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Abstract

GXL (Graph eXchange Language) is an XML-based standard exchange format for
sharing data between tools. Formally, GXL represents typed, attributed, directed, or-
dered graphs which are extended to represent hypergraphs and hierarchical graphs.
This flexible data model can be used for object-relational data and a wide variety
of graphs. An advantage of GXL is that it can be used to exchange instance graphs
together with their corresponding schema information in a uniform format, i.e. using
a common document type specification. This paper describes GXL and shows how
GXL is used to provide interoperability of graph-based tools. GXL has been rati-
fied by reengineering and graph transformation research communities and is being
considered for adoption by other communities.

Key words: graph exchange language, graph-based tools, data interoperability,
reengineering, XML

1 Introduction

GXL (Graph eXchange Language) is a standard format for exchanging graph-
based data. It is the culmination of a cooperative effort among an international
group of researchers from disparate areas, including software reengineering and
graph transformation. Researchers and tool builders have had a growing inter-
est in comparing and combining approaches to their respective problems and
leveraging each other’s results. These collaborations provide lessons learned
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that are critical to advancing the maturity of the discipline. A standard ex-
change format for data facilitates tool interoperability and allows users to
select the most suitable approach or tool when building a workbench.

Interoperability is the challenge of enabling tools from different suppliers to
work together. Wasserman [1] describes a taxonomy with five types of inter-
operability: platform, presentation, data, control, and process. Another model
from Earl has three levels: control, user interface, and data [2]. Data interop-
erability appears in both of them.

Data interoperability requires the data to be compatible both syntactically
and semantically. In other words, tools need to agree on both the format and
the meaning of this data. The graph-based data model of GXL can be used to
represent both instance data and schemas. Thus, GXL provides a standardized
notation for exchanging instance data (graphs) including their structure defi-
nition (graph schemas). Both instance and schema graphs are encoded using
the same kind of XML (eXtensible Markup Language) documents [3]. While
these schema graphs do not provide semantics, they serve as a basis for users
to agree upon semantics. This feature is important because it helps tools and
researchers communicate about the assumptions inherent in their approaches.
This increased mutual understanding is a critical step in building on each
other’s work to increase the impact of research results.

In addition to being a generic format for representing graph structures, GXL
is also suitable for object-relational data. Consequently, GXL can be used to
represent data from a wider range of applications, including data repositories
and factbases from reengineering tools.

Organisation of this paper

This paper is organised as follows. The next section provides background on
interoperability of reengineering tools and their requirements for a standard
exchange format. This background provides a motivation for the design deci-
sions for GXL, including the selection of features to be included in the graph
model. Section 3 describes how these features are used to represent graph-
based instance data from software reengineering. The syntax of GXL is given
by the XML DTD in Subsection 3.4. Section 4 explains how the same graph
features are used to represent graph schemas. Adoption of GXL is outlined in
Section 5 along with some examples of how GXL has been used successfully
to facilitate data interoperability between reengineering tools. The paper con-
cludes with a summary and a discussion of how GXL meets the requirements
for data interoperability between reengineering tools.

2 Data Interoperability of Reengineering Tools

GXL was created to fulfill the need to exchange data between reengineering
tools. Previously, interoperability between tools relied on converters between
local formats. This approach requires case-by-case negotiation of exchange



syntax, schema, and even semantics. As the research area matured, it became
apparent that a standard exchange format was needed and that this format
should provide a mechanism to help articulate these schemas and semantics.

These experiences with interoperability and local file formats form the context
for the development of GXL. Moreover, they circumscribe the requirements
and criteria for success for a standard exchange format. In this section, we
will describe this background and how it informed the emergence of GXL.

2.1 Interoperability of graph-based tools

A variety of reengineering tools employ graphs as an internal data represen-
tation. With improved data interoperability, reengineering workbenches can
be composed by choosing the best component for a particular task. A typical
reengineering workbench consists of three types of tools: Extractors, Abstrac-
tors, and Visualizers [4].

FExtractors

These tools extract information from software artefacts, such as source code.
Examples of such extractors for the C/C++ source language are ACACIA |[5],
CPPX [6], and Columbus/CAN [7]. ASIS (ADA Semantic Interface Specifica-
tion) [8] offers similar functionality. Data extracted by these tools are usually
exported as abstract syntax trees or graphs.

Abstractors

These components of reengineering workbenches analyze the extracted data,
generating further information, and sometimes changing the form of the data.
Tools of particular interest here treat the data as graphs. These tools include
the PROGRES graph transformation system [9] and GUPRO [10]. General
graph-based query mechanisms such as Grok and GReQL are used for ana-
lyzing graph-structured data [11]. RPA uses a relational approach to analyze
software systems [12]. A generic approach for generating analyzers operat-
ing on abstract syntax trees is given e.g. in GENOA [13]. ASTLOG uses a
Prolog-based environment for analyzing programs [14|. Further specialized ab-
stractors have been developed for architectural analysis and recovery [15] [16],
for control flow, data flow, and dependency analysis [17] [18], and for software
metrics [19].

Visualizers

These tools display the information derived in the previous steps. This infor-
mation can be visualized textually or graphically. Source code browsers are
typical textual visualizers [20] [21]. Graphical visualizers have been used to
display class diagrams [22|, sequence diagrams [23], statecharts [24] and soft-
ware architectures [25]. General graph drawing tools — for instance daVinci
[26], Graphlet [27], and GraphViz [28] — have been used to visualize small-



and medium-sized graphs. Large complex graphs are better handled by vi-
sualization tools designed for reengineering, such as Rigi |25] and SHriMP
[29].

2.2 Collaborating tool sets

The approaches and tools shown above, provide good support for various as-
pects of reengineering. Individual tools from different workbenches have been
combined to tackle a range of reengineering challenges. Here are some illus-
trative examples of the data exchange. More of them can be found at |30].

e Acacia and PBS. Acacia is a tool kit by AT&T Labs [31] for analyzing and
visualizing programs written in C+-. There is a command line interface
that allows extraction of facts about an parsed C+-+ program into Acacia’s
database. The analysis is at the external declaration level. Acacia was used
to extract facts from the Mozilla source code [32] that were subsequently
converted into a corresponding TA stream (Tuple Attribute Language) [33]
and analyzed using PBS (Portable Bookshelf) [34] tools.

e Dali and SNiFF+-. The Dali reverse engineering tool kit was created by the
Software Engineering Institute [35], [36]. This tool kit combines features
from a number of tools. To analyze the Linux kernel, SNiFF+’s API [37]
was used as a fact extractor. These facts were stored in TA [33], analyzed
using a relational database, and viewed using Rigi [38].

e CPPAnal and GUPRO. The CPPAnal tools by Harry Sneed [39] extract
source code information on an architectural level from large software sys-
tems and store them in SQL tables. By using GraX [40] these tables are
transferred into TGraphs [41] for further analysis with GUPRO tools from
University of Koblenz [42]. These TGraphs are used in GUPRO to browse
large graphs [43].

All of these collaborations were made possible through converters that take
files from one local format and transform the data into another local format.
While this approach has been used successfully, it does not scale well. In other
words, a converter would need to be written for each pair of local data formats
and this effort quickly becomes unmanageable. A standard exchange format
serves as an intermediary for these file formats; tool developers would only
need to convert to and from the local format and the exchange format.

