol 4735. Springer, 2007.

J. Meier, H. Klare, C. Tunjic, C. Atkinson, E. Burger, R. Reussner, A.
Winter, “Single Underlying Models for Projectional, Multi-View En-
vironments”, in: Proc. of the 7th Int. Conf. on Model-Driven Engineer-
ing and Software Development, pp. 119-130, Prague, SCITEPRESS,
February 2019.

(1]

[12]

[13]

