
Faculty II – Computer Science, Law, and Economics
Software Engineering Group

Energy Refactorings
Master’s thesis

submitted by

Marion Gottschalk

matriculation number:

9854680

Supervisor:

Prof. Dr. Andreas Winter
M. Sc. Jan Jelschen

Oldenburg, October 13, 2013

I

Abstract
Nowadays, energy-efficiency is an important topic for the information and communication
technology on various levels, such as in mobile devices, computers, servers, and data cen-
ters. Currently, 1 % of the German energy consumption results from mobile devices, such
as smartphones and tablets. Due to the raising sales volume of these devices, it can be an-
ticipated that the energy consumption, and hence, their percentage share of the complete
energy consumption in Germany also rises. A reason for the increasing sales volume is the
improvement of the mobile device’s functionality on hardware and software level, such as
faster processor and more complex applications. Both levels have a great influence on the en-
ergy consumption. Meanwhile, researches on both levels exist to optimize their energy use.

In this master’s thesis, the software level, or to be more exact, the applications level on mobile
devices is considered. The applications level on the operating system Android is open for
each vendor and user. This means, that vendors and users can decide which applications
are installed. However, these applications are programmed by many different vendors and
programmers, and only a few guidelines by different organizations, such as Android [Anda]
and Samsung [Samb], exist which can be used by programmers. Hence, some applications
are energy-inefficient and reduce the battery duration of mobile devices. The source code
of these applications can be optimized, to get more energy-efficient applications. Therefor,
an Energy Refactoring Catalog is created to define energy-inefficient code parts and their
transformation to efficient code. This enables a semi-automatic process to reduce the energy
consumption for individual Android applications and is presented in this work.

II

III

Content

1 Introduction 1
1.1 Motivation . 1
1.2 Approach . 2
1.3 Related Work . 3
1.4 Work Packages for the Thesis . 5
1.5 Structure of the Thesis . 5

2 Basic Techniques 7
2.1 Reengineering Techniques . 7

2.1.1 Reverse- and Forward-Engineering 8
2.1.2 Source Code Analysis . 8
2.1.3 Restructuring . 9
2.1.4 Refactoring . 9

2.2 Java TGraphs . 10
2.2.1 TGraphs . 10
2.2.2 Graph Query . 12
2.2.3 Graph Transformation . 13

2.3 Android . 14
2.3.1 Foundations . 14
2.3.2 Android Life Cycle . 15
2.3.3 Other Operation Systems . 17

2.4 Tested Hardware . 17
2.5 Energy Measurement . 18

2.5.1 Measurement Techniques . 18
2.5.2 Process of the Evaluation . 20
2.5.3 HTC Power Profile . 22
2.5.4 S4 Power Profile . 24

2.6 Used Applications . 25

3 Energy Refactorings 27
3.1 Energy Code Smells . 27

3.1.1 Definition . 27
3.1.2 Dependencies . 28

IV Content

3.1.3 Identification . 28
3.1.4 Handling . 29

3.2 Template for Energy Refactorings . 29

4 Energy Refactoring Catalog 31
4.1 Third-Party Advertisement . 31
4.2 Binding Resources Too Early . 38
4.3 Statement Change . 43
4.4 Backlight . 48
4.5 Data Transfer . 53

5 Further Energy Refactorings 59
5.1 Using expensive Resources . 59
5.2 Dead Code . 60
5.3 Replace Sorting Algorithm . 60
5.4 Loop Bug . 61
5.5 In-Line Method . 61
5.6 Wake Lock for Resources . 62
5.7 Fowlers’ Refactorings . 63
5.8 Design Pattern . 63

6 Implementation of Energy Refactorings 65
6.1 Software . 65
6.2 Class Diagram of EnergyRefactoring . 65
6.3 Output of EnergyRefactoring . 67
6.4 Extensions of EnergyRefactoring . 67

7 Conclusion 69
7.1 Energy Refactorings’ Results . 69
7.2 Lesson Learned . 70
7.3 Work Packages for the Thesis . 71
7.4 Outlook . 72
7.5 Benefits from this Thesis . 73

Appendix 75

A Energy Measurement for Sim Card Request 75

V

B AdBlock Plus 77
B.1 General . 77
B.2 Energy Measurement . 77

C Modified Power Profile for HTC 81

D Console Output for TreeGenerator 85

E CD Content 87

List of Figures 89

List of Tables 91

References 93

VI Content

1

1 Introduction
The first part of this master’s thesis introduces the topic energy-efficient programming and
applications to explain why the topic Energy Refactorings is sensible. Firstly, a motivation
is given to demonstrate the field of application and its room of improvement. Secondly, an
approach is described which represents a possibility to modify applications concerning their
energy consumption. Thirdly, an overview about related work in the area of energy-aware
programming is given. Fourthly, the work packages for this master’s thesis are illustrated,
and in addition, it includes the objective of this thesis. Finally, the structure of the master’s
thesis is described.

1.1 Motivation

The increasing number of mobile devices, such as smartphones and tablets, in households
and industry is partly responsible for the increasing energy consumption. Meanwhile, the
energy consumption for information and communication technologies (ICT) exceeds 10 %
of the total energy consumption in Germany [Sto08]. This 10 % can be categorized as
households, industry, servers and data centers, and mobile devices. The category mobile
devices represents 11,6 % of the 10 %, so that it is the fourth biggest energy consumer of
ICT [Sto08]. Thereby, the energy consumption of mobile devices accounts approximately
1 % of the German energy consumption. This amounts approximately 22.9 PJ (1 PJ is equal
to 1 ∗ 1015 J) which are only consumed by mobile devices within one year. This corresponds
to the complete energy production of the atomic power plant Emsland [RWE] within seven
months. Furthermore, the prognosis for sale of mobile devices is positive and increases every
year [Sta]. On account of high energy consumption and demand of mobile devices, it is also
important to improve the energy-efficiency in this area to reduce energy costs for users and
to save the environment [Hom09].

Next to the increasing energy consumption and sales volume for mobile devices, users re-
quirements are important for application vendors and devices’ manufactures. Users carry
their smartphone with them the whole day and want to use it whenever they want. Hence,
mobiles devices’ batteries need to last the whole day. But this is not often the case, as the
Blackberry Z10 shows [Kre13]. First tests have shown that batteries of the Z10 are empty
after about five hours. This are only 21 % of a day, and thus, it is not long enough for users
requirements. Blackberry’s solution is an external battery which charges smartphone batter-
ies to extend their operating time. Due to the external battery, users have to carry two things
with them when they need their smartphone for more than five hours. This aspect reduces
user satisfaction enormously and lowers the sales volume, and thereby, the profit. Therefore,
manufacturers should be interested in energy-efficient software to extend the battery duration
of their mobile devices.

The energy-efficiency of mobile devices can be improved by hardware or software optimiza-
tion. Hardware optimization means to make changes on hardware components of mobile

2 Introduction

devices, like processors, GPS, and WLAN modules, to save energy. A widespread hardware
optimization are processor optimizations using new techniques, e.g. Tri-Gate-Transistors
[Kam11] and specialized processors for mobile devices, such as Snapdragon [Sna11]. Also,
other hardware components are optimized, like the GPS modul, to reduce the startup time of
it [OnV12]. Another possibility is software optimization which describes changes on source
code of different areas of software to reduce the energy consumption of mobile devices.
Therefore, software optimization can be divided into operation system level and application
level [Sin01]. On the operating system level, it is possible to control hardware components
intelligently. This refers to control e.g. the processor by reducing the frequency or voltage
without any loss in performance, but a lower energy consumption [Sin01]. Optimization on
application level is less common as on the other two levels (hardware and operating sys-
tem). Although, some free applications, which are used on mobile devices, consume more
energy than necessary, for example through third-party advertisement or tracking user data
[PCHZ12]. Thus, it reduces also the battery duration, similar to energy-inefficient hard-
ware. Hence, applications should be also designed more energy-efficient to extend the bat-
tery duration of mobile devices. More energy-efficient applications are realized through
transforming applications code to remove energy-inefficient code parts. Thereby, several
energy-inefficient code parts could exist within one application. As a result, the objective of
this master’s thesis is determined:

Creating an Energy Refactoring Catalog which defines energy-inefficient source code parts
and removes them by a semi-automatic transformation.

1.2 Approach

To reach the objective of this master’s thesis, a process to generate energy-efficient source
code must be created. This process is needed to execute the different Energy Refactorings (cf.
Section 4). It is depicted in Figure 1.1 and illustrates several reengineering techniques which
are explained in Section 2.1. Moreover, the process bases on the reengineering reference
framework by Ebert et. al [EKRW02]. In order to gain a better understanding, the steps of
the process, parse, analyzing, restructuring, and unparse are described.

Parse: The source code of an application is parsed to get an abstract representation of it,
which is stored into a central repository to execute efficient analyzes.

Analyze: Secondly, the abstracted code can be analyzed, e.g. by static code analysis (cf.
Section 2.1.2) which has proved itself in software evolution, to identify Energy Code
Smells (cf. Section 3).

Restructure: Thirdly, energy-inefficient parts are changed or deleted by restructurings on
the abstracted view. This means a conversion of the existing code to more energy-efficient
code on a higher abstraction without changing the intended functionality.

Unparse: After restructuring, the abstracted view is unparsed to source code, hence, it can
be compiled and executed.

1.3 Related Work 3

Figure 1.1: Process to generate energy-efficient source code [GJJW12]

In this master’s thesis, the steps analyze and restructure are realized to generate energy-
efficient source code in a semi-automatic process. The first step (parse is realized by the pro
et con parser, used by the SOAMIG project [FWE+12], which can be used for this master’s
thesis. The source code must be parsed to get an abstract representation of the code and
to enable an efficient code analysis. For this purpose, a graph-structured repository which
conforms to a meta model is used (cf. e.g. Ebert et al. [ERW08]). The meta model is
needed because it defines a clear, precise, and target structure and documentation of the
underlying data structures which enable an efficient code analysis, e.g. by querying applica-
tions [JCD02]. For the second and third step techniques of the TGraph approach (cf. Section
2.2) are used: GReQL (Graph Repository Query Language) [HE11] and the JGraLab API,
which includes the functionality of GReTL (Graph Repository Transformation Language)
[HE11]. These are necessary to detect and remove energy-inefficient code. A short sequence
of the execution of this process is given to improve the understanding of it: At first, source
code of a freely available application is parsed and stored as a TGraph (first step) which
conforms to a Java meta model [FWE+12], e.g. Android applications are implemented with
Java. Hereafter, queries via GReQL are made to identify Energy Code Smells (second step)
on TGraphs. The JGraLab API is used to transform the TGraph to get more energy-efficient
code (third step). Finally, the transformed TGraph is parsed back into source code (fourth
step) with a simple Java generator. The detailed process of the second and third step are
described in Section 3.

1.3 Related Work

This section gives an overview about further researches in the area of energy-aware program-
ming for mobile devices. Hence, four author groups and their approach are briefly described.

4 Introduction

Firstly, the approach of Pathak et. al [PCHZ11] is presented. This approach deals with the
energy use of mobile devices, and it defines Energy Bugs which bases on hardware, software
or external mistakes which raise the energy consumption. For this master’s thesis, the part
with the Software Energy Bugs is considered. This part is also divided in operation system
and application level, like this work, and hence, the application level is only considered in
the further step. They describe three types of Applications Energy Bugs: No-Sleep Bug,
Loop Bug, and Immortality Bug [PCHZ11, p. 3]. No-Sleep Bug describes the usage of wake
locks within applications which are responsible for preventing the shutdown of hardware re-
sources. Loop Bug describes applications which repeat the same activity over and over again
without reaching an intended result. These both Applications Energy Bugs are also described
in Section 5, but a reference to this work, i.e. they are defined and include an approach to
detect and remove them by a semi-automatic process. Immortality Bug describes one ap-
plication which is stopped but restarted by another application. In [PCHZ12] more detailed
information and measurement results are described concerning on Applications Energy Bugs.
The approach by Pathak et. al is similar to the approach in this work, energy-inefficient code
parts are defined, however, in this master’s thesis also an approach is created to remove the
energy-inefficient code.

Secondly, Höpfner and Bunse [HB11] research the energy consumption of different sorting
algorithms and substitute them. Therefor, applications with the same functionality but with
different sorting algorithms are measured and compared. It shows that the Insertionsort
consumes less energy than Quicksort and Mergesort. However, this is only shown for a
special hardware and must be validated for other. In their work, the sorting algorithms are
changed manual and no process is described how the modification can be made automatic or
rather semi-automatic. This represents the difference between their work and this master’s
thesis. However, the modification of sorting algorithms could be realized with the approach
of this thesis how it is described in Section 5.

Thirdly, Bunse and Stiemer [BS13] attend to a special type of code parts which are maybe
energy-inefficient. They validate some Design Pattern (facade, abstract factory, observer,
decorator, prototype, and template method) by Gamma et. al [GHJV93]. Therefor, they im-
plemented two comparable applications, one with a Design Pattern and one without. Both
applications are validated with the application PowerTutor [GZT], and the measurement re-
sults are compared. It shows that some of the Design Patterns (decorator, prototype, and
abstract factory) are energy-inefficient. This type of energy-inefficient code can be also de-
fined as Energy Code Smell (cf. Section 3) and the analysis and restructure can be applied
on these code parts. Hence, the work by Bunse and Stiemer [BS13] is similar to this master’s
thesis, it shows code parts which raise the energy consumption of applications, but they do
not describe an approach to remove energy-inefficient code.

Finally, the work by Wilken et. al [WRP+12] is described. They develop an approach to pro-
file the energy consumption of mobile devices and comparing them for similar applications,
i.e. the energy consumption of applications which have the same functionality are compared.
This information should help users to decide which application they install on their mobile
device. The visualization of the energy consumption should be represented through energy

1.4 Work Packages for the Thesis 5

labels similar to the labels for fridges. This work does not seek for energy-inefficient code
parts but for energy-inefficient applications. In addition, energy-inefficient applications are
not modified to save energy, they are only compared whit each other to help users in their
decision which applications they should install to save energy.

1.4 Work Packages for the Thesis

The main objective of this master’s thesis is to create an overview of energy-inefficient source
code parts and to verify them by an energy measurement. Moreover, the code parts are opti-
mized to generate energy-efficient source code for existing applications by a semi-automatic
process. To reach these objectives, this work packages need to be done:
• Literature study about required techniques and other possibilities to reduce energy con-

sumption on applications level.

• Defining at least five platform-independent Energy Refactorings (cf. Section 4).

• Implementing at least three restructurings for the Android platform.

• Apply the implementation on different freely available application, like GPSPrint [Rob12],
Standup Timer [Woo11], MyTracks [MyT], etc.

• Evaluating the Energy Refactorings using the energy measurement tool by Schröder [Sch13]
to check their energy consumption.

• Intended result: The complete process for Energy Refactorings (name, definition, motiva-
tion, constraints, example, analysis, restructuring, and evaluation) (cf. Section 3.2) must
be demonstrated. The number of implemented restructurings can be changed when the
implementation needs more time than expected.

The work packages are still being taken up in the following sections to reach the main ob-
jective at the end.

1.5 Structure of the Thesis

This master’s thesis is structured into seven parts and an appendix. Section 1 represents the
first part which contains an introduction into the topic of the master’s thesis Energy Refac-
torings, its objectives, and an approach to reach energy-efficient code. The second part in
Section 2 gives an overview about the used techniques, hardware, and applications. These
techniques are needed for the approach described above, and the hardware and applications
are needed for the validation of the approach. A definition of Energy Code Smells and a
template for the Energy Refactorings are given in Section 3. Afterward, the Energy Refac-
toring Catalog is presented in Section 4 which includes five Energy Code Smells which are
detected, restructured, and validated. Further Energy Refactorings are described in Section 5
but not implemented and validated. In Section 6 the implementation of the validated Energy
Refactorings are presented and explained. Finally, the master’s thesis ends with a conclusion,
which summarizes the validation results of the Energy Refactorings, and gives an outlook in
Section 7.

6 Introduction

7

2 Basic Techniques
This section gives an overview about used techniques, mobile platforms, and applications
which are important for this master’s thesis. Firstly, reengineering techniques are introduced
to get the basic techniques to analyze and restructure source code. Secondly, the TGraph
approach is described, which represents the technique and tooling for Energy Refactorings
(cf. Section 4) to detect badly designed code parts and to restructure them. Thirdly, the OS
Android as mobile platform is described because applications on this OS are used to validate
Energy Refactorings. Fourthly, the mobile devices HTC One X and Samsung Galaxy S4 are
presented, which are also needed for validation. The energy consumption of several applica-
tions and possible Energy Code Smells (cf. Section 3) are checked for these devices. Fifthly,
several energy measurement techniques and the measurement process are described which
are used to evaluate the Energy Refactorings. Lastly, Android applications which contains
Energy Code Smells are introduced. These applications are needed for the evaluation, and
hence, its functionality should be known.

2.1 Reengineering Techniques

Software reengineering is a process to improve the software quality by reconstituting it in
a new form without changing its functionality [CC90, p. 15–16]. The Reengineering pro-
cess by Kazman et. al [KWC98] is illustrated in Figure 2.1. It shows a process which can
be subdivided into three steps. First, source code is represented in a higher abstraction, the
architecture level. Second, on this level transformations are executed to modify the architec-
ture. And finally, the new architecture is developed to new source code. In addition, several
techniques are applied which are needed to improve the software quality, e.g. : reverse
engineering, forward engineering, source code analysis, restructuring, and refactoring.

Figure 2.1: Horseshoe model [KWC98]

8 Basic Techniques

In this master’s thesis, only the code level is considered in which the code is represented in a
higher abstraction. However, this abstraction illustrates the code structure, so that the archi-
tecture level is not achieved. But, the same techniques are applied to get the code structure
and to transform it. Hence, the Horseshoe model in Figure 2.1 represents the transformation
on a higher level than it is needed here, but it helps to arrange the topic of this thesis.

2.1.1 Reverse- and Forward-Engineering

For improving the software quality, a reverse engineering is needed to get an abstracted
view of the source code. Thereby, all components and their interrelationship are identified
and another representation form is created. In this master’s thesis, source code is repre-
sented in TGraphs which is described in Section 2.2. The reverse engineering does not make
changes on existing source code, it is only a process of examination, not change or replica-
tion [CC90, p. 15]. The abstracted view is needed for efficient source code analyses to detect
Energy Code Smells. The opposite of reverse engineering is forward engineering. Forward
engineering describes the traditional process of creating source code from an abstract view
[CC90, p. 14]. The aim of this thesis is to improve existing applications, and hence, forward
engineering described the process in which source code is generated through the modified
abstract view. In Figure 1.1 the process of creating energy-efficient source code is illustrated,
and the steps 1 and 4 depict the reverse- and forward-engineering process.