There are a number of data formats that are used internally in a reengineering
workbench, such as RSF [38] and GraX [40]. These formats, while efficient,
are not suitable as an exchange format because they have different underlying
graph models, are optimized for particular analyses, and frequently contain
artefacts that reflect the tool internals. For instance, RSF can represent hier-
archical graphs that are not supported by GraX. By the same token, GraX
provides extensive support to represent and exchange the structure of graphs
by schema graphs. A standard exchange format was needed that is flexible and



general enough to represent the most common representations of data from
software systems. Such a format was required for interoperability of different
reengineering tools to support exchange of data without loss of detail.

GXL provides such a common and generally applicable format for interchanging
data on software systems between Extractors, Abstractors, and Visualizers, as
well as other tools used to support software evolution.

2.3 Requirements for a standard exchange format

Examination of the collaborations in the previous subsection and further anal-
ysis of data interoperability [30] [44] [45] [46] provide insights into the problem
of standard exchange formats. These in turn lead us to the following require-
ments for such an exchange format in reengineering: universality, typing, flex-
ibility, ease of use, scalability, modularity, and extensibility.

Universality: A standard exchange language shall support data exchange
for multiple purposes. In a reengineering exchange format, this includes ex-
changing data about different programming languages and at different levels
of abstraction, ranging from fine-grained representations such as abstract
syntax trees and more coarse-grained representations such as architectural
descriptions. A standard exchange format needs to be flexible enough to be
an intermediary in these and other situations.

Typing: A standard exchange language shall be typed. Knowing the types
of objects being exchanged makes it easier to interpret the exchanged data.
Typed exchange languages also permit validation of exchanged data and
allow adaption to problem-specific data exchange. Defining types for data
and their interdependencies helps in standardizing domain-specific exchange
models.

Flexibility: A standard exchange language shall be flexible. It should be
easily adaptable to exchanging domain specific data (cf. typed language)
to provide far reaching use. Furthermore, it must allow annotations on all
kinds of data objects, e.g. layout information, source code references, and
metrics.

Ease of Use: A standard exchange language shall be designed to provide
easy tool implementation. These tools include import and export filters,
translators from and to other formats, and helpers to validate and ensure
the integrity of exchanged data.

Scalability: A standard exchange language shall cope with data software
systems independently from their level of granularity. It has to scale for data
of arbitrary magnitude. Software systems in reengineering can be quite large,
sometimes consisting of millions of lines of source code, leading to abstract
syntax trees. Thus, the standard exchange language and the supporting tool
sets have to deal with a large amount of data, efficiently.

Modularity: A standard exchange language shall support modular and in-
cremental data exchange, so that data can be separated, hidden, or shared



as needed. In other words, it should be possible to exchange data sets in
parts, as subsystems, or in multiple documents.

Extensibility: A standard exchange format shall provide support for ex-
tending the modeling concepts used by specialized versions of the exchange
language. Extensibility allows the exchange format to be used in additional
domains, through the addition of new elements or through the use of the
format as a sublanguage.

These requirements for a standard exchange format for reengineering provided
the starting point for our design decisions in creating GXL. In the next section,
the requirements are mapped to specific features in the format.

2.4  Graph exchange formats in reengineering

The examples of collaborating tool sets in Section 2.2 demonstrate the need
for a general and applicable exchange format for reengineering data. These
tools typically use object-relational or graph-based file formats. The underly-
ing data model in the standard exchange format needs to be robust and flexible
enough to act as a bridge between myriad existing formats. Thus, a widely ap-
plicable lingua franca in reengineering needs to be an adaptable, graph-based
format. The high-level requirements on exchange formats presented in Sec-
tion 2.3 motivate decisions on more technical requirements for the suggested
reengineering exchange format. In this section, we relate those requirements
to specific design decisions regarding features in GXL.

We decided to create a new format rather than use an existing one because

e we needed a format that is simultaneously compatible with as many of these
as possible,

e has only and all the necessary graph features,

e is flexible enough to work with disparate data and different levels of ab-
straction, and

e is simple.

To ensure on ease on use, specifically ease of implementation, we decided to

use XML. This standard for semi-structured data allows us to define our own

format, while at the same time taking advantage of XML infrastructure for

constructing tools. One repercussion of this decision is the size of the files

being exchanged (cf. scalability). These files will be larger due to XML syntax

and the length of tag and attribute names. However, this is a problem faced

by all XML users and standard compression techniques are effective remedies

due to the amount of repetition in the files.

In addition to gathering requirements for a standard exchange format, we ana-
lyzed a number of existing formats. This investigation identified both the kinds
of features we should support and different approaches to satisfying our re-
quirements. The formats that we studied included the internal representations
of tools in software engineering and reengineering (e.g. ATerms [47], DiaGen



|48|, GraX [40], RPA [12] RSF [38], TA [33]), in graph databases (e.g. PRO-
GRES [9]), and in graph drawing (e.g. daVinci [26], dot [28|, GML/Graphlet
[49], GRL [50], XGMML [51], GraphXML [52]). From this review, we identified
nine features that we included in GXL. These features are described below:

Graph elements: Basic graph elements like nodes, directed and undirected
edges and attributes must be supported. For maximal flexibility, we permit
both directed and undirected edges in the same graph.

Hyperedges: N-ary relationships (hyperedges) must be supported natively.
Tools or formats that use hyperedges need to be able to use the exchange
format as well. Mapping n-ary relationships onto special nodes and binary
edges is an unsatisfactory work-around that does not provide equivalent
structural characteristics.

First class elements: Nodes, edges, and hyperedges must be identifiable
first-class elements, or objects, such that they can have unique identifiers.
Viewing edges as first class elements treats them equal to nodes and enables
multiple edges between nodes.

Attributes: All graph elements may have attributes added to them. This
also includes the attributes themselves, e.g. to express layout features of
attributes.

Ordering: Ordering of incidences, i. e. the order of edges incident on a node,
must be available such that ordered lists of parameters or declarations can
be conveniently expressed.

Hierarchy: Hierarchical graphs must be supported to provide simple sub-
structuring of graphs. Subgraphs may be exchanged as separate documents.

Graph schemas: The format must be able to define graph classes, or schemas.
These are needed to constrain the form of graphs used in different domains
of application. These graph schemas permit the specification and use of
types.

Extension Points: The exchange language syntax has to be extensible, so
that the format can be easily adapted to other areas. Furthermore, extension
points must be available to permit enhancement of the language.

Simplicity: The exchange format has to be simple, so it can be read and
understood by humans. This feature is achieved through a document type
definition with a modest number of elements and corresponding exchange
documents that are also small.

Figure 1 lists graph-based representations that we studied and their support
for nine features. It shows that a graph exchange format which supports all
required features in one common language does not exist. GXL integrates these
features in a general graph model (cf. Section 3.4). Additionally, GXL is adapt-
able because it supports metamodel-based definition of graph classes (cf. Sec-
tion 4) and extensions to the language (cf. Section 3.4).