2.1.2 Source Code Analysis

After reverse engineering, source code analyses can be performed. During source code anal-
yses, information about source code and its behavior are collected and considered [Bin07,
p. 1]. The source code the application are only analyzed and not changed. In this section,
two variants of source code analysis are explained which can be used to detect Energy Code
Smells (cf. Section 3). These variants are: static analysis and dynamic analysis.

Static Analysis

Static source code analyses examine the complete source code and its behavior which could
arise at run time [Ern03, p. 25]. The run time environment and the input values during run
time are not relevant for this analysis, because only correlations between several source code
parts are considered. For a complete static analysis, all possible states of the applications
must be considered. Therefore, an abstracted model is used which represents the behavior of
source code. This model is more compact and easier to use than no abstracted source code
[Ern03, p. 25]. The static analysis is mostly used for proofs of correctness and type safety,
e.g. compiler optimizations are standard static analyses [Ern03, p. 25–26]. For the static
analysis in this thesis a graph query language is used, which works on a graph representation
of source code (cf. Section 2.2). The graph representation is needed to detect Energy Code
Smells which are bad for the energy consumption instead of software quality by Code Smells
[FBB+02].

2.1 Reengineering Techniques 9

Dynamic Analysis

Dynamic source code analyses operate by running an application and observing its execu-
tions [Ern03, p. 25]. The dynamic analysis does not need a model or abstraction. The static
analyses are preciser than dynamic analyses, because all source code parts are considered in
static analysis in which the dynamic analysis considers only predefined use cases. Typical
dynamic analyses are testing and profiling. Due to dynamic analysis, values, such as run time
and memory cost, can be determined, hence, dynamic analyses do not need more time than
applications execution. In contrast, complex static analyses need sometimes more time than
applications execution [Ern03, p. 25]. A disadvantage of dynamic analyses is the assignment
of results respectively errors to explicit source code, because it is possible that results are not
the same for other applications executions, e.g. when input values change [Ern03, p. 26].
These aspect should give a small overview about dynamic analyses. In this master’s thesis,
dynamic source code analyses are not considered to detect Energy Code Smells. But it is
possible to detect the energy-inefficient code through dynamic analyses, e.g. creating user
profiles to switch-off component, such as screen and Wi-Fi [JGJ+12, p. 4]. This is a further
area of research to get more energy-efficient applications.

2.1.3 Restructuring

After source code analyses, restructurings can be applied when code parts (e.g. Energy Code
Smells in Section 3) were detected through the analyses. Restructurings are transformations
of source code into new source code wherein the functionality is the same as before, but it is
realized by different source code. This technique is often used as a form of preventive main-
tenance, e.g. unstructured code is transformed into structured code [CC90]. In this thesis,
the transformed code should be more energy-efficient as before (cf. Energy Refactorings in
Section 4), but it does not involve modifications concerning its functionality. An example is
the usage of advertisements (cf. Section 4.1), if advertisements are detected through source
code analysis, the transformation would modify or rather remove these code parts. But the
other parts are not changed, so that the functionality is the same.

2.1.4 Refactoring

The combination of source code analyses, here detection of Energy Code Smells, and re-
structuring is called refactoring in this master’s thesis. Refactoring is used to optimize source
code after it has been written in which no functionality is changed but the software quality
is improved. Therefore, badly designed source code can be restructured to well-designed
code. Generally, bad code, such as code clones, is sought by static analysis. Afterward,
detected code parts are restructured which means that the bad code is optimized. Fowler
et. al [FBB+02] differentiate between Code Smells and refactorings. Refactoring only de-
notes code restructuring, and Code Smells describes badly programmed code [FBB+02, p.
53]. In this thesis, refactorings are named Energy Refactorings (cf. Section 4) which rep-
resent a static source code analysis and restructuring with the aim to save energy within an
application.

10 Basic Techniques

2.2 Java TGraphs

The source code structure of an application can be depicted in several forms which are
named by Ebert et. al [EKW97, p. 4]: abstract syntax trees [WBM95], relational data bases
[CNR90], TGraphs [ERW08], etc. The former two techniques are not considered any further
in Ebert et. al [EKW97] and in this master’s thesis. TGraphs are used for the abstract repre-
sentation of source code, although each programming languages can be represented through
its nodes and edges. Due to the SOAMIG project [FWE+12], the tooling for the Java pro-
gramming language is available and it is used for this master’s thesis. Due to the abstract
representation, it is possible to perform efficient analyses and transformations. Generating
the abstract view of source code is the first step of the refactoring approach in Figure 1.1 on
page 3 to analyze (step 2) and restructure (step 3) Energy Code Smells (cf. Section 3). In
the next step, TGraphs are defined, and an example for them and their usage (analyzing and
restructuring) is given.

2.2.1 TGraphs

In this master’s thesis, TGraphs are used to represent Android applications on a higher ab-
straction level to analyze and restructure the source code. This enables the detection of
Energy Code Smells (cf. Section 3) by efficient graph queries and the restructuring on this
abstraction. In this section, a very small example of an Android application is given to illus-
trate and explain the TGraph approach.

Figure 2.2 illustrates a simple extract of an Android application. The extract is a part of
the Android application GpsPrint (cf. Section 2.6) and represents the power-on of the GPS
component of a mobile device during the application’s runtime. In this application, the GPS
is started twice in line 3 and 6, but to start it in line 6 would usually be enough to achieve
the application’s functionality. The Android Life Cycle (cf. Section 2.3.2) specifies that
applications are visible when the method onResume() (line 5) is called, hence, resources
which are started in onCreate() (line 2) are started too early, because their functionality
is not needed yet. Furthermore, it represents the Energy Code Smell Binding Resources Too
Early, which is described in Section 4.2. Binding Resource Too Early means that hardware
resources are started at an early stage when they are not needed by the application. Hence,
the method call for GPS in line 6 is enough and the call in line 3 can be deleted. In the next
step, the code is represented by a TGraph to detect and remove this Energy Code Smell.

1 public class GpsPrint extends Activity {
2 public void onCreate(){
3 requestLocationUpdates();
4 }
5 public void onResume(){
6 requestLocationUpdates();
7 }
8 }

Figure 2.2: Java Code of GpsPrint (extract)

2.2 Java TGraphs 11

The TGraph in Figure 2.3 is colored into four different colors to show the relation to the
source code in Figure 2.2. The red color presents the definition of the class GpsPrint and
the inheritance relationship to the class Activity (line 1). Orange and yellow stand for the
methods onCreate() and onResume() (lines 2 and 5). The method call requestLo-
cationUpdates() (lines 3 and 6) for the GPS power-on is colored beige.

Figure 2.3: TGraph of GpsPrint (extract)

TGraphs are directed graphs, whose nodes and edges are typed, attributed, and ordered
[ERW08, p. 2]. These attributes are also depicted in Figure 2.3. Edges and nodes have
an identifier and a type, nodes also have a name. The direction of edges shows which
node connects further nodes. The identifier of nodes and edges gives information about
the TGraph element. It consists of a letter and a number. The letter "v" stands for ver-
tex and "e" stands for edge, and its number is a consecutive number. The edge type, such
as frontend.java.HasSuperClass, is defined by a Java meta model and shows how nodes are
connected. The node type, such as frontend.java.Class (also defined in the Java meta model),
gives information about the nodes function. Nodes also have attributes, such as name and
fullyQualifiedName, to represent the source code, e.g. requestLocationUpdates is
the name of the node v8823 and depicts the method in line 3 and 6.

TGraphs can beused to represent the abstract syntax of programming languages, here Java,
and are accompanied by a meta model to define, analyze, query, visualize, and transform
TGraphs [ERW08, p. 2], in which TGraphs have always a similar structure when the same
programming language is used. A meta model for Java up to level 6 was developed during
the SOAMIG project [FWE+12], so that TGraphs conforming to a Java meta model can be
created. In this master’s thesis, Android applications are used which are implemented in Java

12 Basic Techniques

6 (cf. Section 2.3). Hence, TGraphs for Android applications can be generated. The Java
meta model illustrates the relation between several types of relevant source code artifacts
[FWE+12, p. 167]. A small part of it is shown in Figure 2.4, and hence, it serves as meta
model for the given example in Figure 2.3.

MethodType

-name : string

Class

-fullyQualifiedName : string
-name : string

DataObject

-modifier : Modifier>
-name : string
-typeString : string

JavaType

ClassType

0..10..*

-returnType

0..*

0..1

-method

-callee

-caller

0..* 0..1

0..1

0..*

-type

0..1

-parameter

HasMethod

HasReturnType

DataObjectHasType

MethodHasParameter
CallsMethod

HasConstructor

Figure 2.4: Java meta model (extract) [FWE+12]

The Java meta model shows that each TGraph of an application consists of nodes of different
types. Firstly, it has at least one Class node which has any number of constructors. Also,
it has any number of methods of the type MethodType which are connected to the Class
node by a DataObject node via edges. Therefore, DataObject nodes are linked to the class
node by a HasMethod edge and calls methods by a CallsMethod edge. DataObject nodes
are used to store a name and a fully qualified name, and MethodType nodes save values for
a modifier, a name, and a type. Further nodes and edges exist to represent different source
code components which are not displayed here.

The functionality for analyses and restructurings of TGraphs are realized with JGraLab
[Kah06]. The JGraLab API enables graph queries with GReQL (Graph Repository Query
Language) to analyze TGraphs, and a graph transformation with Java methods which real-
izes the functionality of GReTL (Graph Repository Transformation Language) to restructure
TGraphs. These techniques are needed to detect and remove Energy Code Smells (cf. Sec-
tion 3), and hence, they are described in the next two sections.

2.2.2 Graph Query

The TGraph analysis is a static analysis and can be done with GReQL, a query language
developed by the Institute for Software Technology of the University of Koblenz [FWE+12,

2.2 Java TGraphs 13

p. 168]. GReQL can be used to extract static information and dependencies in source code
which are represented within the TGraph. An example for a GReQL query is given in Figure
2.5. It analyzes the TGraph in Figure 2.3 and seeks for the node requestLocationUp-
dates which is called by the node onCreate() and onResume(), but in this query, it
is sufficient to know that this method is called by onCreate() because this is the Energy
Code Smell.

1 from callee : V{frontend.java.DataObject}, caller : V{frontend.java.MethodType}
2 with callee.name="requestLocationUpdates" and caller.name="onCreate" and

caller -->{frontend.java.ext.CallsMethod} (-->{frontend.java.DataObjectHasType}
-->{frontend.java.ext.CallsMethod})* callee

3 report callee
4 end

Figure 2.5: GReQL example

A GReQL query can be constructed in a form with the key words: from, with, report, and
end. The query starts with from, where the definition of nodes and edges takes place. In
this example, two nodes of several types are defined, callee is a DataObject node and
caller is a MethodType node. These are the node types which are demonstrated in the
Java meta model in Figure 2.4. After the key word with the query conditions are denoted, e.g.
callee.name="onCreate" is one condition which says, that the node callee must
have the name onCreate. The condition caller <-{frontend.java.ext.Calls-
Method} [...] callee means that the node callee must be called by the node
caller through an edge with the type frontend.java.ext.CallsMethod. But, it is possible that
callee is not called directly from caller, i.e. further nodes of the types DataObject
and MethodType exist between the nodes v3644 and v8823 in Figure 2.3. This is queried
by (->{frontend.java.DataObjectHasType} ->{frontend.java.ext.-
CallsMethod})*. These edges must be appeared together in this order, but the symbol
* says that this order can be repeated as often as required. In addition, two further symbols
exist to influence a query: [] and +. [] means that these edges and nodes within the bracket
are optional, and hence, it can be zero times or once. + represents the transitive closure,
i.e. all edges and nodes, which are marked by it, occur at least once. After the key word
report nodes and edges can be denoted which should be stored to work with them during the
transformation. The key word end ends the query.

2.2.3 Graph Transformation

The TGraph restructuring can be done with JGraLab which realizes the GReTL functionality,
a transformation language also developed by the Institute for Software Technology of the
University of Koblenz [FWE+12, p. 168]. GReTL is a dedicated graph transformation
language and its wide functionality is not needed for the graph transformations in this thesis,
hence the functionality of the implementation of the JGraLab API suffices. The JGraLab
API extends GReQL. It uses the return value of a query as a basis of the transformation. In
Figure 2.6, an example for a TGraph transformation is depicted, which uses the Java API of
JGraLab. This transformation is made for the TGraph in Figure 2.3 and based on the return

14 Basic Techniques

value callee of the query in Figure 2.5 which is depicted as the object callee in line 3 in
Figure 2.6. The objective of this transformation is to remove the edge between onCreate
and requestLocationUpdates.

1 protected Object transform() {
2 [...]
3 for (Edge edge : callee.incidences(EdgeDirection.IN)) {
4 if (edge.getAlpha().getAttribute("name").equals("onCreate")){
5 edge.delete();
6 }
7 }
8 }

Figure 2.6: JGraLab example

The TGraph transformation can be done through simple Java code. Each transformation is
made in the method transform() which is a part of the provided class Transforma-
tion by JGraLab which is also a part of GReTL [Hor10, p. 3]. The method transform()
is override and includes all transformation methods which are needed to realize the transfor-
mations behavior for the Energy Refactorings (cf. Section 4). In this case, all ingoing edges
of the detected node callee are checked in line 3 by callee.incidences(Edge-
Direction.IN). The GReQL query for this transformation is in Figure 2.6 in line 2
within the brackets, and hence, it is a part of the transformation and the query result can
be used directly. The condition edge.getAlpha().getAttribute("name").-
equals("onCreate") is needed to check whether the edge comes from a node with
the name onCreate (line 4), due to the GReQL query before, it is clear that this edge goes
to requestLocationUpdates. If an edge is found, it will be deleted (line 5). Here the
edge e10467 are seek, one of the incoming edges of the node requestLocationUp-
dates in Figure 2.3. The method getAlpha() returns the node from which the edge
comes from (getOmega() returns the node to which the edge leads), in this case, two
values must be checked because two incoming edges (e5834 and e10467) exist.

2.3 Android

The implementation and evaluation of Energy Refactorings (cf. Section 4) is based on An-
droid applications, and hence, some Android developer foundations and its application life
cycle are presented here. The Android life cycle includes several states of one application
and reactions of applications when another application starts. This presentation should help
to define the Energy Refactorings and to realize their restructuring in Section 4.

2.3.1 Foundations

Android is a mobile platform which is based on a Linux system. Applications for Android
are written in Java 6. Due to its openness and its multiplicity of partnerships, Android is very
popular among users and programmers and easy to extend [Andd].

2.3 Android 15

An Android application is deployed as a single .apk file which contains all needed source
code files and resources for installing an application. After installing, each application gets
its own Linux user ID and runs in its own process which is started by executing the ap-
plication [Ande]. The several states of an application or rather a process are described in
Section 2.3.2. Android keeps the principle of least privilege which gives a high security be-
cause each application only receives access to resources and components which are required
for its work. The access to resources and components must be defined into the manifest
file and it must be allowed by the user before installing. The manifest file AndroidMan-
ifest.xml is read first by the system and declares required user permissions, minimum
API level, hardware components, and API libraries. Applications’ resources, e.g. images
and audio files, are used to create the user interface which should not declare in source code
but rather in XML files where the layout is defined and resources are loaded [Ande].

The communication between applications is realized by the system because each applica-
tion runs in its own process and has no permission to communicate with other applications.
Therefore, an application requests another application through the system which starts the
other application and sends results back to the requesting application. The system also de-
cides between several application types: activities, services, content providers, and broadcast
receivers [Ande]. Theses types have different tasks and visualizations. Activities are single
screen applications with an user interface, e.g. games or email applications. Services are
applications which run in background without an user interface and perform long-running
operations, e.g. music player. Content providers manage several applications data and store
them in the file system to share these with other applications, e.g. SQLite databases. So,
applications have access on these data and can modify them. Broadcast receivers are ap-
plications which notify the system or rather other applications about new events, such as
the screen is off or a download is finished. The following Android life cycle and later the
restructurings are only based on the type activities [Ande].

2.3.2 Android Life Cycle

To understand the structure and behavior of Android applications, the Android life cycle is
described and visualized. Some of the described Energy Refactorings in Section 3 are based
on the behavior of several states in the life cycle.

The Android life cycle [Andb], illustrated in Figure 2.7, describes several states in which an
application can be in and manages all active applications in a system. It is possible that sev-
eral applications run at the same time but in different states. Thereby, only one application
can be in Foreground wherein several applications can be in Background, Hidden, or
Inactive. The order of the active applications is organized as a stack. A newly started ap-
plication is placed on the top of the stack and the previously application is in Background,
and thereafter, in Hidden when the new application is resumed. The previously application
does not come back to Foreground again before the new application is exited. If there

16 Basic Techniques

are too many applications which run in Hidden, the system will finalize applications to get
more memory for the running application.

Visible Hidden

Foreground

Background

Active Inactive

crash

crashc[k.superConPause.]]]

appciscfinishedcbycsystem
[memorycfull]c/conDestroy.]

appciscstartedc[on
topcofcstack]c/
onRestart.]

appciscfinishedcbycuserc/
onDestroy.]

appcstarts
[onctopcof
stack]

anothercappcis
startedc[k.onctop
ofcstack]]c/
onPause.]R
onSaveInstance
State.Bundle]

anothercappcis
resumedc[k.in
foreground]]c/
onStop.]R
onSaveInstance
State.Bundle]

appcstartscinteractingc/
onResume.]

appcbecomescvisiblec/conStart.]R
onRestoreInstanceState.]

appciscstartedc/
onCreate.Bundle]

appciscstartedc/conCreate.Bundle]

VisualcParadigmcforcUMLcStandardcEdition.UniversitycofcOldenburg]

Figure 2.7: Android Life Cycle, derived from [GJJW12]

The life cycle for one Android application begins with the start of this application by the
user and its state is Active. After starting, the application moves direct into Visible and
becomes visible for the user, and also, the last saved instance of it is loaded. The application
is now in Foreground and interacts with the user. If the user starts another application, this
application will switch into Background in which the current instance of it is saved to load
it again when it is again in Foreground. Therewith, changing between Foreground and
Background takes place quickly enough the code of executed methods should be fairly
lightweight. In this state or in Hidden the application can be terminated by the system.
All applications which are not in Foreground move into Hidden after resuming a new
application. Thereby, the current instance is saved in a bundle. In this state the user or the
system can finish the application and it is Inactive when more memory is needed for the
application in Foreground. An inactive application can be started again in which the last
saved bundle is passed to load the previous instance of the application.