Figure 2 illustrates how the features selected for GXL fulfills the requirements
identified section 2.3. Every feature satisfies at least one requirement and every
requirement is met by a feature. The universality requirement was achieved by
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Fig. 1. Supported features in graph formats

including graph elements, hyperedges, attributes, and ordering. This collection
of features in the GXL graph model ensured compatibility with a large number
of graph formats. These features were also considered primitive because they
could not be achieved through the combination of other features. The typing
requirement was implemented through graph schemas. While graph schemas
appeared in only a few formats, their expressive power and flexibility made
them an attractive mechanism for supporting typing. Flexibility was further
achieved in GXL with user-defined attributes and extension points. The Ease
of Use requirement was satisfied through simplicity and the decision to use
XML. Scalability was enabled using the Hierarchy and Simplicity features.
Modularity was implemented through the Hierarchy feature and some XML
features. Finally, Extensibility was realized using Extension Points.

In addition to GXL, there are other XML-based formats for exchanging graphs
or software artefacts in software engineering and reengineering. GraphML [53]
is a graph exchange format oriented towards graph layout which succeeds
GraphXML. GraphML offers a core graph model similar to GXL. Whereas
adaptability of GXL is based on metamodeling technology for defining con-
venient graph schemas (cf. Section 4), adaptability of GraphML is given by
extending the GraphML document definition. Thus, GraphML documents use
different, domain-specific document definitions with a common core. In con-
trast, GXL uses one common, application-independent document definition.
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Fig. 2. Requirements for graph-based exchange languages

Another relatively minor difference is that GraphML has the concept of ports.
Ports are properties of nodes and are convenient for controlling the incidence
of edges. Since ports can be mapped onto existing concepts in GXL, we elected
to not add another feature to support them. For example, one possible way to
represent ports in GXL is by using edge attributes to indicate the port’s name
or ordering to indicate numbered ports.

The graph drawing community has compared the two approaches and found
that they are compatible [54]. As part of this exercise, a set of filters for
converting between GraphML and GXL were developed.

Exchange of graph-based data can (also) be accomplished using MOF (Meta-
Object Facility) [55] as modeling language and XMI (XML Metadata Inter-
change) [56] as exchange language. While MOF does not have native concepts
for modeling graphs, e.g. n-ary relationships, graph properties, and link at-
tributes, it may be used to define a graph modeling and exchange language.
Once this graph model has been defined, XMI can be used to generate an
XML document specification. MOF/XMI and GXL are similar in that both
are generic exchange languages based on metamodeling technology. However,
there are three important differences.

One, the document type specifications created by MOF/XMI are complex
and contain a large number of XML elements that are not directly relevant to
encoding the data, e. g. elements for CORBA compatibility. The GXL document
specification was implemented by creating a UML class diagram that defines
the underlying graph model and then manually deriving the elements and
attributes. Consequently, the design of GXL is much cleaner and requires only
a small number of elements (cf. see Section 3.4 for more details).

Two, each distinct MOF metamodel generates a new document type specifica-
tion. The advantage is the XML format that is created is specially tailored for
specialized exchange scenarios. The disadvantage is that tools then must also



be tailored for each XML format generated. Here, GXL provides one common
XML notation for exchanging variants of graph-based data.

Finally, in MOF /XMI two different syntaxes are used for representing instance
data and for exchanging the metamodels of that data. The metamodels are
stored as document type specifications, that is, DTDs or XML Schemas. In-
stance data are represented as XML documents in a variety of notations. In
contrast, GXL uses a single common document type specification (cf. Section 4)
for graph instances and graph schemas, which simplifies the task of developing
tools to work with the format.

Other XML-based approaches (cf. [57], [58]) to storing, analyzing, and ex-
changing program data make use of the tree structure inherent in XML doc-
uments, that is, DOM trees. XML tags are added to source code so that
the structure of the XML document mirrors the abstract syntax tree. Conse-
quently, when the XML document is parsed, the parse tree for the program
is re-created. These approaches differ from GXL because they require different
document type specifications for different languages and they are restricted
to tree like structures. Despite these differences, both the XMI and the DOM
approaches are both based on XML, so data can be interchanged with GXL by
using appropriate XSLT scripts.

In summary, GXL seeks to be a general, compact and simple graph-based ez-
change format.

2.5 Genealogy of GXL

The genealogy of GXL presented in this section shows how GXL matured and
how other graph formats in reengineering and graph technology influenced the
development of GXL. The genealogy of GXL is depicted in Figure 3.

Development of GXL began with a merger of GRAph eXchange format (GraX)
[40], Tuple Attribute Language (TA) [33], and the file format from the PRO-
GRES graph rewriting system [9] introducing the general graph features. This
collection was presented in GXL 0.4.2 for comment by the general community.
Criticisms and suggestions directed us to consider including features from a
broader collection of formats.

The development of GXL was advanced during various conferences and work-
shops since 1998. Initial discussions on defining a general exchange format for
reengineering tools were held at WCRE 1998 [59] and at CASCON 1998 [60].
Approaches for graph-based exchange formats were discussed during meetings
at WCRE 1999 [61], and GROOM 2000 [62]. These interactions and investi-
gations resulted in an initial prototype of GXL that was presented at the ICSE
2000 Workshop on Standard Exchange Formats (WoSEF) [63|. This proposal
was subsequently discussed, compared, and critiqued at meetings on exchange
formats at APPLIGRAPH [64] and Graph Drawing |65]. Refinements of the
prototype were presented at conferences and workshops throughout 2000, in-
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Fig. 3. Genealogy of GXL

cluding CASCON 2000 [66], [67] and WCRE 2000 [68]. GXL was ratified as a
standard exchange format in software reengineering at the Dagstuhl Seminar
“Interoperability of Reengineering Tools” in January 2001 [69].

Soon afterwards, GXL was presented at meetings in other research areas. The
graph transformation community is using GXL as a starting point for the Graph
Transformation Ezchange Language (GTXL) [70] [71]. In this context GXL is
being used to represent graphs and work is under way to add features for
representing transformation rules. This decision was made after the APPLI-
GRAPH meetings for exchange formats [64] and the GraBaTs Workshop on
Graph-Based Tools [72]. Discussions have been held with the graph drawing
community to make GXL a standard exchange format for graph layouts as well.
Presentations were made at GD2000 [65] and a panel held at GD2001 [73].

Since GXL specifies only graphs, it remains to standardize schemas to further
describe what these graphs represent. In other words, standard schemas, or ref-
erence schemas, are needed for being fully interoperable to data interchange.
While this approach can be said to merely shift the debate from syntax to
semantics, it is a desirable change because it raises negotiations about inter-
operability to a more conceptual level. This level of abstraction is one that is
properly in the realm of discourse for research as it is more likely to lead to
breakthroughs in understanding.

The current version of GXL, news about ongoing development efforts, and
up-to-date information including tutorials and documentation are available at
http://www.gupro.de/GXL.
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3 Exchanging Graphs with GXL

In the previous section, we argued that a graph-based standard exchange for-
mat is appropriate for reengineering. In this section, we discuss the specific
graph features included in GXL and how these can be used to represent soft-
ware.

GXL supports graphs which can have directed or undirected edges, typed nodes
and edges, attributes attached to nodes and edges, and ordered edges [41].
Section 3.1 illustrates the use of these GXL features. To this set of features,
GXL adds n-ary edges (hyperedges) as well as hierarchical graphs (subgraphs
within graphs). Sections 3.2 and 3.3 illustrate the use of these features. Finally,
the GXL language definition is given in Section 3.4 using an XML document
type definition (DTD).

3.1 FExchanging typed, attributed, directed, ordered graphs

Figure 4 shows a fragment of source code along with its abstract syntax graph,
which we depict using UML object diagram notation [74]. The diagram is at
the level of an abstract syntax graph. In the program, function main calls
function max in line 8 and function min in line 12.

v1 : Function
bl B[=1E3 . name = "main" -
File Edit Search Preferences el :isCaller _ e2 : isCaller
Shell Macro  Windows Help line =8 line = 12
14nt maing) &
2§
3 int a
4 int b;
5
6 - .
7 e3 : isCalleg,
8 a = max{a.b);
9
}(1) Tt v4 : Function V5 : Function
:g b = ninb.ad; name = "max” name = "min"
14 -
}2 T o e9 : isOutput e10 : isOutput
d
<] i V6 : Variable V7 : Variable
i -

name ="a" name ="b"

Fig. 4. typed, attributed, directed, ordered graph

In the diagram, functions main, mazx, and min are represented by nodes of type
Function, while variables a and b are represented by nodes of type Variable.
These nodes are attributed with the names of the functions and variables.

The calls to functions maz and min are represented by FunctionCall nodes.
These nodes are associated with the caller by isCaller edges and with the
callee by usCallee edges. The isCaller edges are attributed with a line at-
tribute giving the line number that contains the call. Parameters (represented
by Variable nodes) are associated with function calls by isInput edges. The
ordering of parameter lists is given by the ordering incidences of isInput edges

12



<?xml version = "1.0" 7>
<!DOCTYPE gxl
SYSTEM "gxI-1.0.dtd">

<gxl xmins:xlink="www.w3.0rg/1999/xlink" >

<graph id = "simpleGraph"
edgeids = "true">
<type xlink:href =
"'schema.gxI#Schema" />
<node id = "v1" >
<type xlink:href =
""schema.gxI#Function" />
<attr name = "name" >
<string>main</string>
</attr>
</node>
<node id = "v2" >
<type xlink:href =

"schema.gxI#FunctionCall" />

</node>
<node id = "v3" >
<type xlink:href =

"schema.gxI#FunctionCall" />

</node>
<node id = "v4" >
<type xlink:href =
""schema.gx|#Function" />
<attr name = "name" >
<string>max</string>
< /attr>
</node>
<node id = "v5" >
<type xlink:href =
""schema.gxI#Function" />
<attr name = "name" >
<string>min</string>
< /attr>
</node>

<node id = "v6" >
<type xlink:href =
""'schema.gxI#Variable" />
<attr name = "name" >
<string>a</string>
</attr>
</node>
<node id = "v7" >
<type xlink:href =
"schema.gxI#tVariable" />
<attr name = "name" >
<string>b</string>
</attr>
</node>
<edge id = "el"
from = "v1" to = "v2">
<type xlink:href =
"schema.gxl#tisCaller" />

<attr name = "line" >
<int>8</int>
</attr>
</edge>

<edge id = "e2"
from = "v1" to = "v3">
<type xlink:href =
"schema.gxl#tisCaller" />

<attr name = "line" >
<int>12</int>
</attr>
</edge>

<edge id = "e3"
from = "v4" to = "v2">
<type xlink:href =
"schema.gxl#tisCallee" />
</edge>
<edge id = "e4"
from = "v5" to = "v3"
<type xlink:href =
"schema.gxl#tisCallee" >
</edge>

<edge id = "eb"
from = "v6" to = "v2"
toorder = "1">
<type xlink:href =
""schema.gxl#isInput" />
</edge>
<edge id = "e6"
from = "v7" to = "v2"
toorder = "2">
<type xlink:href =
"schema.gxl#tisInput" />
</edge>
<edge id = "e7"
from = "v6" to = "v3"
toorder = "2">
<type xlink:href =
"schema .gxI#isInput" />
</edge>
<edge id = "e8"
from = "v7" to = "v3"
toorder = "1">
<type xlink:href =
""'schema.gxl#tisInput" />
</edge>
<edge id = "e9"
from = "v6" to = "v2"
<type xlink:href =
"schema.gxl#tisOutput" >
</edge>
<edge id = "el0"
from = "v7" to = "v3"
<type xlink:href =
"schema.gxl#isOutput" >
</edge>
</graph>
</gxl>

Fig. 5. GXL representation of graph from Figure 4

pointing to FunctionCall nodes.! The first edge of type isInput incident to
function call v2, for the call maz(a,b), comes from node v6 representing vari-
able a. The second edge of type isInput comes from the second parameter b
(node v7). The ordering of the parameters of the other call (v3) are repre-

sented analogously.

GXL provides constructs for exchanging graphs such as the one in Figure 4.
These constructs represent nodes, edges, and edge ordering, as well as type

information and attribute values.

Figure 5 depicts the graph from Figure 4 as an XML document following the
GXL structure. The second and third lines of Figure 5 give the DTD version for
GXL as gxl-1.0.dtd. The body of the GXL document is enclosed in <gxI> tags.
The fifth line gives the name of the graph as simpleGraph and specifies that
edges are to have identifiers, such as e5. Next, the graph refers to its associated
graph schema named Schema (cf. Section 4) stored in file schema.gxl.

1 In contrast to UML, which orders adjacencies, GXL uses ordering of incidences.
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Nodes and edges are represented by <node> and <edge> elements. These can
be located by their id attribute. Incidence information of edges including edge
orientation is stored in from and to attributes within <edge> tags. Ordering of
incidences is also represented here. Attributes fromorder and toorder represent
the order of an edge in the incidence list of its start and target node. Node
and edge types are represented by links pointing to the appropriate schema
information. These links are enclosed in <type> elements.

The <node> and <edge> elements may contain further attribute information.
The <attr> elements describe attribute names and values. For compatibility
with tools using typed attributes, GXL also offers typing of attributes. Usu-
ally, this information is defined within the schema of a given graph class (cf.
section 4). But, since GXL is not constrained to use graph schemas, attribute
types are specified within the instance documents by appropriate tags. Using
schemas, additional constraints ensure that these attribute tags match the
schema specification. Like OCL [75]|, GXL provides <bool>, <int>, <float>,
and <string> attributes. Furthermore, enumeration values (<enum>) and URI
references (<locator>) to externally stored objects are supported. GXL offers
composite attributes including sequences (<seq>), sets (<set>), multi sets
(<bag>), and tuples (<tup>). <Attr> elements only contain one data ele-
ment, e.g. <int> or <set>. But, they may contain other <attr> elements to
exchange attributes of attributes.

3.2  FExchanging Hypergraphs

GXL supports hypergraphs [76] (graphs with n-ary edges) as well as graphs
with binary edges. These n-ary edges can be typed, attributed, directed or
undirected and ordered.