2.4 Tested Hardware 17

2.3.3 Other Operation Systems

Other mobile devices’ OSs are Windows Phone and iOS. These both OSs use other pro-
gramming languages than Android. Windows Phone uses C, C++, C#, and JavaScript, and
hene, it allows more diversity for the programmer [Mic]. iOS uses the Cocoa Touch Frame-
work which is based on Objective C [Khu]. Due to the several programming languages,
several programming platforms are needed to create applications for the three OSs, Android,
Windows Phone, and iOS. In this master’s thesis Energy Refactorings (cf. Section 4) are
described which can be applied on all this platforms, but in this case, they are only realized
for Android applications.

2.4 Tested Hardware

In this section, mobile devices are presented which are used for the evaluation of this master’s
thesis. Both mobile devices are smartphones which use the OS Android: the HTC One X
and the Samsung Galaxy S4. The presentation contains some software and hardware details.

HTC One X

The first mobile device for the evaluation of Energy Refactorings is the HTC One X [HTCa],
and it is only named HTC in this work. It is depicted in Figure 2.8a. Hardware and software
of the HTC are briefly described. Firstly, some technical details are given. The processor
is a 1.5 GHz Quad Core processor, Tegra 3 from Nvidia, with this processor applications or
tasks can run at the same time [She07]. The memory has a total storage of 32 GB and the
RAM has a 2 GB storage. The network modules contain 2G (GSM/GPRS/EDGE) and 3G
(UMTS/HSPA/CDMA), hence, the data transfer is based on known technologies. Addition-
ally, modules for the communication and data transfer are build in, such as Wi-Fi and NFC
(Near Field Communication). Furthermore, some sensors are build in, such as a gyro sensor,
accelerometer, and proximity sensor, which are used by applications and the OS. The HTC
uses Android 4.1.1 as OS with HTC Sense 4+ and HTC BlinkFeed. It has a 4.7 inch HD, su-
per LCD 2 screen with a resolution of 1280x720 pixel. The Li-ion battery has a performance
of 1800 mAh which allows a maximum standby time of 440 hours. These information are
listed to give an overview about considered components during the energy measurements in
Section 4.

Samsung Galaxy S4

The second mobile device which is used for evaluation is the Samsung Galaxy S4 [Sama].
This device is named S4 in further sections and is depicted in Figure 2.8b. Here, hardware
and software of the S4 are also briefly described. Firstly, technical details are given similar
to the HTC. The processor is a 1.9 GHz Quad Core processor, Snapdragon 600 from Qual-
comm, it is a processor with four cores like the HTC, so that applications and tasks can run
simultaneously. The memory storage amounts 16 GB and the RAM has a 2 GB storage. The

18 Basic Techniques

network modules contain 2G (GSM/GPRS/EDGE), 3G (UMTS/HSDPA/CDMA), and 4G
(LTE), hence, this device based on the latest technologies. It uses the OS Android 4.2.2 with
the user interface TouchWiz. The screen is a 5 inch Full HD Super AMOLED screen with
a resolution of 1920x1080 pixel. The Li-ion battery has a performance of 2600 mAh which
allows a maximum standby time of 370 hours with running 3G modules. These information
are given for a better understanding in the evaluation of the Energy Refactoring Backlight in
Section 4.4. The S4 is not used for the other evaluations in Section 4.

(a) HTC One X [HTCa] (b) Samsung Galaxy S4 [Sama]

Figure 2.8: Mobile Devices

2.5 Energy Measurement

In this master’s thesis, the evaluation is done with energy measurements to reenact these the
measurement techniques and its process are explained. Whereat, the mobile device settings
are described which are adjusted before energy measurements start. Additionally, the number
of measurements and its efficiency briefly described. Finally, due to a HTC firmware update,
the HTC and S4 power profile and their influence are considered.

2.5.1 Measurement Techniques

Energy measurements are performed by an Android application called Andromeda. This
application was programmed by Marcel Schröder during his diploma thesis [Sch13]. A
screenshot shows the main functionality of Andromedar in Figure 2.9. The figure depicts
five functions which can be adjusted by the user. Firstly, the energy measurement interval of
the "Input heartbeat" is defined. In this case, 60 seconds were selected to store the current

2.5 Energy Measurement 19

energy consumption in these intervals.
Secondly, the measurement duration
"Stop measurement after X minutes"
is determined, which amounts to 140
minutes in this case. Thirdly, measurement
methods "Select measurement method"
can be selected which is useful for the
user when it is known which measure-
ment method is the best in the following
use case. Three measurement methods
exist: Delta-B, System File, and Energy
Profiling. The default selection chooses
all implemented measurement methods.
Fourthly, the output format "Select output
format" of the measurement results can be
selected. Currently, the application can

Figure 2.9: Screen shot of Andromedar

only use excel. Finally, the user can start and stop the measurement. After measurement, ex-
cel files for each measurement method are stored on the flash drive from where the user can
download them to a computer to evaluate the results. In the next step, the several measure-
ment techniques are briefly described based on the description of Josefiok et. al [JSW13].

Delta-B

The Delta-B technique calculates the energy consumption through the battery level which
can be read out with the Android BatteryManager API [Andg]. When the battery level
changes, Andromedar calculates a new value of the current energy consumption by the us-
age of the BatteryManager API. The BatteryManager API gets the information about the
battery level through Intents. An Intent is a class which contains some standard broadcast
actions, e.g. to provide information about the battery change to other application which uses
the BatteryManager API [Andf]. Otherwise, Andromedar uses the same value for energy
consumption as before. How many values are the same is linked to the Input heartbeat and
the scenario which is measured. Hence, the measurement results can look like a step func-
tion in the graph. After measurement, the average energy consumption is determined. Due
to the dependence on the Android battery level which provides the most common variant
of a maximum of 100 measurement results, this technique is not very accurate to determine
the concrete energy consumption, but shows a trend. Furthermore, device manufacturers can
set the battery level to another higher number than 100 to get more detailed measurement
results. This technique works for the HTC and S4.

System File

Some mobile device vendors create an internal system file, which stores information about
the current battery discharge and battery voltage. With these information, Andromedar cal-
culates the energy consumption. HTC uses this system file, so that this technique can be used

20 Basic Techniques

on the HTC to measure the energy savings by executing Energy Refactorings (cf. Section
4). The HTC system file is updated every 60 seconds by the OS and gives exact information
about the current energy consumption. Therefore, more than 100 values can be measured,
and hence, the System File technique is more exact than Delta-B. This measurement tech-
nique does not work for the S4, maybe because no internal system file exists or it is saved on
another position than the HTC system file.

Energy Profiling

Energy Profiling uses an internal XML file, which can be created by the vendor or someone
who has detailed information about the hardware components. This XML file gives infor-
mation about the average power of each hardware component built in the mobile device. In
this case not the energy consumption is measured, but the active time of all hardware compo-
nents, i.e. Andromedar measures the time between switching on and off of each component.
After measurement, the active time of each component in each certain state and its average
power are multiplied from which the energy consumption of the HTC and S4 results. This
measurement technique is highly dependent on the hardware information and when this in-
formation provides wrong values, the Energy Profiling results are of no use. But when the
information about the average power are very good, this technique provides the best results.
When the active time of hardware components changes after restructuring, the energy con-
sumption will be also change. Otherwise no difference between measurements are visible.
This technique also works for both mobile devices.

2.5.2 Process of the Evaluation

The energy measurement of applications is the evaluation in Section 4. For each evaluation,
the same process should be applied which is briefly described hereafter. Thereby, three
aspects are considered: mobile device settings, number of measurements, and efficiency of
measurement techniques.

Mobile Device Settings

The measurements for each Energy Refactoring (see Section 3) should always be executed
under the same conditions. Therefore, a list with mobile device settings for the described
mobile devices is created to guarantee correct, comparable, and reproducible measurements.
This list contains screen, notification, application, wireless & network, and gesture settings.
Also, information about miscellaneous settings or specifics are given. For different Energy
Refactorings and applications some settings are different, hence, these settings are described
when they are needed in Section 4.

• Screen settings:
The screen is permanently on but on lowest brightness because applications are run only
when the screen is active, and the lowest brightness is chosen to reduce the energy con-

2.5 Energy Measurement 21

sumption of the screen. The auto rotation screen is also off because the rotation some-
times interrupts e.g. the GPS connection. This was observed by first measurements with
the application GpsPrint 2.6.

• Notification settings:
Automatic notifications are off, such as email client, play store, calendar, etc. This is nec-
essary to make comparable energy measurements which are not interrupted by individual
notifications, such as emails or updates.

• Application settings:
All background applications, such as HTC Services, Google Services, 7digital, and so on,
are off so that only the tested application runs. Also, the HTC and S4 power saver are off.

• Wireless & networks settings:
The modules mobile data, blue-tooth, GPS, NFC, and Wi-Fi are off.

• Gesture settings:
Additional gestures, such as the three finger gestures, are off to reduce the error rate
when energy measurements are started, e.g. unwanted touches on the screen which makes
repeatable measurements difficult.

• Miscellaneous:
The HTC does not have a sim card installed, with the result that the HTC seeks for it,
permanently. The influence of this seek is tested and the result is recorded in Appendix
A. Also, no other applications are installed apart from the standard applications, the tested
application, and Andromedar.

Number of Measurements

The number of energy measurements is important to consolidate results and to exclude
anomalies within the measurements. Hence, an average of ten measurements for each Energy
Refactoring and application is created to get significant results. Therefor, ten measurements
before and after the restructuring of the Energy Refactorings (cf. Section 4) are made to
compare the energy consumption.

Efficiency of Measurement Techniques

For each energy measurement, all measurement techniques are used to show differences be-
tween the techniques. Energy Profiling is dependent on vendor information. When these
information are wrong, this technique is not useful. Also, this technique cannot consider
differences between the traffic for the Wi-Fi module. This means, that energy savings by
reducing the traffic are not recognized because this technique only measures the runtime of
components, such as Wi-Fi, and calculates an average energy consumption of these compo-
nents, i.e. if the runtime is identical but the traffic is a less different, the energy consumption
will be the same.

22 Basic Techniques

The other two measurement techniques, Delta-B and System File, calculate the energy con-
sumption through information about the battery and show mostly the same trend for the
energy consumption. Though, Energy Profiling is more precise than the others, when the
vendor information are detailed enough.

2.5.3 HTC Power Profile

The power profile of the HTC contains values of the electric current of several components
to calculate the energy consumption for the measurement technique Energy Profiling. It is
read-out by the class com.android.internal.os.PowerProfile which is a part
of the Hidden-API. The power profile is briefly described because the measurement results
of the Energy Profiling are different to the results of the delta-B and file-based measurement
in this thesis. The reason is the firmware update deployed on 22nd April 2013 [HTCb]. The
firmware update to Android 4.1.1 changes the HTC power profile and is shown in Figure
2.1. In this figure the new and old power profile are illustrated to compare them. On the left
side, the new power profile for Android 4.1.1, and on the right side, the old power profile for
Android 4.0.4 are depicted.

Firstly, the number of considered components are different. The new power profile has four
more states for the CPU. All other components are the same, but with a new value for the
current. Secondly, the high difference between the values of Screen_BSOn should be noticed.
All measurements for the evaluation are done with a switched on screen, and the difference
amounts to over 97 mA which is the main reason for the differing results for Energy Profiling
in comparison to the other two measurements in Section 4. Also, the GPS_BS and Wifi_BS,
which are often used for the measurements, differs from old values. The difference for
GPS_BS amounts 169 mA and it amounts 3 mA for Wifi_BS. Hence, the reported energy
consumption is substantially lower than before the firmware update.

In this thesis, the new power profile for Android 4.1.1 is used, and hence, the results differ to
the other results and to the results in the diploma thesis by Schröder [Sch13]. The power pro-
file is not changed to the old profile because Andromedar reads-out the electric current values
at runtime and calculates the energy consumption of each period, and hence, the measure-
ment results cannot be changed in the excel file belatedly. But, the active time of components
are also saved in the excel file which contains the measurement results, hence, the applica-
tion Andromedar Analytics can calculate new measurement results and demonstrates them
as web-application. However, the measurement results with the new Power Profile contain
more CPU states which are not existing in the old one, hence, the profile cannot changed
directly. In Appendix C an example is given which contains a modified version of the new
Power Profile which is similar to the old one. In addition, the modified measurement results
are compared with the results within the evaluation in Section 4. But it must be considered
that the Energy Profiling and the other measurements show only a trend of the consumed
energy.

2.5 Energy Measurement 23

Table 2.1: HTC Power Profile

24 Basic Techniques

2.5.4 S4 Power Profile

As regards to the completeness, the S4 power
profile is also presented in Figure 2.2. At
first sight this power profile may look the
same as the HTC power profile in Figure 2.1.
It also has five several states for the screen,
but one state less for the CPU than the HTC.
The remaining states for GPS, Wi-Fi, blue
tooth, etc. are identical. The difference to
the HTC power profile consist in the aver-
age current consumption, e.g. the switched
on S4 screen consumes 120 mA whereas the
new power profile of the HTC only needs
2.19 mA according to the power profile. A
further example shows, that the basic power
of the S4 Wi-Fi amounts 0.64 mA whereas
the HTC Wi-Fi amounts 0.1 mA. Also, the
other current values are different to the HTC.
Hence, the values of the S4 power profile
look more realistic, but in this thesis, the
vendors’ power profile cannot be checked, so
that these values are taken for the evaluation
in Section 4.

Table 2.2: S4 Power Profile

2.6 Used Applications 25

2.6 Used Applications

Applications which are described in this section are used to validate the energy saving
through Energy Refactorings (cf. Section 4). All applications are free or self-programmed
Android applications. The applications GpsPrint, GpsStarter, and TreeGenerator are briefly
presented, hereafter.

GpsPrint

GpsPrint is a free Android application by
Robotmafia [Rob12] with about 1642 LOC. A
screenshot for the application is illustrated in
Figure 2.10. GpsPrint localizes the position of
a mobile device and seeks via Internet for an
address. If an Internet connection is unavail-
able, it will be displayed by a hint on the screen
("No internet connection for address search").
Also, the accuracy of the GPS coordinates are
given, as well, it displays advertisements on the
bottom of the screen which are reloaded each
30 seconds. In addition, the data determined
can be stored (button "Save location") and
exported (applications menu) into a txt file to
create a personal movement profile. Through
the button "Stop update" the localization stops
at which the GPS is not switched off.

This application is used for the Energy Refac-
torings Third-Party Advertisement and Binding
Resources too early in Section 4.

Figure 2.10: GpsPrint

GpsStarter

GpsStarter is a simple Android application by Marcel Schröder [Sch13] with 73 LOC. It is
needed to start the application GpsPrint automatically after a defined time. In this thesis,
GpsPrint is restarted each minute. GpsStarter has no user interface so that no screen shot
exists.

This application is needed for the Energy Refactoring Binding Resource too early (cf. Sec-
tion 4) to measure the consumed energy for starting GpsPrint.

26 Basic Techniques

TreeGenerator

TreeGenerator is an Android application which
is created for this master’s thesis with 345 LOC.
It was implemented to show possible Energy
Code Smells (cf. Section 4) within Android
applications. A screenshot of this application is
shown in Figure 2.11. TreeGenerator displays
each three seconds another name of a tree,
maybe its type and a picture of it. The screen-
shot shows Blauregen for a tree and Strauch
for its type. The applications starts and stops
by touching the button at the top of the screen.
Also, the time how long the application runs is
shown below the type. Under the time a picture
of the tree is depict. The trees are chosen by a
random function which takes arbitrarily a tree
of a list with 50 values. Thereby, if- or rather
switch-statements are used. At the bottom
of the screen advertisements are integrated.
For the several measurements, the application
is modified, e.g. the backlight is changed
from withe to black and if- is changed to
switch-statements.

The application TreeGenerator is used to vali-
date four Energy Refactorings Third-Party Ad-
vertisement, Statement Change, Backlight, and
Data Transfer in Section 4.

Figure 2.11: TreeGenerator

27

3 Energy Refactorings
The energy consumption of mobile devices rises through the increasing number of installed
applications. Many applications are realized by hobby programmer, hence, guidelines for
energy-aware programming are seldom considered. Due to this, Energy Refactorings can
be defined which have the aim to save energy on mobile devices by optimizing applica-
tions’ source code. Energy Refactorings include Energy Code Smells and their restructur-
ing. Therefore, Energy Code Smells are defined and an approach to remove them is created.
This section gives an overview about the meaning of Energy Code Smells and its dependen-
cies. Also, a brief summary is given, how the idea of Energy Code Smells arises. Hereafter,
the structure of Energy Refactorings is explained which is used in the next sections for a
consistent presentation. This presentation contains a name, a short definition, a motivation,
constraints, an example, an analysis and a restructuring approach, and an evaluation.

3.1 Energy Code Smells

Firstly, Energy Code Smells are explained to understand why Energy Refactorings are im-
portant. For that purpose, a definition for Energy Code Smells and their dependencies are
given. Secondly, the identification and handling of them are briefly described. The identifi-
cation means, how Energy Code Smells are discovered and chosen. The handling of Energy
Code Smells should describe the next step, how they will be removed.

3.1.1 Definition

Energy Code Smells are code parts within applications which consume more energy than an
alternative implementation. Hence, these code parts can be reprogrammed in another way
to save energy without changing applications’ functionality. A similar definition is given
by Fowler et al. [FBB+02], who describe Code Smells as code parts which are difficult to
understand and maintain, and hence, it should be avoided. Also, refactorings which improve
the internal structure of the source code and do not affect the external behavior of the code
are presented by Fowler et al. [FBB+02, p. xvi].

Due to the increased energy consumption, Pathak et. al [PCHZ11, p. 1] denote Energy Bugs,
aka Energy Code Smells, as types of errors (no functional error) within applications because
of the disregarded, high energy consumption. Energy Code Smells do not have an influence
on applications’ functionality, so that applications do not misbehave or fudge calculations
when they contain Energy Code Smells. This makes the detection of Energy Code Smells
much more difficult than other programming mistakes [PCHZ11, p. 1]. A hint to an Energy
Code Smell after installing an application is the shorter battery duration of mobile devices
than expected [PCHZ11, p. 1].