Figure 6 shows a hypergraph in UML notation, modeling the function call
a = max(a,b) by a 5-ary hyperedge of type FunctionCall2. The diamond,
representing the hyperedge, is connected by lines (tentacles) to its related
Function and Variable nodes. These tentacles are marked with roles, identify-
ing caller, callee, input, and output. Numbers on the tentacles give the ordering
of parameters. The hyperedge has a line attribute giving its line number as 8.

The GXL representation of this hyperedge is given in Figure 7. Hyperedges are
represented by <rel> (relation) elements. Like <node> and <edge> elements,
<rel> elements can contain type (<type>) and attribute (<attr>) information.
Tentacles, which point to the related graph objects (target), are represented
by <relend> (relation end) subelements. Roles of tentacles are stored in role
attributes. The ordering of tentacles at the hyperedge is given by startorder
attributes. The ordering of tentacles at target objects is given by endorder
attributes. Directed or undirected hyperedges and tentacles are distinguished
by attributes isdirected and direction.

Edges, which are inherently binary, can be represented as 2-ary hyperedges.
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vl : Function <rel id = "r1" >
— <type xlink:href = "schema2.gxl#FunctionCall2" />
ame = man <attr name = "line" >
callee . .
<int>8</int>
. rl : FunctionCall2 </attr>
’ line =8 <relend target = "v1" role = "callee" />
v4  Function |caller <relend target = "v4" role = "caller" />
name = ‘max" <relend target = "v6" role = "output" />
A\ <relend target = "v6" role = "input"
startorder = "1"/>
output input, input <relend target = "v7" role = "input"
v6 : Variable V7 : Variable startorder = "2 />
name ="a" name = "b" </re|>
Fig. 6. Hypergraph Fig. 7. GXL representation

This means that GXL does not need to support edges explicitly. However, since
binary edges are so common, GXL provides a special notation <edge> for them.

3.8 Fxchanging Hierarchical Graphs

Although graphs are intuitive and convenient, when large, they become com-
plex to manage and to visualize. This complexity can be reduced by intro-
ducing subgraphs, in which parts of graphs representing related objects are
grouped into subgraphs. The resulting hierarchical graphs |77 support struc-
turing of graphs by grouping and encapsulation.

<node id = "v4" >
<type xlink:href = "schema.gx|#Function" />

v4 : Function

name = "max" <attr name = "name" >
V4.2 - lfStmt <string>max</string>
</attr>
4.5 : isTrueStmt €4.6: isFalseStmt <graph id = "g4" >

<type xlink:href = "asg.gxI" >
<node id = "v4.1" >

e4.7 : isPredicate
V4.4 : ReturnStmt v4.5: ReturnStmt

v4.3 : OpExpr
3 ; 3 ; 'y
e4.8 : isOperand {1} {2} \e4.9 : isOperand

<type xlink:href = "asg.gx|#Interface" >
e411: e412: </node>
isReturn isReturn
Value Value U
€4.10 : isOperator <edge id = "e4.12"
—_n n —n n
V4.6 : Variable v4.8 : Operator V4.7 : Variable from = "v4.7" to = "v4.5 />

<type xlink:href =
"asg.gxl{tisReturnValue" />

name = "x" name = ">" name ="y"

€4.3: isFormalOutput e4.4: isFormalOutput

4.1 isFormalinput {1} 2 e4.2:isFormalinput </graph>
</node>
Fig. 8. Hierarchical Graph Fig. 9. GXL representation

Figure 8 gives an example of a hierarchical graph. Node v4, which repre-
sents the maz function from Figure 4, contains a subgraph representing maz’s
function body. The GXL representation in Figure 9 shows this subgraph as a
<graph> element inside node v4. Subgraphs inside edges or hyperedges are
written analogously (cf. the GXL DTD in Section 3.4).

The GXL form of hierarchical graphs is convenient when there is a strong
sense of ownership that can be modeled by nesting of graphs. But, GXL also
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permits edges and hyperedges crossing the boundaries of graph hierarchies up,
down, diagonally, and sideways. Consequently, edges can be used to connect
subgraphs and graph elements from any level in the hierarchy. No restrictions
have been placed in these hierarchical edges and hyperedges to permit the
greatest flexibility when using hierarchical graphs.

GXL provides one explicit form for graph hierarchies. There are alternate ap-
proaches to modeling them. For example, references to subgraphs and their
elements may be represented using <locator> attributes pointing to their ap-
propriate GXL representations. This approach does not support connectivity
between sub- and supergraphs. Since locator attributes usually refer to exter-
nal documents, the subgraph is only visible from the supergraph, and not vice
versa.

3.4 GXL DTD

This section introduces the structure of GXL as XML notation. It begins this
by giving a UML class diagram that defines the kind of graphs provided by
GXL. This serves as a starting point for specifying GXL’s DTD [3] and XML
Schema definition |78].

0.. " 0..
AttributedElement (" hasAttribute » °" Agribute
LT |
id name
kind
0.n refersType P 1
Type TypedElement
0.1 4hasType o.n Z}
Ovl refersDocument 1 drelatesTo
= ) 0" contains % 1 dio
GXL |~ contains | Graph GraphElement
dfrom
0.1 0.1 e 1 contains g 1
edgeids
hypergraph relatesTo
edgemode order
LocalConnection
| from to
isdirected
‘ ‘ 0..n
Node Relation Edge
0..n
TO..n
Relend
role o.n GXL Graph Model
direction = Version 1c
startorder (graph part)
endorder 20.08.2004 (AW)

Fig. 10. GXL Graph Model
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The class diagram in Figure 10 specifies all graph features supported by GXL
(cf. Figure 2). The diagram omits the classes for the portion of GXL for rep-
resenting attributes and associated data types. As the figure shows, a Graph
contains GraphFElements, which are Nodes, Relations, and Edges. To support
hierarchical graphs, each GraphElement may contain other Graphs. Edges
record binary connections and Relations record n-ary connections between
GraphElements. Note, that GXL allows edges and hyperedges to make connec-
tions between other edges and hyperedges as well as between nodes. Ordering
of incidences is stored in order attributes of relatesTo associations. Graphs
and graph elements can be typed and attributed. Graph types are defined
by graph schemas represented as GXL documents (cf. Section 4). This set of
entities with their interrelationships means that GXL defines typed, attributed,
directed, ordered, hierarchical graphs and hypergraphs.

The user writes GXL graphs as XML documents. Therefore, it is convenient
to specify the syntax of GXL as an XML document type definition or as an
XML schema definition. To keep this definition simple and understandable, it
was created manually, basically by translating Figure 10 into DTD and XML
schema notation. Figure 10 shows the resulting document type definition in its
entirety. A commented version of this DTD and a corresponding XML Schema
are available at http://www.gupro.de/GXL. The handcrafted GXL DTD has
only 18 XML elements. In contrast, a DTD for GXL generated using IBM’s
XMI (XML Metadata Interchange) Toolkit [79] requires 66 elements for the
GXL core and an additional 63 elements for XMI and CORBA compatibility.

The GXL DTD (see Figure 11) begins by specifying predefined points (cf. [80])
for extending GXL. These lines can be used to add sub-elements or attributes
to their corresponding graph elements. The rest of the DTD gives the syntax
for graph components (<graph>, <node>, <edge>, <rel>, <relend>), at-
tributes (<attr>), and references (<type>) to schema information.

To keep the language design of GXL simple, GXL did not use the XML schema
mechanism for data types [81] provided for attributes. Instead GXL used special
tags for simple types (<bool>, <int>, <float>, <string>, <enum>) and
nesting of tags for composite types (<seq>, <set>, <bag>, <tup>). The
composite types of sequences, sets and multisets (bags) are expected to be
homogenous. However, tuples can hold data of different types.

XML DTDs impose syntactic constraints on documents, but the semantic
constraints that it can impose are limited. Some semantic constraints in GXL,
such as “<edges> and <rel> elements only connect elements of the given
graph”, can be enforced within XML, using the referencing mechanism for
identifiers (i.e. ID, IDREF). The more restrictive GXL constraint that these
references are only allowed to refer to graph elements (and not attributes),
can not be expressed or enforced using only XML. Additional constraints such
as the ones listed below must be defined outside the DTD:

e Edges and hyperedges only connect graph elements. Each IDREF pointing to
incident graph elements refer only to <node>, <edge>, and <rel> elements.
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<!- extensions —>

<IENTITY % gxl-extension m
<IENTITY % graph-extension
<IENTITY % node-extension "
<IENTITY % edge-extension n
<IENTITY % rel-extension
<IENTITY % value-extension e
<IENTITY % relend-extension

<IENTITY % gxl-attr-extension
<IENTITY % graph-attr-extension""
<IENTITY % node-attr-extension
<IENTITY % edge-attr-extension ""
<IENTITY % rel-attr-extension  ""
<IENTITY % relend-attr-extension

VVVVVVVVVVVVYV

<! attribute values —>
<IENTITY % val " locator | bool | int | float | string |

<l—gxl —>

enum | seq | set | bag | tup
% value-extension;" >

<IELEMENT gxl (graph* %gxl-extension;) >

<IATTLIST g«
xmlns:xlink

CDATA #FIXED

"www.w3.0rg/1999/xlink"

%gx|-attr-extension; >

<!- type —>

<IELEMENT type EMPTY>
<IATTLIST type

xlink:type
xlink:href

<!- graph —>

(simple)
CDATA

#FIXED "simple"
#REQUIRED >

<IELEMENT graph (type? , attr* ,

( node | edge | rel )*
Y%graph-extension;) >

<IATTLIST graph

id

role
edgeids
hypergraph
edgemode

1D #REQUIRED
NMTOKEN #IMPLIED

( true | false ) "false"

( true | false ) "false"

( directed | undirected |
defaultdirected | defaultundirected)
"directed"

%graph-attr-extension; >

<!- node —>

<IELEMENT node (type? , attr*, graph*

%node-extension;) >

<IATTLIST node

id

%node-attr-

ID #REQUIRED
extension; >

<l- edge —>

<IELEMENT edge (type?, attr*, graph*
%edge-extension;) >

<IATTLIST edge

id 1D #IMPLIED
from IDREF #REQUIRED
to IDREF #REQUIRED
fromorder CDATA #IMPLIED
toorder CDATA #IMPLIED
isdirected ( true | false ) #IMPLIED

%edge-attr-extension; >

<I-rel —>
<IELEMENT rel (type? , attr*, graph*, relend*
Y%rel-extension;) >

<IATTLIST rel
id 1D #IMPLIED
isdirected ( true | false ) #IMPLIED

%rel-attr-extension; >

<!- relend —>
<IELEMENT relend (attr* %relend-extension;) >
<IATTLIST relend

target  IDREF #REQUIRED
role NMTOKEN #IMPLIED
direction (in | out | none) #IMPLIED
startorder CDATA #IMPLIED
endorder CDATA #IMPLIED

%relend-attr-extension; >

<l- attr —>
<IELEMENT attr (attr*, (%val;)) >
<IATTLIST attr

id IDREF #IMPLIED
name NMTOKEN #REQUIRED
kind NMTOKEN #IMPLIED >

<!- locator —>
<IELEMENT locator EMPTY >
<IATTLIST locator
xlink:type (simple)
xlink:href CDATA

<!- attribute values —>
<IELEMENT bool (#PCDATA) >
<IELEMENT int (#PCDATA) >
<IELEMENT float (#PCDATA) >
<IELEMENT string (#PCDATA) >
<IELEMENT enum (#PCDATA) >
<IELEMENT seq (%val;)* >
<IELEMENT set (%val;)* >
<IELEMENT bag (%val;)* >
<IELEMENT tup (%val;)* >

#FIXED "simple"
#IMPLIED >

Fig. 11. GXL Document Type Definition (DTD)

e Edges and hypergraphs only connect graph elements within the same graph.
Each IDREF pointing to incident graph elements has to refer to a graph
element, which is defined within the same <graph> element (including
subgraphs) or within a <graph> element representing the convenient su-
pergraph.

e Attribute identifiers have to be unique for each graph element. Each <node>,
<edge>, and <rel> element does not contain multiple <attr> elements with
the same name.
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e Ordered incidences have to be linear. All fromorder/toorder attributes of
<edge> elements and all startorder/endorder attributes of <relend> elements,
respectively have to define a proper ordering according to their incident
graph elements. No fixed lower bound or initial index is prescribed.

A detailed list of constraints has been published separately and a GXL validator
suite has been made available for checking that documents conform to these
constraints [82].

4 Exchanging Graph Schemas

Graphs are used for describing objects (nodes) and their interrelationships
(edges, hyperedges). In a particular application domain, it is commonly ap-
propriate to constrain the form of the graph, for example by limiting the types
of the nodes. A schema provides a means for describing and constraining the
graph. In particular, a schema determines:

e which node, edge, and hyperedge classes (types) can be used;

e which relations can exist between nodes, edges, and hyperedges of given
classes;

e which attributes can be associated with nodes, edges, and hyperedges;

e which graph hierarchies are supported; and

e which additional constraints (such as ordering of incidences, degree restric-
tions) have to be imposed.

These constraints specialize the graph structure to represent the domain of
interest.

4.1  GXL schemas as UML class diagrams

This section explains how GXL schemas are written and used. We start by giv-
ing three example schemas, i) the schema in Figure 12 for use with the simple
graph in Figure 4, ii) the schema in Figure 13 for use with the hypergraph in
Figure 6, and iii) the schema in Figure 14 for use with the hierarchical graph
in Figure 8. We also show how GXL schemas are exchanged using a particular
form of a graph. The next section after this one shows how this format is itself
described by another schema (by a metaschema).

isCallee » . 0. :
FunctionCall < isOutput
0.* {ordered}
0.* 0.7 < islnput
1 0.* 1
Function isCaller Variable
- 1 isCaller » — —
name : string line : int name : string

Fig. 12. Simple Schema Graph
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As illustrated in Figure 12, Figure 13 and Figure 14, we can represent GXL
schemas as UML class diagrams [74]. Each node, edge, or hyperedge of a
particular type in the instance graph has a corresponding class in the schema
diagram. The schema in Figure 12 has classes representing node classes (Func-
tionCall, Function, and Variable) used in Figure 4, and it has associations
(isCaller, isCallee, isInput, and isOutput) representing edge classes. The edge
class isCaller has an integer attribute named line, which reflects the fact that
in Figure 4, isCaller edges are attributed with line numbers. The orientation
of edges is depicted by a filled triangle [74, p. 155]. Multiplicities denote degree
restrictions. Ordering of incidences is indicated by the keyword {ordered}.