28 Energy Refactorings

3.1.2 Dependencies

Energy Code Smells are described platform-, software-, and hardware-independently in this
master’s thesis. But in the filed of mobile devices, many mobile devices use several plat-
forms, softwares, and techniques which have an influence on the energy consumption. Due
to the Android openness, the platform Android is here used for the execution and evaluation
of Energy Refactorings. This is done to show the complete process of an Energy Refactoring
which includes the analysis, the restructuring, and the evaluation. This would be more diffi-
cult with other platforms who do not give any information about their system. All vendors
use several software enhancements and hardware components for their mobile device. In this
work mostly one mobile device, the HTC, is used for the evaluation of Energy Refactorings,
so that a comparison with other software and technologies is not possible. But for one Energy
Refactoring, it can be shown that differences exist. In Section 4.4 an Energy Refactoring is
described which based on hardware, it is shown that several screen technologies consume
different amounts of energy.

3.1.3 Identification

The identification and definition of several Energy Code Smells is based on a comprehensive
literature study. Initially, the department of Software Engineering at the University Olden-
burg starts with a seminar paper in which first information about energy aware programming
were collected. This paper was published as an Early Research Achievements on the CSMR
2012 [JGJ+12]. After that, a paper with a list of several Energy Code Smells and an example
for one refactoring was published on a workshop for energy-aware software (EASED@GI
2012) [GJJW12].

On basis of these two paper, the master’s thesis by Mirco Josefiok [Jos12] and the diploma’s
thesis by Marcel Schröder [Sch13] were written. Mirco Josefiok describes an Energy Ab-
straction Layer which represents a platform-independent approach for a software energy
measurement. Thereupon, Marcel Schröder describes several software energy measurement
techniques and implements them for Android. The idea of these two theses were published
at the workshop for Energy Aware Software-Engineering and Development (EASED@BUIS
2013) [BGNW13, p. 17–18]. Accordingly, this master’s thesis is written which includes a
more detailed description of Energy Code Smells and their refactorings with an implementa-
tion, and an evaluation with the measurement techniques which were described in Schröders
diploma’s thesis.

On this base, authors, such as Pathak [PCHZ12], and Höpfner and Bunse [HB11], were
found. These authors describe many code parts within applications which use to much en-
ergy, such as hardware resources which are started too early or stopped too late [HB10],
inefficient algorithms [BRM09], and third-party advertisements [PCHZ11]. Additionally,
they make hardware energy measurements to show that these code parts use more energy
than the reprogrammed code. But they do not describe an approach how the source code
must be changed to avoid unnecessary energy consumption. Owing to this, Energy Code

3.2 Template for Energy Refactorings 29

Smells and their restructuring are described and adapted to the mobile platform in this work.
The mentioned ideas of the authors were described in Section 1.3.

3.1.4 Handling

After identifying Energy Code Smells, the remainder part of Energy Refactorings can be
described. This part includes the detection and removing of Energy Code Smells. The
term refactoring is defined in Section 2.1 and represents a combination of code analysis
and restructuring without changes in its functionality, i.e. Energy Refactorings contain code
analysis in which Energy Code Smells are detected by a defined analysis and removed by a
defined restructuring which are described in Section 4.

3.2 Template for Energy Refactorings

A consistent presentation of Energy Refactorings is given through a structured pattern which
represents the basis for an Energy Refactoring Catalog in the following sections. A part of
this pattern is derived from Fowler et. al [FBB+02]. The pattern is subdivided into eight
parts: name, definition, motivation, constraints, example, analysis, restructuring, and evalu-
ation, which are described hereafter:

Name: The name of an Energy Refactoring to allow an unique identification.

Definition: A short description of an Energy Code Smell to delimit its influence on applica-
tions.

Motivation: This point shows why an Energy Code Smell and the resulting Energy Refac-
toring are important and in which cases it occurs. Also, references to this Energy Code Smell
are given to name the original author who detected and tested it.

Constraints: This point shows problems and limits of Energy Refactorings, such as legal
limitations and manual decisions of programmers. Programmers’ decisions are constraints
because sometimes Energy Refactorings can not be removed when it has influence on appli-
cations’ behavior.

Example: An example demonstrates how an Energy Code Smell may look like to enhance
the reader understanding. Also, it shows how to find Energy Code Smells in practice.

Analysis: An approach to detect Energy Code Smells within applications. This step repre-
sents the second step of the approach described in Section 1.2. At this point, several plat-
forms can be discussed, such as Android, iOS, or Windows Phone. However, the detection of
Energy Refactorings is described platform-independently, but it is only realized for Android
because it is a free operation system and some free applications exist which can be analyzed.

Restructuring: At least one approach to remove an Energy Code Smell by restructuring is
demonstrated. These approaches can be the same for several Energy Code Smells. If this

30 Energy Refactorings

is the case, the second Energy Code Smell in the catalog which uses the same restructuring
references to the first.

Evaluation: To demonstrate energy savings an evaluation by an energy measurement is
done. For this measurement, mobile device settings are denoted to make the evaluation
repeatable. These settings are described in Section 2.5.2. Also, several energy measurement
techniques are used which are described in Section 2.5 to assess the Energy Refactoring.

31

4 Energy Refactoring Catalog
The Energy Refactoring Catalog contains a list of several Energy Code Smells and their
restructuring. The looks like the described template in Section 3.2. The Energy Refactor-
ing Catalog contains: Third-Party Advertisement, Binding Resources Too Early, Statement
Change, Backlight, and Data Transfer. All these are described in detail, and their energy
consumption before and after restructuring is measured and compared.

4.1 Third-Party Advertisement

Name: Third-Party Advertisement

Definition: Third-Party Advertisements are integrated code parts within applications which
display advertisements during the operation of these applications. Thereby, advertisements
do not have an influence on application’s functionality but consume much energy through
3G or Wi-Fi connection [PCHZ12, p. 2].

Motivation: Tests have shown that approximately 65 % of energy consumption results from
additional functionalities, such as advertisements, wakelocks, and location pinpoints, which
are not important for actual applications functionality [PCHZ12, p. 1]. Many popular, free
applications, like AngryBirds [Ang] and Leo [leo], include advertisements. Due to their
frequent usage, e.g. AngryBird has been installed about 100,000,000 times [Ang], the total
energy savings by conducting on Energy Refactoring are higher than by other applications
with less downloads. Advertisements consume much energy through the 3G or Wi-Fi con-
nection which updates advertisements every few seconds or minutes. For example, after
installing AngryBirds, a 3G or Wi-Fi connection is not required for the game, but for ad-
vertisements’ update. Hence, energy is saved for this application when the communication
with unrequired components stops [PCHZ12, p. 13]. Alternatives for users to remove ad-
vertisements are additional applications, like Adblock Plus [PF], which filter the data stream
of the 3G or Wi-Fi connection to remove advertisements from the screen [Hei12]. On the
one hand, this approach does not prevent the call of methods which are responsible for ad-
vertisements, and thus, reduces the energy consumption only a little through less changes on
the screen. On the other hand, the energy consumption could increase through the additional
application. This approach is checked by an energy measurement in Appendix B.

Constraints: The functionality of applications is not changed, but its behavior, inasmuch
as advertisements are not requested, and hence, advertisements are not displayed anymore.
Programmers and application vendors use advertisements to finance the development of ap-
plications, and hence, advertisements can not be deleted without any consequences. Due to
this restructuring, the GNU General Public License (GPL) [GNU] or other licenses in gen-
eral are often violated. Hence, this Energy Code Smell is tested and evaluated here but not
legally permitted without an agreement of programmers or vendors.

32 Energy Refactoring Catalog

Example: The example shows a part of an application’s source code which presents this
Energy Code Smell and gives an idea to detect it. It is shown in Figure 4.1 and represents
a small part of an Android application. This Android application includes advertisements
through the Google API ads (see lines 1–3). The layout of the advertisement is defined in
an XML-file which must be loaded (see line 8). The advertisement is displayed as Banner
during the application’s runtime (see lines 9–11). After that, advertisements from AdMob
[AdM] are loaded and integrated into the layout. This API can be used by Android, iOS, and
Windows phone applications [Goob], so that a similarity exists to detect this energy code
smell.

1 import com.google.ads.AdRequest;
2 import com.google.ads.AdSize;
3 import com.google.ads.AdView;
4 [...]
5

6 public void onCreate(Bundle savedInstanceState) {
7 [...]
8 LinearLayout layout = (LinearLayout)findViewById(R.id.ad);
9 AdView adView = new AdView(this, AdSize.BANNER, "a1516d1a3e604e5");

10 adView.loadAd(new AdRequest());
11 layout.addView(adView);
12 [...]
13 }

Figure 4.1: Example of Third-Party Advertisements

The usage of the Google API ads within Android applications is only possible, when the
manifest.xml (see Section 2.3.1) is changed. The part which must be included into the
manifest.xml is illustrated in Figure 4.2. Firstly, AdActivity from the Google API
ads must be included (see lines 2 – 4) to allow the configuration changes and the usage of
it. Additionally, the Android application needs a permission for the network access (see line
6), if Wi-Fi and 3G are not available.

1 [...]
2 <activity android:name="com.google.ads.AdActivity"
3 android:configChanges="keyboard|keyboardHidden|orientation|screenLayout|uiMode|

screenSize|smallestScreenSize">
4 </activity>
5 [...]
6 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" ></uses-

permission>
7 [...]

Figure 4.2: Ads into manifest.xml

Analysis: This Energy Code Smell can be detected by searching third-party APIs and calls
of their methods to display advertisements. Therefore, more information about applications
are needed to know which APIs could be used by programmers. This depends on the OS on
which applications run. If the OS is known, third-party APIs and their method calls can be
detected by querying special imports, initializations, and methods. However, various adver-
tisement APIs have to be known, as well.

Firstly, advertisement imports can be detected through seeking after an ImportState-
ment with a special name. A possible approach is shown in Figure 4.3. In this case, the

4.1 Third-Party Advertisement 33

wanted ImportStatement is called AdRequest (see line 2). If this statement detected,
all dependent nodes can be deleted.

1 from importRequest : V{frontend.java.ImportStatement}
2 with importRequest.element = "AdRequest"
3 report importRequest
4 end

Figure 4.3: Third-Party Advertisements Analysis 1

When imports are detected, the search after code which is part of this Energy Code Smell
could continue and is depicted in Figure 4.4. Therefore, code like code in Figure 4.2 from
line 8 to 11 is seek. In this case, an Access node is seek which is also called AdRequest
(see line 4). A further condition is that the Access node is part of a sequence of several
nodes (see lines 4–7) which are all integrated in the MethodType, named onCreate (see
line 8). This is necessary because Android allows advertisements only in this method. If a
node is detected, it will be returned and can be deleted.

1 from adRequestCall : V{frontend.java.Access}, adRCC : V{frontend.java.ConstructorCall},
2 adRCCN : V{frontend.java.NewObject}, caller : V{frontend.java.MethodCall},
3 onCreate : V{frontend.java.MethodType}
4 with adRequestCall.name = "AdRequest" and onCreate.name = "onCreate"
5 and adRequestCall <--{frontend.java.HasOperand} adRCC
6 <--{frontend.java.HasConstructorCall} adRCCN <--{frontend.java.HasOperand} caller
7 <--{frontend.java.HasExpression} <--{frontend.java.BlockContainsStatement}
8 <--{frontend.java.HasMethodBlock} onCreate
9 report adRequestCall

10 end
Figure 4.4: Third-Party Advertisements Analysis 2

Further queries are implemented to detect next nodes, such as AdView and AdSize. These
queries look similar to the described one and do not considered in this Section.

Restructuring: Code parts which are responsible for Third-Party Advertisements can be re-
moved without any influence to on applications’ functionality. But it is important to remove
all code parts of third-party APIs, otherwise the source code might contain errors, e.g. when
imports of APIs are deleted but not all method calls. Except for the deletion of advertise-
ments request, advertisements can be replaced by an image which is saved on the memory
card. Thereby, the image can be monochrome, e.g. black or white, or multi-colored, e.g.
a picture. It is possible that several images have a different influence on energy consump-
tion. In addition, advertisements’ display can be suppressed by removing the method which
adds the advertisements to applications layout (Figure 4.1 line 11). But the energy costs for
communication still exist (Figure 4.1 lines 8–10). In this case, the complete removing of
advertisements is done to save energy through displaying and communication.

Removing imports is done by delete nodes and edges which are necessary for the import and
a part of it is shown in Figure 4.5. Therefore, the nodes are chosen (see lines 2 – 4) and all
their edges are saved in an Iterable. Edges of each node are deleted before the node is
deleted (see lines 6–9) because after removing the node no access to their edges is available.

34 Energy Refactoring Catalog

1 public void removeImports(JValue jValue){
2 JValueCollection vertexCollection = jValue.toCollection();
3 JValue requestVertex = vertexCollection.toJValueList().get(0);
4 Vertex vertexAdRequestImport = requestVertex.toVertex();
5 Iterable<Edge> list = vertexAdRequestImport.incidences();
6 deleteEdges(makeCollection(list));
7 deleteNextVertex(vertexAdRequestImport, vertexAdRequestImport
8 .getAttribute("element").toString());
9 vertexAdRequestImport.delete();

10 }
Figure 4.5: Restructuring of Imports

Evaluation: A first evaluation with the application GpsPrint shows the result of the en-
ergy refactoring Third-Party Advertisement. Figure 4.7 depicts the measurements with and
without advertisements. Before the measurement results are considered, the mobile device
settings are shown in table 4.1.

Table 4.1: Mobile Device Settings for Third-Party Advertisements (GpsPrint)

Figure 4.6a shows the file-based measurement which results that the energy consumption of
GpsPrint with advertisements (red line) is higher than without advertisements (green line).
The energy saving amounts 1356 J within two hours. This is a reduction of 21 % of the en-
ergy consumption. Due to thus measurements, it is shown that the total energy consumption
of applications can be reduced through removing advertisements.

The Energy Profiling in Figure 4.6b shows a difference from 32 J in which the application
with advertisements consumes less energy. In most cases, removing advertisements can save
the Wi-Fi component but here the Wi-Fi is used to check the address of the current location,
hence the Wi-Fi works during the whole applications runtime. Only the data traffic of this
application is reduced which can not be considered by Energy Profiling because the Wi-Fi
component can not remain idle when the address data are checked by GpsPrint. Also, the
measurement results deviates from the other measurement results because the Power Profile
has changed after the last firmware update. A detailed explanation is given in Section 2.5.3.

The delta-B measurement in Figure 4.6c shows the same trend like the other two. The dif-
ference amounts 1261 J, and also, shows that energy saving by removing advertisements is
possible.

4.1 Third-Party Advertisement 35

(a) File-based Measurement

(b) Energy Profiling

(c) Delta-B Measurement

Figure 4.6: Measurement of GPSPrint with and without Ads

36 Energy Refactoring Catalog

A second evaluation is done with the application TreeGenerator (cf. Section 2.6). It is
shown in Figure 4.7. In this case, TreeGenerator is modified, so that the Internet access is
only needed for advertisements, and hence, the pictures of the trees are deleted to reduce
requests via Internet. Therefore, the Wi-Fi component can be switched off for the measure-
ment without advertisements. Hence, three different measurements are made. During two
measurements the Wi-Fi component is switched on (red and green lines), and during one
measurement it is switched off (blue line). But, advertisements are requested and displayed
only during one measurement (red line). The other two measurements are without advertise-
ments (green and blue lines). In Table 4.2 the mobile device settings for these measurements
are represented.

Table 4.2: Mobile Device Settings for Third-Party Advertisements (TreeGenerator)

The first graph 4.7a shows the results of the measurement technique file-based measurement.
TreeGenerator with advertisements consumes significantly more energy than the other two
scenarios. The difference with TreeGenerator without advertisements and a switched on Wi-
Fi component amounts 1345 J within two hours. The difference with TreeGenerator without
advertisements and a switch off Wi-Fi component amounts 1629 J within two hours, so that
the difference between switched on and off Wi-Fi component amounts 284 J.

The Energy Profiling in Figure 4.7b shows a lesser differences and general lesser values.
These values are dependent on the Power Profile which is explained in Section 2.5.3 and
shows why the values differ from the other measurements. TreeGenerator with advertise-
ments needs 308 J, without advertisements 274 J are consumed, and without advertisements
and switched off Wi-Fi component 269 J are used.

Finally, the delta-B measurement in Figure 4.7c is depicted. This measurement shows the
highest energy consumption for TreeGenerator. TreeGenerator with advertisements con-
sumes 4814 J and its difference to TreeGenerator without advertisements amounts 810 J and
to TreeGenerator without advertisements and Wi-Fi component 1401 J. These measurements
have the largest difference between TreeGenerator with Wi-Fi and without, it amounts 591 J,
and hence, it shows the energy consumption of the Wi-Fi component.

4.1 Third-Party Advertisement 37

(a) File-based Measurement

(b) Energy Profiling

(c) Delta-B Measurement

Figure 4.7: Measurement of TreeGenerator with and without Ads

38 Energy Refactoring Catalog

Both evaluations show that removing advertisements within applications saves energy and
has no influence on the functionality of applications. It is even possible that the Internet
connection can be turned off without influence on applications when advertisements are re-
moved. Thereby, these measurement techniques shows an energy savings of approximately
30 % are possible (cf. Figure 4.7a). This matches the values in Pathak et. al [PCHZ12, p. 1]
where still more energy is saved by removing advertisements.

4.2 Binding Resources Too Early

Name: Binding Resources Too Early (BRTE)

Definition: Binding Resources Too Early describes hardware components, such as Wi-Fi
and GPS, which are switched on by applications at an early stage when components are not
needed by the application or user [PCHZ11] [GJJW12, p. 6].

Motivation: The energy consumption of several hardware components can be very high
[CH10], so that it is important to reduce the runtime and uptime of these components, e.g.
reduce the runtime of GPS and reduce the uptime of CPU. One option would be to start
these components only when they are really needed. Carroll and Heiser have demonstrated
through several measurements that the most energy saving can be realized by the shutdown
of unused components, which finally consume energy [CH10, p. 11]. Hence, this Energy
Refactoring tries to reduce the runtime of components to produce maximum benefits.