The schema for the hypergraph in Figure 6 is given by Figure 13. The hyper-
edge’s class is shown in Figure 13 as a diamond with attached tentacles. These
tentacles can be annotated by multiplicity information to specify cardinalities,
and by names indicating the roles of participating classes. The keyword {or-
dered} can be used to require ordering of incident tentacles in instance graphs.
Attributes of hyperedge classes are defined within an associated class attached
to the diamond representing the hyperedge class.

Function
Function name : string

name : string

caller \1 << GraphClass >> asg

0.1 < isFalseStmt 0..n Stmt

0.1 4isTrueStmt 0.n
FunctionCall2 | %

0..n 4 isFormalOutput
IfStmt Interface | 4 isFormal ReturnStmt
on 0-nInput
{ordered} [0 ..n 0.n

) <is a Variable
input /0..n Predicate OpExpr name : string

Variable Lt
A S|
0.n
name : string Operator) 1 {ordered}
is| < 0.n

Operator 1 isReturnValue »
name : string Operand

line : int

0.n

Expression

Fig. 13. Hypergraph Schema Fig. 14. Hierarchical Graph Schema

The schema for the hierarchical graph in Figure 8 is given by Figure 14. This
schema uses a UML stereotype <<GraphClass>> to distinguish classes contain-
ing subgraphs from (ordinary) node classes. Composition (depicted by nesting
or filled diamonds) is used, to define ownership of graph classes and contain-
ment, of graph objects within a graph class. By convention, nesting is used
to describe graph class definition and filled diamonds express ownership. The
specification of graph class asg is nested within the <<GraphClass>> node.
Nodes of class Function own graphs of graph class asg (abstract syntax graph).
The definition of graph class asg also shows the use of higher modeling con-
structs like generalization and aggregation.
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4.2 GXL schemas represented as graphs

GXL provides a great deal of flexibility in the handling of various kinds of data,
by allowing the user to transmit a graph’s schema along with the graph itself.
This is done by translating the schema so it becomes an ordinary graph and
encoding this graph in GXL the same manner as any other graph.

schema: GraphClass

name = "Schema"

contains

.| FunctionCall :
»NodeClass

*-...| name = "FunctionCall"

isAbstract = false

A

A

el:to e3:to e5:to ell:to
limits = (0,-1) limits = (0,-1) limits = (0,-1) [~ ~ limits = (0,-1)
isOrdered = false isOrdered = false isOrdered = true isOrdered = false
vy R : .
isCallee : isCaller : islnput : isOutput :
EdgeClass EdgeClass EdgeClass EdgeClass
name = "isCallee" name = "isCaller" name = "isinput" name = "isOutput"
isAbstract = false isAbstract = false isAbstract = false isAbstract = false
isDirected = true isDirected = true . isDirected = true isDirected = true
i €7 : hasAttribute
782 - from v7: AttributeClass _L from 7‘3_12 from
limits = (1,1) ' —ine” limits = (0,-1) limits = (1,1)
isOrdered = false ! name = fine isOrdered = false isOrdered = false
e8 : hasDomain
vy v ! Y R
Eunction : . vO : Int Variable :
NodeClass e4 : from NodeClass
name = "Function” limits = (1,1) N " name = "Variable” [ %
isAbstract = false isOrdered = false v10: Strin isAbstract = false
ell : hasDomain
€9 : hasAttribute v8: AttributeClass|, €10 : hasAttribute

name = "name”
Fig. 15. Graph for schema in Figure 12

Figure 15 shows the result of translating the schema in Figure 12 into a graph.
Each node class is translated to a corresponding NodeClass-node, for exam-
ple, the Function node is translated to a NodeClass named Function. Each
edge class is translated to a corresponding EdgeClass-node, for example, the
isCaller edge is translated to the node isCaller of type EdgeClass. The con-
nections of isCaller node and edge classes are translated into edges of type
from and to.

Similarly, attributes or attribute types are translated to AttributeClass-nodes
and appropriate attribute type nodes like Int or Set. Attribute information
are connected to node and edge class representations by hasAttribute and
hasDomain edges. Multiplicities of associations are stored in limits attributes
(infinity is represented by —1). The boolean attribute isOrdered indicates or-
dered incidences. Attribute types and extended concepts such as graph hier-
archy, classes of hyperedges, aggregation and composition, generalization and
default attribute values are modeled analogously.

Each schema has a node of type GraphClass which is attached by contains
edges to all nodes which represent elements of the schema (see Figure 15).
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This node is referred to by data graphs which use this schema. Elements in
a data graph refer to corresponding nodes in their schema graph. The GXL
Validator [82| checks that data graphs conform to their schemas.

4.8 GXL metaschema

Every GXL schema is translated into a graph with the same form. In other
words, there is a single GXL metaschema that gives the format of all GXL
schemas. The class diagram in Figure 16 shows this GXL metaschema (except
for the part defining attributes).

) 9N hasattribute » °" AtributeClass
GXL Metaschema AttributedElementClass
Version 1c name: string
(graph part)
20.08.2004 (AW)
4
isA
upper bounds
1 contains » 0N Sune O defining infinity (**"
GraphClass ¢ GraphElementClass |~ relatesTo in UML, "n"in
- I B i 1 4y Rose) are encoded
name: string B name: string by "-1" (cf. XMI
0.n . 0.1 isabstract: bool 4 from y )
’ 1
relatesTo
hasAsComponentGraph | [ | |77 irrttiss fim s it
role: string isOrdered: bool
_ - _ _ _ | from to
relatesTo - -
0..n -7
limits: int x int RelationClass| | NodeClass | | EdgeClass -
isOrdered: bool isDirected: bool (0..n
1
hasRelationEnd
0..n
RelationEndClass AggregationClass <<GraphClass>>
directedTo: (relation, target, undirected) aggregate: (from, to) GXL
role: string T
0..n
’ CompositionClass ‘ GraphClass GXL
composes all
concepts

Fig. 16. GXL Metaschema

Attributes are added to GraphElementClasses by deriving them from Attribut-
edElementClass. The definition of attribute structures supports the structured
attributes used in GXL including the definition of default values. Generaliza-
tion is provided for all GraphElementClasses by isA edges. GraphElementClasses
containing subgraphs are associated with the representation of the lower level
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GraphClass by contains edges. The GraphClass contains those node, edge, and hy-
peredge classes representing its structure. Aggregation (AggregationClass) and
composition (CompositionClass) are modeled by specializations of EdgeClasses.
Incidences of EdgeClasses and RelationClasses are modeled by from, to, relatesTo-
edges. These incidences refer to all GraphElementClasses.

As with instance graphs, GXL schema graphs have to comply to some con-
straints that cannot be expressed with class diagrams [82]. In addition to the
constraints discussed in Section 3.4, the following conditions are imposed:

e Schema graphs define graph classes. A schema graph contains at least one
GraphClass node.

e Generalization hierarchies are acyclic. A schema graph does not contain a
cycle of isA edges.

e Generalization is only permitted between classes of the same kind. In each
schema graph isA edges only connect NodeClass nodes with other NodeClass
nodes, EdgeClass nodes with others of its kind, and so on.