Constraints: Binding Resources Too Early can only be detected and removed when the pro-
grammer knows the OS-specific structure with regard to the energy efficiency, which is some-
times given by the vendor, e.g. the Android Life Cycle which is described in Section 2.3.2.
Furthermore, the programmer must know which notifications or hardware states are typical
for the method call of a hardware component, such as lm.requestLocationUpdate
in Figure 4.8 line 16, in order not to forget to shift code parts which would cause an error
after refactoring. So, it must be considered that manual decisions are necessary to execute a
successful refactoring and platform-specific knowledge are also necessary.

Example: This is an Android specific example which is structured according to the Android
life cycle in Section 2.3.2. The Android life cycle describes several states in which methods,
such as onCreate() and onResume(), are called during switching between the states.
These two methods can be seen in Figure 4.8 which presents a source code part of GpsPrint.
On the left site the original code of GpsPrint is shown, where the GPS component is started in
onCreate() in line 16 by lm.requestLocationUpdates(...). On the right site
the restructured code is shown. The whole part of starting GPS and saving the component
status is shifted to the method onResume() which is called later than onCreate(). As
a result, that the GPS starts when it is needed, in this case when the application is visible for
the user.

4.2 Binding Resources Too Early 39

1 public class GpsPrint extends Activity
2 implements OnClickListener,Listener,
3 LocationListener {
4 [...]
5 public void onCreate(Bundle
6 savedInstanceState) {
7 [...]
8 LocationManager lm=(LocationManager)
9 this.getSystemService(Context.

10 LOCATION_SERVICE);
11 if(lm.getAllProviders().contains(
12 LocationManager.GPS_PROVIDER)){
13 if(lm.isProviderEnabled(
14 LocationManager.GPS_PROVIDER)){
15 lm.addGpsStatusListener(this);
16 lm.requestLocationUpdates(
17 LocationManager.GPS_PROVIDER,

1000, 0, this);
18 status_view.setText(
19 "GPS service started");
20 } else {
21 status_view.setText(
22 "Please enable GPS");
23 save_location_button.setEnabled(
24 false); }
25 [...] }
26 [...]
27 public void onPause() {
28 [...]
29 lm.removeUpdates(this);
30 [...] }
31 public void onResume() {
32 [...]
33 lm.requestLocationUpdates(
34 LocationManager.GPS_PROVIDER,
35 1000, 0, this);
36 [...] }
37 } Before Refactoring

1 public class GpsPrint extends Activity
2 implements OnClickListener,Listener,
3 LocationListener {
4 [...]
5 public void onCreate(Bundle
6 savedInstanceState) {
7 [...]
8 LocationManager lm=(LocationManager)
9 this.getSystemService(Context.

10 LOCATION_SERVICE);
11 //removed by refactoring
12

13 [...] }
14 [...]
15 public void onPause() {
16 [...]
17 lm.removeUpdates(this);
18 [...] }
19 public void onResume() {
20 [...]
21 if(lm.getAllProviders().contains(
22 LocationManager.GPS_PROVIDER))
23 if(lm.isProviderEnabled(
24 LocationManager.GPS_PROVIDER)){
25 lm.addGpsStatusListener(this);
26 lm.requestLocationUpdates(
27 LocationManager.GPS_PROVIDER,

1000, 0, this);
28 status_view.setText(
29 "GPS service started");
30 } else {
31 status_view.setText(
32 "Please enable GPS");
33 save_location_button.setEnabled(
34 false); }
35 }
36 [...] }
37 } After Refactoring

Figure 4.8: Example of Binding resources too early

Analysis: To detect this energy refactoring, specific method calls for hardware components
must be known which can be dependent on the OS. If the method calls for components, such
as GPS, Wi-Fi, and Blue-tooth, are known, it will be possible to search for these method
calls by querying. An example is shown in Figure 4.9.

The query seeks for a method call which starts a hardware component, in this example the
GPS is started through the method requestLocationUpdates. If this method is de-
tected and it is called by the node onCreate which is a part of any class (here GpsPrint)
which extends the class Activity, the node onCreate will be returned. In addition, a
second query proofs whether the method requestLocationUpdates is called by the
method onResume which must be also a part of GpsPrint. If the method onResume does
not call requestLocationUpdates, a third query will be executed which return the
method onResume anyway, when it is a part of GpsPrint. With these three information the
transformation for this Energy Refactoring is done.

40 Energy Refactoring Catalog

1 from onCreate, caller : V{frontend.java.MethodType}, "actClass : V{frontend.java.Class},
superClass, callee : V{frontend.java.DataObject}

2 with onCreate.name = \"onCreate\" and superClass.fullyQualifiedName = \"android.app.
Activity\" and callee.name = \"requestLocationUpdates\" and
callee <--{frontend.java.ext.CallsMethod} caller (<--{frontend.java.
DataObjectHasType} <--{frontend.java.ext.CallsMethod})* onCreate <--{frontend.java.
DataObjectHasType}<--{frontend.java.HasMethod} actClass -->{frontend.java.
HasSuperClass} superClass

3 report onCreate
4 end

Figure 4.9: Binding Resources Too Early Analyze

Restructuring: After detecting a method call in a too early state, the call must be shifted
into the right place. Therefore, the structure of applications for a specific OS must be known
to decide where the code is shifted. This must be tested by a programmer who has semantic
program understanding in order not to change applications functionality. In this regard, it
should be considered that all code parts are shifted which are connected with the component
method call, such as comments and hardware state storages. The realized transformation
in Figure 4.10 only shifts the method requestLocationUpdates which is responsible
for starting the GPS is, the comments must be shifted manually because their structure is to
individual.

1 if (edge.getOmega().getAttribute("name").equals("requestLocationUpdates")) {
2 if(onResumeV.toCollection().size()==0){
3 edge.delete();
4 } else {
5 [...]
6 edge.setAlpha(onResumeV.toVertex());
7 [...]
8 }
9 }

Figure 4.10: Binding Resources Too Early Restructuring

First, it is tested which edge of the node onCreate calls the method requestLoca-
tionUpdates, this is shown in line 1. If this edge is detected, it will be proofed whether
the same call exist in onResume or not (line 2). If the method call requestLoca-
tionUpdates does not exist in onResume, the method requestLocationUpdates
(called by onCreate before) is shifted to onResume (line 6). Otherwise, the edge can be
deleted without any dependencies.

Evaluation: After restructuring, an energy measurement is done to check the possible
energy saving. The tested application is GpsPrint, and hence, the mobile device settings
are depicted in Table 4.3. GPS and Wi-Fi are switched on for both measurements (with and
without Binding Resources Too Early) to get the coordinate and to localize the mobile device
the whole time.

4.2 Binding Resources Too Early 41

Table 4.3: Mobile Device Settings for Binding Resources Too Early

The result of the file-based measurement is shown in Figure 4.11a. Theses graphs illustrate
the average of seven measurements to get a significant result. The HTC and the running
application GpsPrint with Binding Resources Too Early (BRTE) consume 11903 J (red line).
After that, GpsPrint without Binding Resources Too Early is tested and consumes 11276 J.
Hence, the energy saving amounts 627 J within two hours.

The second measurement result based on Energy Profiling and is shown in Figure 4.11b. The
difference amounts 275 J within two hours, and hence, it is minimal like the measurement
before shows. However, these measurement results are strange in comparison to the other
measurements in Figure 4.11a and 4.11c. The difference of the total energy consumption is
clearly visible in Figure 4.11a and 4.11b, it amounts about 10922 J. The reason is the updated
HTC Power Profile which contains lower current values than before. This is described in
Section 2.5.3.

The result of the delta-B measurement is depicted in Figure 4.11c. The total energy consump-
tion for the HTC and the application GpsPrint with Binding Resources Too Early amounts
19566 J and without Binding Resources Too Early 16032 J. This measurement shows the
same trend like the file-based measurement, i.e. the energy saving amounts 3534 J within
two hours.

This evaluation shows that energy savings for Android applications are possible when the
Android Life Cycle in Section 2.3.2 is followed. The delta-B measurement illustrates an
energy saving of approximately 18 % and the Energy Profiling even shows an energy saving
of 28 % in which it is not known how good the Power Profile of it is (cf. Section 2.5.3). This
Energy Refactoring is a software-specific one, because the Android Life Cycle is only for
the Android OS and can not be transmitted to other OSs. However, similar structure could
exist for their life cycle.

42 Energy Refactoring Catalog

(a) File-based Measurement

(b) Energy Profiling

(c) Delta-B Measurement

Figure 4.11: Measurement of GPSPrint with and without BRTE

4.3 Statement Change 43

4.3 Statement Change

Name: Statement Change

Definition: Statement Change describes two statements, in this case, if and switchwhich
can be interchanged, because both statements are used to run code parts under certain condi-
tions [Ull11, ch. 2.6].

Motivation: During the 2nd EASED Workshop (Energy-Aware Software-Engineering De-
velopment) [BS13] some ideas about energy-aware programming were discussed. One of
these ideas was the interchange of if- and switch-statements within applications. For
Android applications, it is checked in this thesis, because no literature was found which de-
scribes or checks this idea by an energy measurement. Currently, switch-statements are
used for a better code maintenance because a sequence of switch-statements is more clear
than a sequence of if-statements [Ull11, ch. 2.6].

Constraints: Switch and if are used to make decisions during the program runtime.
But they do not work completely similar, e.g. after a match with one case in switch-
statements, all other assignments are executed when no break is used (called Fall-Through
[Ull11, ch. 2.6]). If-statements are only executed when the condition is true, and hence,
no break is needed. Furthermore, if can be used for comparisons with all data types
and switch only with integer, enum, and String (since Java 7). Android SDK 18.0
works with Java 1.6, and hence, a comparison with Strings is not allowed. These dif-
ferences limit the usage of switch within Android applications. Also, switch works
only with constant operators. Hence, an additional method must be created which gets an
operator which can be changed during applications runtime (cf. Figure 4.12) [Ull11, ch. 2.6].

Example: Figure 4.12 shows an example for the two statements. The statements if (left
side of Figure 4.12) and switch (right side of Figure 4.12) are chosen. Both code parts
have the same functionality and are implemented in TreeGenerator (cf. Section 2.6). Firstly,
it should be noted that switch-statements need more lines of code to implemented the same
functionality like if- statements. The reason is, that switch-statements are outsourced in
new methods (see lines 9, 12, 20, and 34) and an enum must be created to define values
which can be compared in switch-statements (see line 1). Secondly, each case ends with
a break to prevent the Fall-Through (see lines 25, 28, 31, 39, and 42). Finally, a for loop
are needed to compare all enum values with the current chosen tree (see lines 11–17), so
that the method switchTreeTypes() (line 13) runs for them all.

44 Energy Refactoring Catalog

1 // tree generator
2 class ValueTask extends TimerTask {
3 @Override
4 public void run() {
5 MainActivity.this.runOnUiThread(

new Runnable() {
6 @Override
7 public void run() {
8 i = (int) (Math.random() *

50);
9 //tree list

10 if(i == 1) {
11 value.setText("Nikko-Tanne");
12 } else if(i == 2){
13 value.setText("Riesen-Tanne");
14 } else if(i == 3){
15 value.setText("Nordmanntanne");
16 }
17 [...]
18 //tree type list
19 if (value.getText().toString().

equals("Blauregen")){
20 type.setText("Strauch");
21 } else if (value.getText().toString

().equals("Weisstanne")){
22 type.setText("Tanne");
23 }
24 [...]
25 }

1 private enum Tree {Blauregen, Weisstanne
, Nordmanntanne, Blaufichte,
Douglasie, Umweltmammutbaum, Spirke,
Weymouthskiefer, Zirbelkiefer,

Blauglockenbaum, Sadebaum;}
2 // tree generator
3 class ValueTask extends TimerTask {
4 @Override
5 public void run() {
6 MainActivity.this.runOnUiThread(new

Runnable() {
7 @Override
8 public void run() {
9 j = (int) (Math.random() * 50);

10 switchTree(j);
11 for (Tree tree : Tree.values()) {
12 if (value.getText().toString().

equals(tree.toString())) {
13 switchTreeType(tree);
14 break;
15 } else {
16 type.setText("not

specified");
17 }
18 [...]
19 }
20 // tree list
21 public void switchTree(int random) {
22 switch (random) {
23 case 1:
24 value.setText("Nikko-Tanne");
25 break;
26 case 2:
27 value.setText("Riesen-Tanne");
28 break;
29 case 3:
30 value.setText("Nordmanntanne");
31 break;
32 [...]
33 }
34 // tree type list
35 public void switchTreeType(Tree tree) {
36 switch (tree) {
37 case Blauregen:
38 type.setText("Strauch");
39 break;
40 case Weisstanne:
41 type.setText("Tanne");
42 break;
43 [...]
44 }

Figure 4.12: Example for Statement Change

4.3 Statement Change 45

Analysis: This Energy Refactoring can be detected by a query which seeks if-statements
with more than three else-statements. Three else-statements should be the minimum
when if-statements are replaced through switch-statements because the effort is too high
when each simple if-statement is identified and must be checked by a programmer. Fur-
thermore, the restructuring should have an influence on the energy consumption, and hence,
changes should not be too small. The query to find these if-statements could look like the
GReQL query in Figure 4.13.

1 from ifStatement : V{frontend.java.IfStatement}, class : V{frontend.java.Class},
method : V{frontend.java.DataObject}

2 with ifStatement (<--{frontend.java.HasElseStatement} <--{frontend.java.HasElseStatement
} <--{frontend.java.HasElseStatement})+ <--{frontend.java.BlockContainsStatement}
[<--{frontend.java.HasMethodBlock} <--{frontend.java.DataObjectHasType} method
<--{frontend.java.HasMethod}] class

3 report ifStatement, method, class
4 end

Figure 4.13: Statement Change Analyze

The query seeks for three nodes: ifStatement, method, and class, to get information
in which method and class if-statements with more than three else-statements are used.
Therefor, (<-frontend.java.HasElseStatement <-frontend.java.HasEl-
seStatement <-frontend.java.HasElseStatement)+ are requested. This de-
monstrate that only statements are identified which have at least three other statements before
directly. The symbol + denotes that the edges inside the parentheses must be occur once. In
any case, statements are a part of a block which is a part of a class or a method, hence,
the symbol [] is used to represent a method and its call between class and block which is
optional.

Restructuring: In this case, an automatic restructuring is very difficult because many changes
must be done, e.g. when enums are needed because Strings are used within if condi-
tions. Furthermore, the nodes for the if-statement must be changed and shifted into a new
method when the condition is not constant. Hence, it is easier to make the change by a pro-
grammer who decides whether a manually restructuring is sensible or not. The programmer
is supported by the analyze which returns methods with if-statements which have more
than three else-statements.

Evaluation: The energy measurement is done with the application TreeGenerator (cf. Sec-
tion 2.6) but without advertisements and pictures (cf. Section 2.6) to have less components
which have an influence on the energy consumption. Also, the frequency of showing tree
types is increased to each second instead of each three seconds. The mobile device settings
are presented in Table 4.4

For the energy measurement, also the three measurement techniques, file-based measure-
ment, Energy Profiling, and delta-B measurement, are used. The measurement results in Fig-
ure 4.14 show that their is not a significant difference concerning the energy consumption
between if- and switch-statements. All results of the several measurement techniques

46 Energy Refactoring Catalog

Table 4.4: Mobile Device Settings for Statement Change

show a very minor difference between if and switch, and hence, it can now be said that
both statements consume the same energy.

The file-based measurement in Figure 4.14a shows a difference of 142 J in which the ap-
plication with if-statements need more energy. However, the values of the first part of the
measurement are similar for both statements, the second part shows the small difference. The
consumed energy for if-statements amounts 3965 J and for switch-statements it amounts
3823 J within two hours.

In Figure 4.14b the Energy Profiling represents a small difference of 23 J, but in this case,
the application with switch-statements need more energy. The variant with switch-
statement consumes 297 J and with if-statement it consumes 274 J. The difference to the
other two measurements arises from the changed HTC Power Profile (cf. Section 2.5.3).

The delta-B measurement in Figure 4.14c shows a difference of 386 J, but here the appli-
cation with if-statements consumes more energy. The energy consumption for the variant
with if-statements amounts 3768 J and for switch-statements it amounts 3382 J.

The measurement results show that no major difference between if- and switch-statements
according to the energy consumption exist in this use case. Further use cases exist to proof
the energy consumption of if- and switch-statements, e.g. running an application with a
million of ifs or switchs without a timer which influences the CPU. Energy Profiling in
Figure 4.14b depicts that switch-statements consumes a little more energy. The other two
measurements show the contrary. But, the difference is so small that the effort is too high
to swap if to switch or otherwise. Generally, the energy consumption must be tested
for several cases, maybe integer are more energy-efficient for switch-statements and
Strings for if-statements, because switch-statements map all possible data types on
integers also Strings [Ull11, ch. 2.6.4].

4.3 Statement Change 47

(a) File-based Measurement

(b) Energy Profiling

(c) Delta-B Measurement

Figure 4.14: Measurement of TreeGenerator with if- and switch-statement

48 Energy Refactoring Catalog

4.4 Backlight

Name: Backlight

Definition: Backlight means the background color of an application. For different screen
technologies (Super LCD and Super AMOLED) the energy consumption could variate for
several background colors [CCMF13].

Motivation: Super AMOLED (Active-Matrix Organic Light Emitting Diode) screens have
begun to replace LCD (Liquid Crystal Display) screens in smartphones, because AMOLED
screens offer a better quality and higher energy efficiency [CCMF13, p. 1]. The energy-
efficiency is realized by its unique lighting technique, i.e. one pixel is subdivided into three
sub-pixel which represents the color red, green, and blue. The energy consumption of each
pixel is dependent on the displayed color, i.e. more intensive colors consume more energy
[CCMF13, p. 3]. In addition, each pixel can be switched on or off [Ste12]. A LCD screen
always needs backlight to display several colors which are generated by each pixel sepa-
rately [CSC02, p. 113]. For one LCD screen the energy consumption of the several colors
is presented [CSC02, p. 114] and it shows that a black background consumes more energy
than a white background. In this master’s thesis the HTC and S4 are used to validate this
Energy Refactoring, the S4 has a Full HD Super AMOLED screen and the HTC has a Super
LCD 2 screen (cf. Section 2.4).

Constraints: The motivation also contains the constraint that several devices use different
screen technologies, at which they consume different energy for several colors. Hence, ap-
plications must be adapted according to hardware information on the screen. Hence, the
Energy Refactoring can base on a strategy pattern [?] which decides at runtime which screen
is built-in to chose the right Energy Refactoring.