The GXL metaschema is itself a schema. Like all GXL schemas it is an instance
of the GXL metaschema. It follows that the GXL metaschema is its own schema.

5 Using GXL

In the years since ratification of GXL, groups in reengineering, graph trans-
formation, graph visualization, and other areas of software engineering have
added support for GXL in their tools. Various tools have been created to sup-
port working with GXL. A framework for GXL converters [83] and a XMI2GXL
translator [84] was developed at University BW Miinchen. In addition, a val-
idator for checking GXL documents on instance, schema, and metaschema level
has been developed [82]. A list of tools known to use GXL can be found on our
web site [85].

There are many filters for converting GXL documents into local file formats
and vice versa. These formats include Bauhaus Resource Graphs [86], DOT
(GraphViz) [87], GraLab graphs [88], PROGRES graphs [89], RSF [38], and
TA [33]. GXL is also supported by various fact extractors, such as Colum-
bus/CAN [7], CPPX [6], TkSee/SN [90], and XOgastan [91]. Some reengi-
neering workbenches that use GXL are Bauhaus [86], GUPRO [92], Rigi [93],
SoftAnal [39], and SwagKit [94]. There are both general purpose graph draw-
ing tools that support GXL, as well as visualizers for reengineering. These
are GraphVis [28], Graph Visualization Framework [95], Shrimp [96], JGraph
[97], touchgraph [98], and yFiles [99]. Furthermore GXL is supported by the
GRAS [100] graph database, graph transformation systems (DiaGen [101], Fu-
jaba [102], GenSet [103], and PROGRES/UPGRADE [89],[104]), and meta-
case tools (DiaGen [101], MetaEdit [105]).

These tools and converters have been used as the basis of data interchange on
a number of occasions.
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SoftAnal and GUPRO: SoftAnal [39] stores information about a stock trad-
ing system within relational databases. Using a GXL filter, this data was
transferred to GUPRO [42] for further analysis, which in turn enabled com-
parison of the capabilities of both systems [43].

GReQL and grok: GReQL [106] and grok [107] offer powerful, query based
analysis for graph based data. A survey, comparing the analysis capability
of GReQL and grok, was done using a common GXL factbase [11].

Bauhaus and GUPRO: During the Dagstuhl seminar on “Software Archi-
tecture: Recovery and Modeling,” there was an exercise in collaborative ar-
chitecture reconstruction and modeling [108|. Groups had to work together
to analyze the Apache web Server. During this exercise, GXL was used to
transfer facts about Apache from Bauhaus [86] to GUPRO for further anal-
ysis.

Columbus/CAN and GUPRO: Columbus [109] is an extractor for C++
that emits ASTs in GXL. For refactoring purposes, this extractor was used
within GUPRO for analysis of C++ sources.

In addition, there have been interesting applications of GXL in software engi-
neering pedagogy, business process modeling, and biochemistry. At University
of Toronto, GXL was used in an undergraduate software engineering course.
Students were required to create graph editor/layouter components that com-
municated using GXL [110]. GXL was also applied to exchange business process
models. GXL schemas for exchanging business processes depicted as Workflow
Nets or Event-Driven Process Chains are given in [111]. The same authors
also used GXL’s extension points to integrate with MathML [112] to exchange
elaborated Workflow Nets containing expressions on the relational calculus
[113]. Outside computer science, GXL has been used to represent regulatory
networks of biological processes and biochemical behaviour [114].

6 Conclusion

In this paper, we gave an introduction to GXL 1.0 and its applications. We
conclude with a summary of the key features of GXL and an assessment of its
merits as a standard exchange format.

GXL is an XML language for representing graphs. The main features of the
model in GXL are as follows.

e Nodes, edges, and hyperedges are first class entities in GXL. Consequently,
each of these have unique identifiers, can be typed and attributed, and can
be included in a generalization hierarchy.

e (raphs, nodes, edges, hyperedges, and attributes have attributes. This fea-
ture is used to add further information. For example, user annotations and
coordinates for graph layout, are attached to the graph and passed as GXL
attributes.

e Graphs, nodes, edges, hyperedges and attributes are typed. These element
types are associated with a corresponding class in the schema. These rela-
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tionships provide further information and constraints on the data.

e Hierarchical graphs are supported. This feature is implemented by permit-
ting nodes, edges, and hyperedges to contain graphs. Edges and hyperedges
are allowed to join nodes from different levels of the hierarchy.

o FEdges can be directed or undirected. This flexibility supports in a general
format for graphs. Both directed and undirected edges are permitted in the
same graph.

e FEdges and hyperedges are ordered. Incidence to and from the nodes at the
endpoints of edges and hyperedges can be stored.

In GXL, both the data representing the graph and the data representing the
schema are passed using the same graph model as an XML stream. The format
and metaschema are sufficiently simple that it is possible to build schemas by
hand. However, most users will likely create a schema by first modeling it as a
UML class diagram and then using a tool to convert it to GXL (cf. [84]). This
uniform application of syntax across the different levels of abstraction ensures
that tools that implement GXL are capable of working with a variety of data.

The graph model of GXL ensures universality, because it includes the structural
features needed to achieve compatibility with a wide variety of graph models.
GXL is typed to facilitate interpretation and validation of exchanged data by
making use of graph schemas. Flezibility, that is, the ability to adapt to domain
specific data, is achieved through GXL-schemas, user-definable attributes, and
extension points. They are used to specify domain-specific graph structures.
GXL is easy to use. Furthermore, GXL is readable by humans, which facili-
tates learning, understanding, and debugging. Instance graphs and schemas
are exchanged using the same document type, thus, only one language has to
be learned. Scalability has been achieved, as GXL can be used with graphs of
varying sizes and representations of software at different levels of abstraction.
However, it does face the same issues as other XML formats regarding the
increased size of data due to the addition of tags. Fortunately, standard com-
pression techniques and other XML technologies can help solve the problem.
Modularity is provided by supporting hierarchical graphs and by providing
links to external documents. Incremental data exchange can be realized by
GXL-based applications, as graphs can be exchanged in parts. Finally, GXL
supports ezxtensibility by offering predefined extension-points for enhancement.

Developing and deploying GXL has been an exciting and challenging experi-
ence. Through many intense discussions, we were able to build bridges between
research groups and even between research areas and cultures. Arriving at a
standard required us to understand the differences in data formats, research
approaches, and problem domains. The result has been fruitful collaborations
between researchers and improved data interoperability between tools.

GXL is currently being applied and evaluated by the research community. There
is work still to be done in developing standard schemas and broadening the
acceptance of GXL. Current projects include the implementation of tools to
filter and validate GXL, and for drawing graph schemas. In addition, GXL
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reference schemas have been proposed. Some proposed reference schemas for
reengineering include abstract syntax trees for specific source languages [115],
an external declaration or "middle model" [116], a high-level architectural
schema, and one for data reverse engineering. These schemas span different
levels of abstraction for reengineering tools and they involve a wide range of
participants from the community. We look forward to maturing GXL along
with the research discipline and tools for reengineering.
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