Example: Android applications define the background in activity_main.xml where
the complete layout of it is described. In Figure 4.15 a small part of this XML is shown. In
this case, the background color is defined in line 3 android:background="@color/-
black. The color type black is assigned to the attribute @color. In another XML
(strings.xml) the color type is defined which uses the RGB schema. Further components for
the layout are defined in this file, e.g. lines 5–10 show a text filed which is displayed during
applications runtime. For this text field several layout parameters are determined, e.g. text
size, style, and position. But they are not relevant for this Energy Refactoring.

1 <RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
2 android:background="@color/black"
3 [...]>
4 <TextView
5 android:id="@+id/time"
6 android:textSize="18sp"
7 android:textStyle="bold"
8 [...]>
9 [...]

10 </RelativeLayout>

Figure 4.15: Backlight in activity_main.xml

4.4 Backlight 49

Analysis: Information of applications layout are saved in the auto-generated class R. If
Backlight can be detected by the TGraph approach (cf. Section 2.2), the needed informa-
tion are saved in this class. After analyzing the generated TGraph, it is not possible to get
information about the background color of an application because it is only saved in ac-
tivity_main.xml and it is not assigned into the auto-generated class R. In R several
colors are defined which can be used for the background, also some layout information are
saved, e.g. horizontal and vertical margins. Hence, this Energy Refactoring cannot be de-
tected by this approach because all information and hints to it are in an XML file which is not
considered in the Java TGraph approach in Section 2.2. This is not a general problem of the
TGraph approach because it is possible to extend the presented Java meta model in Figure
2.4, so that it contains Android-specific parts which can be represented in TGraphs of parsed
Android applications. However, it can be checked whether the color black is used for the
application, like the query in Figure 4.16 shows. If black is not used, the Energy Refactoring
for AMOLED screens could exist.

1 from color : V{frontend.java.DataObject}, class : V{frontend.java.Class}
2 with color.name = \"black\" and class.name = \"color\" and color <--{frontend.java.

HasField} class
3 report color
4 end

Figure 4.16: Backlight Analyze

The query returns one node: color. This node contains one value, when the color black is
defined in class Color, which is queried through color <-{frontend.java.Has-
Field} class.

Restructuring: If this Energy Refactoring exists, a new color type must be saved into
strings.xml and assigned to the attribute @color in activity_main.xml. In this
master’s thesis only Java files are considered by the TGraph approach in Section 2.2, hence,
this Energy Refactoring cannot be executed through the functionality of JGraLab when only
Java files are parsed into TGraphs. Therefor, Backlight must be done manually.

50 Energy Refactoring Catalog

Evaluation: The evaluation of this Energy Refactoring is done on two several mobile de-
vices, HTC and S4. For the energy measurements, the application TreeGenerator is modified,
so that more pixel displays the black or white background otherwise it is covered by the pic-
tures for the trees and advertisements (cf. Section 2.6). Firstly, the evaluation for the HTC
with the LCD screen is executed. In Table 4.5 the mobile device settings for the HTC are
depicted. It can be seen that all components expect for the screen are switched off. In Figure
4.17 the results for the measurement are illustrated.

Table 4.5: Mobile Device Settings for Backlight on the HTC

The graph in Figure 4.17a shows the file-based measurement for a white and black back-
ground color of the application TreeGenerator. The energy consumption for a white back-
ground amounts 3681 J and for a black background 3796 J. The difference is 115 J, and
hence, it is very little.

The results for Backlight with the Energy Profiling are depicted in Figure 4.17b. TreeGener-
ator with white background consumes 272 J and with black background it consumes 269 J.
Hence, the difference amounts 3 J, and hence, it does not constitutes a significant difference.
The difference to the other two measurement techniques arises from the changed HTC Power
Profile (cf. Section 2.5.3).

In Figure 4.17c the results for the delta-B measurement are shown. This measurement shows
as well as the other two measurements that TreeGenerator with a black background consumes
a little more energy than with a white background. The difference amounts 102 J.

All three measurements show that a black background for the HTC consumes a little more
energy than a white background. This agrees with the measurement results in Choi et. al
[CSC02, p. 114]. Hence, for saving energy on LCD screen it makes sense to use a white
background color into applications.

4.4 Backlight 51

(a) File-based Measurement

(b) Energy Profiling

(c) Delta-B Measurement

Figure 4.17: Measurement of TreeGenerator with white and black background
(HTC)

52 Energy Refactoring Catalog

The second validation with the S4 are illustrated in Figure 4.18 and contains only two mea-
surement techniques delta-B measurement and Energy Profiling (cf. Section 2.5) because the
file-based measurement is not support for Samsung devices. The mobile device settings in
Table 4.6 differs from the setting in Table 4.5. For this measurement, the screen brightness
is set to the highest level to improve the comparability with the measurements in Chen et. al
[CCMF13, p. 2] because they also tested mobile devices with AMOLED screen and similar
settings. The list of background applications is longer than for the HTC because some appli-
cations cannot stop completely without data loss (Google Play Music, Uhr, and AntiVirus).
The S4 screen cannot be permanently on because it is not destined by Samsung. Hence, the
application Screen On Toggler is installed which stops the screen stand-by and lets its on
which is necessary to run the application TreeGenerator. The Offline modus is chosen to
stop all notifications. Also, further applications are installed but they do not run during the
measurements.

Table 4.6: Mobile Device Settings for Backlight on the S4

Figure 4.18a shows the results of the energy measurement with Energy Profiling. It shows
a significant difference between TreeGenerator with a white and black background. For
TreeGenerator with white background 26152 J are consumed and 19184 J for TreeGenerator
with black background. Hence, the difference amounts 6968 J. This is an energy saving of
approximately 30 % when the background color for a Super AMOLED screen is changed.

The delta-B measurement is depicted in Figure 4.18b. This measurement shows a deeper
differences than Energy Profiling. Here, the application consumes 10400 J with a white
background and 4517 J with a black background. The difference amounts 5883 J which
presents an energy saving of approximately 60 %.

These energy measurements for HTC and S4 show a hardware-dependently Energy Code
Smell which can be removed by a hardware-independently restructuring because the source
code is for both mobile devices the same. Hence, if the screen technology for mobile devices
is known, a restructuring can be done which is aligned to the technology, e.g. if a AMOLED
screen is used, it should be checked whether black is used as background.

4.5 Data Transfer 53

(a) Energy Profiling

(b) Delta-B

Figure 4.18: Measurement of TreeGenerator with white and black background (S4)

4.5 Data Transfer

Name: Data Transfer

Definition: Data Transfer means to load data from a server via Wi-Fi during applications
runtime instead of reading-out these data from the applications storage.

Motivation: Many applications use data, such as images, videos, and sound effects. Pro-
grammers can decide where these data are stored. On the one hand, all data can be stored
on applications storage (on memory card) during the installation of applications. On the
other hand, all data can be stored on a server and applications are able to access these data
after installing, and when an Internet access is available. The measurements in Carroll and
Heiser [CH10, p. 6] recommend to save the data on memory card. They show that reading a
file from memory card needs approximately 45 mW, whereas loading a file via Internet needs

54 Energy Refactoring Catalog

approximately 710 mW. In both cases, the power for CPU and RAM are nearly the same,
but they tested files with different file sizes (in proportion the Wi-Fi also consumes more
energy) [CH10, p. 6]. This measurement is hardware-dependent and the measurements by
Carroll and Heiser use the Openmoko [CH10, p. 2]. After first measurements, a further
possibility exists which depicts a mix of the above described approaches. Data can be loaded
from a server, and thereupon, these data can be stored in applications cache. While appli-
cations cache is not cleared, the data do not have to be loaded again from the server which
saves energy. Hence, this two variants are considered.

Constraints: Saving data on applications storage needs storage space on mobile devices
while an application is installed and the whole time when it is installed. So, users should
known how big the storage of their memory card is, when they install many applications
which save all data on their storage. But, loading all data via Internet generates a high data
traffic each time when applications run. And if no Internet access available, applications will
not run, except data which are stored in cache. If the data access of an application should
be changed from loading data from server to store data on memory a programmer is nec-
essary who loads all data and creates a folder for them within the application. Also, many
code parts must be changed what is very difficult for an automatic transformation (cf. Figure
4.19). Also, for both approaches an API is needed which must be known to detect Data
Transfer.

Example: How the source code of an Android application can look like is demonstrated
in Figure 4.19. It shows on the left side the code for loading data from server, and on the
right side data are read from memory card. To load data from a server an additional free
API com.androidquery.AQuery [Andc] (line 4) is needed to request the picture on
the server (lines 8 and 11). Also, it must be decided whether the cache is used or not, and an
alternative picture can be chosen when the server does not answer, in this case, ic_launcher is
chosen which is the applications symbol. The decision concerning the usage of the cache is
the second form of this Energy Refactoring which was named in the motivation part. The two
booleans in line 8 are set to false, hence cache is not used, when these values set to true
cache is used during runtime. This is not depicted in Figure 4.19, but it is considered in the
analysis part of this Energy Refactoring. The code on the right side in Figure 4.19 demon-
strates the same functionality but the data are read-out from the application storage instead of
loading it from the Internet. Therefor, the API android.content.res.Resources
(line 4) is used as a standard Android API. Data are read by this API (lines 8 and 12) and
then it is binded on pic which is a component of the Android layout (lines 9 and 13).

4.5 Data Transfer 55

1 @Override
2 public void run() {
3 i = (int) (Math.random() * 51);
4 AQuery aq = new AQuery(pic);
5 //tree list
6 if(i == 1) {
7 value.setText("Nikko-Tanne");
8 aq.id(pic).image("http://

mgottschalk.eu/img/bilder/
nikko.jpg", false, false, 200,
R.drawable.ic_launcher);

9 } else if(i == 2){
10 value.setText("Riesen-Tanne");
11 aq.id(pic).image("http://

mgottschalk.eu/img/bilder/
riesentanne.jpg", false, false
, 200, R.drawable.ic_launcher)
;

12 }
13 [...]
14 }

1 @Override
2 public void run() {
3 i = (int) (Math.random() * 51);
4 Resources res = getResources();
5 //tree list
6 if(i == 1) {
7 value.setText("Nikko-Tanne");
8 Drawable picture = res.getDrawable

(R.drawable.nikko);
9 pic.setImageDrawable(picture);

10 } else if(i == 2){
11 value.setText("Riesen-Tanne");
12 Drawable picture = res.getDrawable

(R.drawable.riesentanne);
13 pic.setImageDrawable(picture);
14 }
15 [...]
16 }

Figure 4.19: Example for DataTransfer

Analysis: The analysis shows the case, that data are loaded from Internet without using
cache, and hence, the object is to use applications cache. Firstly, to detect this Energy Code
Smell the API com.androidquery.AQuery should be identified. Secondly, if this API
is detected, the other code parts can be seek. The query for the import statement is nearly the
same like the import query for advertisements in Figure 4.3, and hence, it is not explained
any further. In Figure 4.20 the query to identify the method of AQuery for loading data
from a server is depicted. Within this method two literals are used to decide whether the
devices or the applications cache should be used during applications runtime.

1 from cache : V{frontend.java.Literal}, block : V{frontend.java.Block}, image : V{
frontend.java.Access}, aquery : V{frontend.java.Class}

2 with cache.value = "false" and aquery.name = "AQuery" and
cache <--{frontend.java.HasOperand} <--{frontend.java.HasExpression} <--{frontend.
java.BlockContainsStatement} block
-->{frontend.java.BlockContainsStatement} -->{frontend.java.HasExpression} (-->{
frontend.java.HasOperand})* -->{frontend.java.HasExpressionType} -->{frontend.java.
HasNamedType} -->{frontend.java.HasExpressionType} aquery and
image <--{frontend.java.HasOperand} <--{frontend.java.HasOperand} <--{frontend.java.
HasExpression} <--{frontend.java.BlockContainsStatement} block

3 report cache
4 end

Figure 4.20: DataTransfer Analysis

The query seeks for literals which have the value false and belongs to the same Block as
the method image, which is called by an object of the class AQuery. Each block of an
application is checked whether it includes cache with the value false (2 — 3 lines within
the with part). Thereafter, it is checked whether the block contains an object of the class
AQuery (4 – 6 lines). At least, it is tested whether image is called within this block (7 – 8
lines). All matching literals are returned and can be restructured.

56 Energy Refactoring Catalog

The analysis for the other variant of this Energy Refactoring (storing data on the mobile
device instead loading from Internet) would have a different query. The first query for the
import statements would be the same, and thereafter, it would only seek for the method call
image to know which part of the code must be replaced. The replacement could be with
the Android API android.content.res.Resource which is demonstrated in Figure
4.19 by the example. This Energy Refactoring is not realized, and hence, it is not considered
any further.

Restructuring: In this master’s thesis the restructuring considers only the case, that the
applications cache is not used which should be changed. If data are loaded from server, it
can be validated whether data are stored in cache or not. If these data are not stored, the
boolean values in lines 8 and 11 of the example in Figure 4.19 must be changed to true.
This restructuring is illustrated in Figure 4.21. The results of the query in Figure 4.20 are
saved as jValueList, it contains all detected literals. Figure 4.21 shows that all literals
are checked again in line 2 before the value of the literals is changed in line 3.

1 for(int i = 0; i < jValueList.size(); i++){
2 if(jValueList.get(i).toVertex().getAttribute("value").toString().equals("false")){
3 jValueList().get(i).toVertex().setAttribute("value", "true")
4 }
5 }

Figure 4.21: DataTransfer Restructuring

Evaluation: The energy measurement for this Energy Refactoring contains four several
measurements: data transfer with and without using cache (red and green lines), without
data transfer with and without Wi-Fi connection (blue and violet lines), which are illustrated
in Figure 4.22. For these measurements, the mobile device settings are represented in Table
4.7. The setting for Wi-Fi is on / off to represent all settings for all measurements. The first
three measurements are with a switched on Wi-Fi and the last one is done with a switched
off Wi-Fi.

The file-based measurement in Figure 4.22a illustrates that TreeGenerator without using ap-
plications cache consumes more energy than the other three possibilities. It amounts 4232
J, and hence, 40 J more than TreeGenerator without data transfer. If TreeGenerator uses
its cache, the energy consumption will drop to 4008 J which depicts a difference of 224 J.
TreeGenerator without data transfer and a switched off Wi-Fi consumes least energy with
3864 J, but this type of TreeGenerator is only sensible when no other applications run which
needed the Wi-Fi. The differences between these measurements are small but show a trend,
that using applications cache is sensible when Wi-Fi is used.

The graph in Figure 4.22b shows the result of the Energy Profiling. How all other mea-
surements with Energy Profiling the results are much lower than the results of the other
two measurement techniques. The reason is the changed power profile of the mobile device
which is described in Section 2.5.3. The measurement for TreeGenerator with data transfer

4.5 Data Transfer 57

Table 4.7: Mobile Device Settings for Data Transfer

and without using cache consumes 289 J. The other three measurements consumes nearly the
same and their energy consumption amounts approximately 268 J. This amounts a difference
of approximately 21 J.

The delta-B measurement in Figure 4.22c illustrates the same trend like the file-based mea-
surement in Figure 4.22a. TreeGenerator with data transfer and without cache consumes
4064 J. The variant without data transfer but with a switched on Wi-Fi consumes 4000 J,
and therefore, the difference amounts 64 J to the variant with the highest energy consump-
tion. TreeGenerator with data transfer and cache consumes 3787 J, and hence, the difference
amounts 277 J to the first variant. However, the variant without Wi-Fi consumes at least
energy with 3497 J.

These measurements show that the usage of applications cache is a sensible way to save
energy. In most cases, the Wi-Fi component of the mobile device is switched on, so that
not much energy is saved when data are stored within the application. Furthermore, mobile
devices storage can be saved when the variant with data transfer and with using applications
cache is taken. It needs 1.31 MB for the application and approximately 636 KB for the
cache. If TreeGenerate does not use data transfer, it needs 2.45 MB storage for the whole ap-
plication. This Energy Refactoring is only realized and checked for the usage of the AQuery
and the Android Resource API. Other APIs could have a different energy consumption, and
hence, this Energy Refactoring is software-dependent.

58 Energy Refactoring Catalog

(a) File-based Measurement

(b) Energy Profiling

(c) Delta-B Measurement

Figure 4.22: Measurement of TreeGenerator with and without Data Transfer

59

5 Further Energy Refactorings
In this part an overview of more Energy Refactorings is given. These Energy Refactorings are
described in the same way as before but without an example, implementation, and evaluation.
Hence, the Energy Refactorings Using expensive Resources, Dead Code, Replace Sorting
Algorithm, Loop Bug, In-Line Method, Wake Lock, Fowlers’ refactorings [FBB+02], and
Design Pattern [GHJV93] are represented theoretically. This listing constitutes an outlook
for further theses and publications.

5.1 Using expensive Resources

Name: Using expensive Resources

Definition: Using expensive Resources describes the possibility to swap energy expensive
hardware resources for applications against energy-efficient alternatives [SH12, p. 1].

Motivation: Applications often use hardware resources, such as GPS to localize mobile de-
vices, for tasks which can be done by other resource. This approach was validated and shows
energy savings by replacing resources in Schirmer and Höpfner [SH12]. They show that the
usage of cell towers and Wi-Fi consumes less energy than GPS [SH12, p. 5]. Therefore, the
basic energy consumption of a mobile device is compared with a GPS run and a cell tower
and Wi-Fi run. The GPS run increases the energy consumption by 74.56 %, and the cell
tower and Wi-Fi run increases the energy consumption by 1.5 %. This example shows that
Using expensive Resources is a further Energy Refactoring.

Constraints: Some hardware resources are more precise than other, e.g. GPS can be re-
placed with cell tower and Wi-Fi, but they are less precise than GPS [SH12, p. 1]. Another
constraint is the availableness of data, e.g. GPS satellite connection or cell tower connection.
If the cell tower connection is not available, the GPS connection must be used.

Analysis: Known hardware resources which consume much energy must be seek to re-
place them. Therefore, vendor information or hardware measurements are needed to decide
which resources consume more energy than other resources. In addition, resources must be
achieved same tasks.

Restructuring: In this case, the transformation replaces one hardware component against
another to create an more energy-efficient application. Due to the difference of supplied data,
e.g. GPS sensors give coordinates and the connection with a cell tower gives an id, the id
supplies coordinates via Wi-Fi by read-out a database which stores all coordinates for cell
towers [SH12, p. 1].

60 Further Energy Refactorings

5.2 Dead Code

Name: Dead Code

Definition: Dead Code are code parts which are never reached during applications runtime.
But it is also loaded into memory, and thus, it consumes energy [CGKO97].

Motivation: Sometimes, code parts are implemented which are not used at the end. In this
case, the Java compiler will perform dead code elimination [Hav09]. Another variant of
Dead Code is code which is invoked but whose results are immediately discarded. These
type of Dead Code is not detected on compiler level, but it can be detected on source code
level [GJJW12].

Constraints: Whether results of code parts are not used, will be detected by dynamic code
analysis. Due to the dynamic code analysis, the code behavior is validated at runtime.

Analysis: The first variant is easier to detect through static code analysis, only methods
which are never actually called must be developed. The second variant is more difficult to
detect, here a dynamic analysis is needed to create use cases. The use cases should call all
methods which are called under conditions which never arise at runtime [GJJW12].

Restructuring: If Dead Code of the first variant is detected, it can be deleted completely. If
the second variant is detected, it must be considered, why the results are discarded. More-
over, it must be checked whether no use case exists which uses the method result.

5.3 Replace Sorting Algorithm

Name: Replace Sorting Algorithm

Definition: Replace Sorting Algorithm means to replace one sorting algorithm with another
more energy-efficient sorting algorithm [BRM09].

Motivation: In Bunse et. al [BRM09] a substitution of sorting algorithm is presented and
validated concerning their energy consumption. The validation was done for one special
hardware platform which shows significant differences between the energy consumption of
several sorting algorithms. In this case, Insertionsort is the most energy-efficient algorithm
and recursive Quicksort is the most energy-inefficient algorithm [BRM09, p. 4]. The energy
consumption of recursive Quicksort is approximately 6 times higher than the consumption
of Insertionsort. This shows, that it is important to compare several sorting algorithm for
different platforms to choose the most energy-efficient one for programming applications.

Constraints: As mentioned above, the energy consumption of sorting algorithms can change
on different platforms, so that a validation for each device type is needed.

Analysis: To detect specific sorting algorithms, structured queries are needed which repre-
sents the structure of sorting algorithms, in which each algorithm is illustrated by at least one

5.4 Loop Bug 61

query. These queries are very complex, and hence, it could be that not all sorting algorithms
are identified when several ways are used to program them which cannot be all considered.

Restructuring: The restructuring contains the complete replacement of one sorting algo-
rithm which could be better implemented by a programmer to avoid errors. Hence, the
analysis can help to detect energy-inefficient source code but the restructuring should be
done manually to get a better result.

5.4 Loop Bug

Name: Loop Bug

Definition: Loop Bug describes a program behavior wherein applications are repeating the
same activity over and over again without reaching intended results [PCHZ11, p. 4].

Motivation: This Energy Refactoring can occur in two several ways which are described in
Pathak et. al [PCHZ11]. Firstly, it is possible that a method is called again and again because
it does not get any results. One reason therefore could be that a server is not acquirable so
that applications stuck in this loop. Secondly, an application calls itself when it is switched
off, so that it starts after ending. Both types of Loop Bug should be avoided to save energy
within applications.

Constraints: The reachability of external services cannot be detected by static source code
analysis, hence, a dynamic analysis is necessary, and even then it is rarely detected, e.g. a
server failure should not take place for a long period.

Analysis: The first described case can be assumed by seeking of method calls which re-
sponse an external service and does not have a security query to check its reachability. Due
to this, a Loop Bug is prevented during runtime. The second described case can be identified
by checking the method calls which are executed when applications end. For example, if one
of it contains onRestart() or onResume() (cf. Section 2.3.2), a programming mistake
is existent and should be removed.

Restructuring: In the first case, the security query must be added, when it is not existent.
In the second case, the method call which restarts the application must be deleted.

5.5 In-Line Method

Name: In-Line Method

Definition: In-Line Method describes the exchange of a method call with its method body
which increases applications performance, as the computational overhead of a method call
is avoided [dSB10, p. 2].

62 Further Energy Refactorings

Motivation: Da Silva et. al [dSB10] presents the idea to use In-Line Methods for saving
energy. This was tested with three applications by an energy measurement, and all measure-
ment results show that energy is saved when In-Line Method is used [dSB10, p. 3–4]. Hence,
this is also a candidate for the here described Energy Refactoring Catalog.

Constraints: Using In-Line Method reduces readability and maintainability for program-
mers [dSB10, p. 2]. Also, methods which are often used while applications runtime are
practical for In-Line Method to save energy, but therefore, a dynamic analysis is needed.

Analysis: For this Energy Code Smell short methods, such as getter and setter, are practical
to replace with their method body, hence, these methods and the method caller must be de-
tected.

Restructuring: Detected method calls are replaced with their body, and their parameter’s
must be checked and maybe they must be also replaced.

5.6 Wake Lock for Resources

Name: Wake Lock for Resources

Definition: Wake Lock for Resources is used to prevent the direct shutdown of hardware
resources after using them to enable a fast restart [PCHZ12, p. 3].

Motivation: Resources, such as GPS and WiFi, are sometimes equipped with wake locks
which prevent the direct shutdown. Due to wake locks [Andh], applications can restart faster
than without it because resources are directly ready. But, it consumes more energy when
resources are switched on the whole time [BBC]. Pathak et. al say that Wake Lock for Re-
sources is the most prominent Energy Code Smell [PCHZ12, p. 3], because wake locks are
often used by programmers to make their applications faster. The issue arises when the wake
lock for components is not released even after their job is completed, e.g. a maximum wake
lock time for components must be defined, in which the energy consumption and applica-
tions restart speed are considered.

Constraints: For applications which often switch between fore- and background, wake locks
are useful to get a smooth flow between the states (cf. Android Life Cycle in Figure 2.7).
Hence, someone must check whether wake locks are useful or only energy consumer.

Analysis: First, wake locks must be identified, e.g. Android uses the method acquire()
from PowerManager.WakeLock. Second, it must be checked whether this wake lock is
necessary for applications functionality or not. This decision should be made with the help
of dynamic analyses.

Restructuring: If the wake lock is too long or not necessary for applications functionality,
the wake lock can be deleted or set to null, so that it takes no time and resources are directly
switched off.

5.7 Fowlers’ Refactorings 63

5.7 Fowlers’ Refactorings
Name: Fowlers’ Refactorings

Definition: Fowlers’ Refactorings contain all 72 code refactorings which are described in
Fowler et. al [FBB+02]. These refactorings are actually used to create a better readability
and maintainability for source code than before [FBB+02, p. xvi].

Motivation: One of these Code Smells and their refactoring is In-Line Method which is
described in Section 5.5 as further Energy Refactoring. In-Line Method is listed as Energy
Code Smell because it was tested and it shows energy savings [dSB10, p. 3–4]. The further
code refactorings of Fowler et. al are not validated yet. But, it is possible that these refac-
torings also save energy. Hence, Fowlers’ Refactorings should be validated concerning their
energy consumption to add them to the Energy Refactoring Catalog, like In-Line Method.

Constraints: Here no constraints exist because no specific Energy Code Smell is described.

Analysis: The detection of Fowlers’ Refactorings is difficult because no special import or
method call within applications is seek, but a special sequence of calls for each code refac-
toring, e.g. Extract Method [FBB+02, p. 110] seeks for methods which are too long to
understand. This analysis is very unspecific, and hence, difficult to realize with the TGraph
approach (cf. Section 2.2).

Restructuring: How the restructuring looks like is dependent on the defined Energy Code
Smell. For Extract Method, a new method must be created and code must be shifted from
the old method to the new, and a method call for the new must be added to the old.

5.8 Design Pattern
Name: Design Pattern

Definition: Design Patterns are defined by Gamma et. al [GHJV93] and they describe
solutions for special problems which can be applied a million times over within several ap-
plications, i.e. they provide a special vocabulary to reduce software complexity [BS13, p. 1].

Motivation: In Bunse and Stiemer [BS13] some of these patterns are analyzed concerning
their energy use. The results show that differences between the implementation with and
without Design Pattern exist, e.g. the Decorator pattern consumes significantly more energy
than an alternative programming. Due to this, it is useful to prove further Design Pattern to
include this in the decision whether Design Patterns are used or not.

Constraints: Here no constraints exist because no specific Energy Code Smell is described.

Analysis: The Design Patterns are described by Gamma et. al [GHJV93], hence, analyses
can be created on the base of it. The detection of these patterns is also difficult, like the
detection of Fowlers’ Refactorings, because a sequence of classes, methods, and calls must
be seek, and no import or special method name is available.

Restructuring: If a Design Pattern is energy-inefficient, an alternative implementation must
be created and realized by a transformation.

64 Further Energy Refactorings

65

6 Implementation of Energy Refactorings
The implementation for Energy Refactorings is done as an Ecplise Project, named Ener-
gyRefactoring, with the JGraLab API (cf. Section 2.2). In this section, the execution of
the five Energy Refactorings are explained to enable their execution for several applications.
Therefor, the Android applications must be parsed into TGraphs which are represented by tg
files. The parsing part is done with the parser by pro et con, used in the SOAMIG project
[FWE+12], so that the return of the parser can be used for the transformation. First, the
software which is used to make the transformation is described. Second, a class diagram
shows the structure of the code. Finally, the output of the implementation is illustrated and
explained.

6.1 Software

As mentioned above the Energy Refactorings are implemented as a Java project implemented
with the Eclipse IDE. Eclipse is used in the version Indigo Service Release 2. Before the
refactorings can be started, the applications code must be parsed as described in Section 1.2.
This is made with the pro et con parser [FWE+12] which generates XML files which can
be transformed to TGraphs with the JGraLab API. On TGraphs refactorings are executed,
and afterward, TGraphs are saved as XML. The transformed XML files after refactoring are
parsed back in Java code, also with the pro et con parser. It should be considered that the
validated applications based on the API level 15 which uses Java 6, hence, Java 6 or higher
is needed to build the restructured applications. Otherwise, no further software is needed
to execute the described Energy Refactorings, and hence, to generate more energy-efficient
code.

6.2 Class Diagram of EnergyRefactoring

The class diagram in Figure 6.1 shows the structure of the Eclipse project EnergyRefactoring.
It illustrates that the code is divided into three parts: Main, Analyzing, and Restruc-
turing. However, attributes and return values are not displayed, it shows only the structure
and methods of EnergyRefactoring.

The Main part includes the class EnergyRefactoring which represents the main class
of the project. This class must be run to execute all Energy Refactorings for one application
which occurs as XML file. If EnergyRefactoring is executed, the user is prompted
to select the XML file which should be analyzed and restructured and a name for the re-
structured XML file. In addition, the class Helper is implemented in Main, it contains all
methods which are not directly needed for the refactorings, e.g. methods for the transforma-
tion from XML to tg and backwards.

66 Implementation of Energy Refactorings

M
ai

n
A

na
ly

zi
ng

R
es

tr
uc

tu
ri

ng

I
m

ai
nG

D
I

ge
tT

gF
ile

GD
I

pr
in

tB
re

ak
GD

E
ne

rg
yR

ef
ac

to
rin

g

I
lo

ad
X

M
LG

D
I

sa
ve

X
M

LG
D

I
op

en
T

G
GD

I
sa

ve
T

G
GD

I
sa

ve
D

ot
GD

H
el

pe
r

I
re

m
o

ve
B

R
T

E
GD

I
re

m
o

ve
A

ds
GD

I
re

m
o

ve
Im

po
rt

sG
D

I
de

le
te

N
e

xt
V

er
te

xG
D

I
de

le
te

E
dg

es
GD

I
de

le
te

V
er

te
ci

es
GD

I
m

ak
eC

o
lle

ct
io

nG
D

I
m

ak
eC

o
lle

ct
io

nV
GDD

el
et

io
n

I
sh

ift
GD

S
hi

ft

I
tr

an
sf

or
m

GD

A
dv

er
tis

em
en

t

I
tr

an
sf

or
m

GD
I

co
ns

ol
eO

ut
pu

tG
DB
ac

kl
ig

ht

I
tr

an
sf

or
m

GD
I

ge
tO

nR
es

um
eV

no
G

P
S

GD
I

se
tO

nR
es

um
e

V
no

G
P

S
GD

B
R

T
E

I
tr

an
sf

or
m

GD

D
at

aT
ra

ns
fe

r

I
tr

an
sf

or
m

GDS
ta

te
m

en
tC

ha
ng

e

I
tr

an
sf

or
m

GD

T
ra

ns
fo

rm
at

oi
o

n

us
es

ex
ec

ut
es

us
es

us
es

us
es

us
es

V
is

ua
lcP

ar
ad

ig
m

cfo
rc

U
M

Lc
S

ta
nd

a
rd

cE
di

tio
nG

U
n

iv
er

si
ty

co
fcO

ld
en

b
ur

gD

Figure 6.1: Class Diagram for EnergyRefactoring

6.3 Output of EnergyRefactoring 67

The Analyzing part includes the five analyzes for the five different Energy Refactorings
in Section 4. All these classes get relations, attributes, and methods from the class Trans-
formation which is connected to the classes EnergyRefactoring and Helper.

The Restructuring part contains the two classes Deletion and Shift. These both
are needed for the analyzes in Advertisement and BRTE. For both restructurings nodes or
edges must be deleted, and BRTE also needs Shift. The restructuring of the analysis in
class DataTransfer is realized in the analyzing part because it is only one line long. For
the remaining analyzes no restructuring is implemented, but after their analyzes the user gets
information whether and maybe where an Energy Code Smell exists, so that, the application
can be restructured manual.

6.3 Output of EnergyRefactoring

The output of the EnergyRefactoring is illustrated in the screen shot in Figure 6.2. It shows
the eclipse console output. All Energy Refactorings are separated through a line and their
name. At the beginning the name of the XML file which should be refactored and the name of
the outcome document are defined by the user through simple console inputs. Firstly, Third-
Party Advertisement is executed, hence, its name is printed, hereon, the number of processing
elements is given 24013. GpsPrint contains advertisements, hence, ”Ads were deleted” is
printed and the number of saving elements is 23890, 123 elements were deleted. The second
running Energy Refactoring is Statement Change, it shows, how many if-statements with
more than three else-statements exit, and in addition, it shows in which method and class
the if-statements are. In this case, 19 if-statements are in the method run, which is a
part of the class ValueTask2. Thirdly, Backlight is executed, it only shows whether the
colors black and white are used. Hence, the user can imagine whether it includes Backlight
as Energy Refactoring. In this case, GpsPrint does not use these colors in this form. Fourthly,
Data Transfer is executed and it shows in the end whether the cache is used for data within
the application or not. If the cache is not used, it will be transformed so that it is used.
The last running Energy Refactoring is Binding Resources Too Early. GpsPrint includes
this Energy Refactoring, and hence, the output ”Binding Resources too early is removed” is
given, and 23889 elements were saved.

After executing these Energy Refactorings, the number of elements in GpsPrint have been
reduced by 124 elements. The same execution for TreeGenerator with advertisements has a
reduction of 173 elements (cf. Appendix D).

6.4 Extensions of EnergyRefactoring

In this section it is brief described how the project EnergyRefactoring can be extended.
Firstly, the existing Energy Refactorings can be extended through further queries to detect
more Energy Code Smells, e.g. detecting further APIs for advertisements. Therefore, a
GReQL query must be integrated within a class in the package Analyzing. Also, the

68 Implementation of Energy Refactorings

query must be implemented within the method transform() and should save its result in
a JValue object to use existing restructurings. Secondly, a complete Energy Refactoring can
be integrated by creating a new class in Analyzing with a query to detect further Energy
Code Smells and a new class in Restructuring to remove the Energy Code Smell in
case no suitable for restructuring exist. In addition, to execute the new Energy Refactoring a
call in the class EnergyRefactoring in the package Main must be added.

Figure 6.2: Screen shot of the EnergyRefactoring results

69

7 Conclusion
This chapter concludes this master’s thesis with a summary of the evolution results of the
Energy Refactorings in Chapter 4. In addition, general awarenesses are described in form of
a Lesson Learned section. Moreover, an overview about completed work packages are given
to show whether the objectives of this work are reached. On the base of the measurement
results a general conclusion is written. In addition, an outlook is given to name further
possibilities to save energy within applications. Finally, benefits of this work are depicted.

7.1 Energy Refactorings’ Results

In Chapter 4 several Energy Refactorings are described and validated. The number of mea-
surement for the validation of the Energy Refactorings amounts ten measurements for each
case, hence about 140 measurements with a period of two hours were done. The measure-
ment results are summarized to show possible energy savings for mobile devices on applica-
tion level. These results are depicted in Table 7.1. The difference in percent for each Energy
Refactoring and measurement technique is shown to present the savings at a glance.

Table 7.1: Energy Refactoring Results

The values for the energy consumption of each Energy Code Smell are extracted from the
evaluation part of the Energy Refactoring Catalog in Chapter 4. In the base of these val-
ues, the difference is calculated. The differences in Table 7.1 show that almost all validated
Energy Code Smells saves energy when the file-based and delta-B measurements are used.

70 Conclusion

The Energy Profiling has two negative results for Third-Party Advertisement ”GpsPrint”
and Statement Change which declares that the application with the Energy Code Smell con-
sumes less energy ()while the other two measurement techniques show positive results. Also,
Backlight shows no energy saving for the HTC.

For two Energy Code Smells Third-Party Advertisement and Backlight two energy measure-
ments are made to show the difference between different applications and mobile devices.
These different are clearly visible. Removing Third-Party Advertisement saves approxi-
mately 20 % energy within GpsPrint and approximately 30 % energy within TreeGenerator,
although the same advertisements are used. The difference between these applications is
that GpsPrint needs the Internet connection, even if advertisements are not requested. The
measurement for TreeGenerator without Energy Code Smell was done without an Internet
connection, and hence, the additional energy saving of 10 % is explainable. The Energy
Code Smell Backlight is validated for two mobile devices, the HTC and the S4, to show
the dependencies of different hardware resources, such as the screen. These measurements
clearly show that this Energy Code Smell is important for AMOLED screens because the
delta-B measurement illustrates energy savings up to 56.6 %. For the HTC, it can be said,
that the inverse case saves energy (white background instead of black), however the savings
are less with approximately 3 %.

All measurement techniques shows energy savings for the Energy Code Smell Binding Re-
sources Too Early. However, the results are quite different, due to the modified HTC Power
Profile (cf. Section 2.5.3). The file-based measurement depicts a saving of approximately
5.3 % and the Energy Profiling even of approximately 28 %. The measurement results of
Statement Change are also very different. The Energy Profiling shows no energy saving, i.e.
if-statements are more energy-efficient than switch-statements. The other two measure-
ments illustrates an energy saving between approximately 3.5 % and 10.2 % for switch-
statements. The last validated Energy Code Smell is Data Transfer. Here all measurements
depict an energy saving between approximately 8.3 % and 14 %. This means, that it saves
energy when data are saved on memory card instead to load them form a server via Internet
during applications runtime.

These results show that it is sensible to execute the Energy Refactorings to save energy on
mobile devices. The presented Energy Refactorings are only validated for Android appli-
cations, but the definition of the Energy Code Smells can be assigned to other platforms.
For further platforms, the analysis and restructuring must be implemented. Moreover, the
Energy Code Smells must be validated for other platforms to confirm their savings because
this master’s thesis checked them only on Android mobile devices.

7.2 Lesson Learned

This section summarizes some important points which were identified during the master’s
thesis and have an influence on the described results. Firstly, the encoding of parsed An-
droid applications chances after parsing with the pro et con parser [FWE+12], so that the

7.3 Work Packages for the Thesis 71

code which is parsed back cannot be read completely. In addition, the method’s annotation
within Android applications runs off, so that unparsed applications cannot be executed. Fur-
thermore, Energy Code Smells which occur in layout information cannot detected because
these information are saved into XML files which are not represented by the Java TGraph ap-
proach. This is the case for Backlight, the information about the background color are saved
into activity_main.xml for Android applications. To get these information by this
approach, the Java meta model in Figure 2.4 must be extended with additional functions of
Android applications. Moreover, the Android application AdBlock Plus was also validated
to check whether the energy consumption is influenced. The measurements in Appendix B
show that the energy consumption rises because advertisements are partly not displayed but
their request is not stopped. Hence, AdBlock Plus is an energy-inefficient application. This
was tested as the Energy Code Smell Third-Party Advertisement was described.

This master’s thesis shows that it is possible to reduce the energy consumption of Android
applications by Energy Refactorings. However, less free applications could be found with
the here defined Energy Code Smells, so that an own application needed to be written to
check the energy consumption of the Energy Code Smells.

7.3 Work Packages for the Thesis

In section 1.4 objectives and work packages for this master’s thesis are described. At this
point, it is checked whether the described objectives and work packages have been reached.
Firstly, the work packages in Section 1.4 are repeated here. Secondly, it is described how
these work packages were completed. Finally, the main objective is checked.

The following work packages were described at the beginning of this master’s thesis and
now it is proofed whether they are realized:

• Literature study about required techniques and other possibilities to reduce energy con-
sumption on applications level.
The parts Related Work in Section 1.3, Basic Techniques in Section 2, Energy Refactor-
ings in Section 3, and the definition of Energy Code Smells in Section 4 and 5 show which
literature was used to create this master’s thesis.

• Defining at least five Energy Refactorings (cf. Section 4) for no special platform.
In Section 4 five Energy Refactorings were defined completely, and in Section 5 eight
further Energy Refactorings were defined but without an example, analysis, and restruc-
turing.

• Implementing at least three restructurings for the Android platform.
In Section 4 three Energy Refactorings (Third-Party Advertisement, Binding Resources
Too Early, and Data Transfer) contain an analysis and a restructurings which were imple-
mented with JGraLab. In addition, the other two Energy Refactorings (Statement Change
and Backlight) contain only an analysis.

72 Conclusion

• Apply the implementation on different freely available application, like GPSPrinter [Rob12],
Standup Timer [Woo11], MyTracks [MyT], etc.
The most Energy Refactorings were only applied for one application. The Energy Refac-
toring Third-Party Advertisement was validated for GpsPrint and TreeGenerator, and the
Energy Refactoring Backlight was validated with two mobile devices. Further validations
were not done, because no further source code for applications were found which contain
one of the defined Energy Code Smells.

• Evaluating the Energy Refactorings using the energy measurement tool by Schröder [Sch13]
to check their energy consumption.
The five Energy Refactorings in Section 4 were validated with the measurement tool by
Marcel Schröder. In addition, the energy consumption for the sim card request of the
HTC and the application AdBlock Plus were measured.

• Intended result: The complete process for refactorings (name, definition, motivation,
constraints, example, analysis, restructuring, and evaluation) (cf. Section 3.2) must be
demonstrated. The number of implemented restructurings can be changed when the im-
plementation needs more time than expected.
Three Energy Refactorings were completely realized to demonstrate the defined process
in Section 1.2.

The main objective ”Creating an Energy Refactoring Catalog which defines energy-inefficient
source code parts and removes them by a semi-automatic transformation.” (p. 2) was
reached and the catalog was presented in Section 4. Moreover, further Energy Refactor-
ings were described in Section 5 but not validated, hence, they depict a basis for the Energy
Refactoring Catalog.

7.4 Outlook

In this section next steps are described, which can be made after this master’s thesis to de-
velop this area further. On the one hand, the described Energy Refactorings in Chapter 5 can
be implemented with the JGraLab API and evaluated with the measurement techniques by
Josefiok and Schröder [JSW13]. Thus, the Energy Refactoring Catalog in Chapter 4 would
be supplemented, and it would be enforced their validity. On the other hand, the validated
Energy Refactorings can be checked by further applications to confirm their energy saving.
If more measurements exist, a better evidence can be made about the energy saving for each
Energy Code Smell. In favor, the already existing project can be extended to facilitate the
implementation of new Energy Refactorings.

Furthermore, more Energy Code Smells and their restructuring can be defined and validated.
In addition, the Energy Refactorings can be realized for other mobile platforms, such as Win-
dows phone 8 and iOS, to make it interesting for more people and vendors. Therefor, more
information about the other platforms are needed to adapt the Energy Code Smells to them
or to define new Energy Code Smells which are platform-dependent, such as Binding Re-

7.5 Benefits from this Thesis 73

sources Too Early for Android. To identify and to realize Energy Refactorings for Windows
phone 8 and iOS, the catalog in Section 4 constitutes a good basis for new definitions.

To detect further Energy Code Smells, it would make sense to extend the Java TGraph ap-
proach. If the Java meta model in Figure 2.4 is extended, the TGraph approach will work
for more Energy Code Smells on the Android platform (cf. Section 4.4). Furthermore, new
meta models for Windows phone 8 and iOS are needed to apply this approach on other plat-
forms which use different programming languages, such as C, C#, Objective C, etc. (cf.
Section 2.3.3).

If further Energy Code Smells are identified, the energy saving for one application might be
higher, when all Energy Refactorings are executed. And if the energy saving rises through
executing Energy Refactorings on applications, more people would be interested in it to
extend the battery duration of their mobile devices.

7.5 Benefits from this Thesis

The definition and implementation of the Energy Refactoring Catalog describes energy-
efficient code parts and their restructurings to remove them. This could help programmers
to check their applications before applications are adjusted into the applications store, such
as Google Play [Gooa]. Moreover, further Energy Refactorings were defined to show further
ways to save energy on applications level on mobile devices.

Due to the extensive literature research, several Energy Code Smells and authors, who are
also interested in energy-efficient programming, were found. In comparison to this work,
the most approaches to save energy on mobile devices by other authors (cf. Section 1.3)
includes no restructuring so that their Energy Code Smells must be removed manually. In
this thesis a first approach for Android is shown how energy-inefficient code can be removed
by a semi-automatic process.

74 Conclusion

75

A Energy Measurement for Sim Card Request
In this part the sim card request of the HTC One is measured to identify possible influences
on the energy consumption during the energy measurement of Energy Refactorings. This
measurement is needed to show a possible energy consumption during the sim card request.
The measurement is made with Andromedar which is presented in Section 2.5 and the mobile
device settings are described in Table A.1. The result of the measurements are illustrated in
Figure A.1 and show that the request has a low influence on the energy consumption of the
HTC.

Table A.1: Mobile device settings for Sim Card Request

The first measurement with the file-based measurement in Figure A.1a shows a difference of
197 J within one hour. It depicts that the HTC without sim card needs more energy than with
an installed sim card.

The second measurement illustrates the Energy Profiling in Figure A.1b. This measurement
technique shows no difference between the measurements with and without sim card. The
energy consumption amounts 132 J, its difference to the other two measurements because the
HTC Power Profile was changed by a firmware update. This is explained in Section 2.5.3.

In Figure A.1c the delta-B measurement is shown. It demonstrates the same trend as the first
measurement. The measurements without sim card consumes a little more energy than with
an installed sim card. In this case, the difference amounts 30 J.

Also ten measurements were done for the validation of the sim card request, and hence, it
shows only a trend which says that it has a low influence on other measurements because all
measurements are done without sim card.

76 Energy Measurement for Sim Card Request

(a) File-based Measurement

(b) Energy Profiling

(c) Delta-B Measurement

Figure A.1: Measurement of GpsPrint with and without Sim Card

77

B AdBlock Plus
This section describes an application, called AdBlocker Plus, which is used to eliminate
advertisements within applications and browsers for mobile devices. After description, the
energy consumption of this application is analyzed.

B.1 General

AdBlock Plus is an Android application which stops displaying advertisements within other
applications and browsers. AdBlock Plus runs in background as a service (cf. Section 2.3)
and seeks for advertisements by using filters.The filters contain a list with URLs and suf-
fixes which will be blocked, if requests are similar to an URL or ends with one of those
suffixes. The lists are adapted for several languages, so that users can chose a list for their
user behavior [PF].

However, AdBlock Plus allows some advertisements which adhere to their guidelines and
are registered by them. This should help application vendors to get some income without
any limitations for users because users can decide which lists they install to block adver-
tisements, so that registered advertisements are also blocked.The guideline is described on
their website [AdB], it contains: only static advertisements (e.g. no music, no animations),
possible position for advertisements (e.g. placed before or after text, size of advertisements),
advertisements should be clearly distinguished from application content (e.g. background
color), etc.

Additionally, AdBlock Plus offers more services, such as disable tracking, disable mail-
ware domains, and disable social media button. These services can be enabled and disabled
through the user [PF].

B.2 Energy Measurement

Ten energy measurements with this application and GpsPrint with advertisements were done
to check the energy consumption. The mobile device settings for the measurement are de-
scribed in Table B.1 and the measurement results are depicted in Figure B.1. The results
without AdBlock Plus are the same like the results for GpsPrint with advertisements in Sec-
tion 4.1.

In Figure B.1a the results of the file-based measurement are depicted. The energy consump-
tion with GpsPrint and AdBlock Plus amounts 7635 J and without AdBlock Plus 6628 J.
The difference amounts 1007 J and shows that the use case with AdBlock Plus consumes
significant more energy than without it.

The second graph shows the Energy Profiling which is depicted in Figure B.1b. It also
shows a difference between the measurements with and without AdBlock Plus, it amounts
46 J. The difference of the results to the other two measurement techniques based on the

78 AdBlock Plus

Table B.1: Mobile device settings for AdBlock Plus

changed HTC Power Profile which is described in Section 2.5.3. But, it shows the same
trend like the others.

The last measurement technique in Figure B.1c, the delta-B measurement, illustrates the
same trend as the file-based measurement. It shows a difference of 1565 J between the two
measurements. In this case, GpsPrint and AdBlock Plus consume 7970 J and only GpsPrint
consumes 6405 J.

These results show that the usage of AdBlock Plus does not save energy though advertise-
ments are filtered. But, some advertisements were displayed completely or partially during
the energy measurement with AdBlock Plus. Advertisements which contain only text mes-
sages were always displayed. When the advertisement consists of text and image, only the
text was shown, and the image did not exist and was displayed as not available. In both cases,
AdBlock Plus does not stop displaying advertisements. It is possible that the advertisements
in GpsPrint are conform to the guidelines of AdBlock Plus, i.e. these advertisements are
not on the filter lists, because it is only a banner which is positioned after the text of Gps-
Print. Hence, advertisements are displayed and an additional application runs which leads
to a higher energy consumption as before without AdBlock Plus. Finally, it can be said that
AdBlock Plus is an Android application which is energy-inefficient programmed. However,
its objective is not saving energy but rather blocking advertisements.

B.2 Energy Measurement 79

(a) File-based Measurement

(b) Energy Profiling

(c) Delta-B Measurement

Figure B.1: Measurement of GpsPrint with and without AdBlock Plus

80 AdBlock Plus

81

C Modified Power Profile for HTC
The HTC power profile was changed by the last firmware update to the profile on the right
side in Table C.1. Hence, the measurement results of the Energy Profiling in Section 4 differs
from the other two. This was described in Section 2.5.3. In this section, the HTC power
profile is changed again to get better measurement results. The modified power profile is
on the left side in Table C.1. It contains the values of the first HTC power profile in Table
2.1 on the right side. However, not all values can be adopted because the number of CPU
states is different. Hence, the state of CPU_BS0 is the same, and the state CPU_BS15 gets
the value of the state CPU_BS11 in Table 2.1. These values describes the scope of the
energy consumption of the CPU. The states between are modified and depict nearly the same
intervals as the power profile in Table 2.1.

This modified power profile is used for two measurement results to compare them with the
standard HTC power profile. First, the results for GpsPrint with advertisements which are
described in Section 4.1 are shown with both power profiles in Figure C.1a. It shows a
significant difference of 4231 J. The result with the modified power profile is higher, but
the other measurement results in Section 4.1 are even higher with an energy consumption of
6628 J or 6405 J.

(a) GpsPrint with advertisements (new and old power profile)

(b) GpsPrint with and without advertisements (new power profile)

Figure C.1: GpsPrint with Advertisements (modified power profile)

However, the modified power profile seems to produce better results, and maybe the manual
modifications on the CPU states are not good enough because the state CPU_BS15 is never
reached but the measurements of Marcel Schröder [Sch13] shows that CPU_BS11 is reached.

82 Modified Power Profile for HTC

Table C.1: Modified HTC Power Profile

83

The modified power profile contains approximately the same values of the used power profile
in [Sch13], but they are scattered on 15 values instead of 11, and hence the highest energy
consumption is never reached in the measurements of this master’s thesis, so that the mea-
surement results are lesser than the values of Schröders measurements. The second graph in
Figure C.1b depicts the energy consumption of GpsPrint with and without advertisements.
It shows that the energy consumption is nearly the same, which results of the similar run-
time of components. For both measurements the same components are needed in which the
data traffic for GpsPrint with advertisements are higher but not catch by this measurement
technique.

The second measurement results which are changed by the modified power profile are the
results of the Energy Refactoring Backlight in Section 4.4. The difference between the stan-
dard power profile and the modified power profile amounts 3443 J and is illustrated in Figure
C.2a. TreeGenerator with a white background consumes 3764 J, the other two measurements
in Figure 4.17 shown an energy consumption of 3796 J and 3515 J. Hence, the modified
power profile provides nearly the same measurement results. The measurements show that
mostly the CPU states 0 until 4 are used and the difference between the energy consumption
of this states is not so high than in the higher states. Therefore, the modified power profile
improves the results of Energy Profiling in this case. The second graph in Figure C.2b shows
the results of TreeGenerator with a black and white background. Both variants consumes
nearly the same energy, the white background consumes 3773 J and the black background
consumes 3764 J. This reflects the results in Figure 4.17.

(a) TreeGenerator with black background (new and old power profile)

(b) TreeGenerator with black and white background (new power profile)

Figure C.2: TreeGenerator Backlight measurement

84 Modified Power Profile for HTC

85

D Console Output for TreeGenerator

Figure D.1: Screen shot of the EnergyRefactoring results (TreeGenerator)

86 Console Output for TreeGenerator

87

E CD Content
In addition to the master’s thesis a CD with all measurements, graph queries and trans-
formation, applications, and documents was created. The CD contains the following data:
applications, code, documents, and measurements.

• applications: This file contains all Android apk’s which were used in this master’s the-
sis. It is divided into two files: measuredApplications and measurementTechnique. In
measuredApplications the apk’s AdBlock Plus and different forms of GpsPrint and Tree-
Generator are saved. The file measuredTechniques contains the apk’s Andromedar and
GPSStarter.

• code: This file includes the complete eclipse project which realizes the queries and trans-
formations for the Energy Refactorings. Also, the source code for GpsPrint and TreeGen-
erator are available.

• documents: This file includes the vision and this master’s thesis. Also, it contains all
diagrams, figures, and tables which are depict in this thesis.

• measurements: This file contains all energy measurements which are ordered by the En-
ergy Refactorings and two additional measurements. Hence, the files ThirdPartyAdver-
tisements, Backlight, BindingResourcesTooEarly, DataTransfer, and StatementChange
for the Energy Refactorings. The additional measurements are in the files SimCard and
AdBlockPlus. All files contain at least twenty measurements and two excel files which
represents the average of all measurements. The files Backlight and BindingResources-
TooEarly are also subdivided into two files. Backlight contains twenty measurements for
the HTC and the S4, and BindingResourcesTooEarly contains twenty measurements for
GpsPrint and TreeGenerator.

88 CD Content

89

List of Figures

1.1 Process to generate energy-efficient source code [GJJW12] 3

2.1 Horseshoe model [KWC98] . 7
2.2 Java Code of GpsPrint (extract) . 10
2.3 TGraph of GpsPrint (extract) . 11
2.4 Java meta model (extract) [FWE+12] . 12
2.5 GReQL example . 13
2.6 JGraLab example . 14
2.7 Android Life Cycle, derived from [GJJW12] 16
2.8 Mobile Devices . 18
2.9 Screen shot of Andromedar . 19
2.10 GpsPrint . 25
2.11 TreeGenerator . 26

4.1 Example of Third-Party Advertisements 32
4.2 Ads into manifest.xml . 32
4.3 Third-Party Advertisements Analysis 1 . 33
4.4 Third-Party Advertisements Analysis 2 . 33
4.5 Restructuring of Imports . 34
4.6 Measurement of GPSPrint with and without Ads 35
4.7 Measurement of TreeGenerator with and without Ads 37
4.8 Example of Binding resources too early 39
4.9 Binding Resources Too Early Analyze . 40
4.10 Binding Resources Too Early Restructuring 40
4.11 Measurement of GPSPrint with and without BRTE 42
4.12 Example for Statement Change . 44
4.13 Statement Change Analyze . 45
4.14 Measurement of TreeGenerator with if- and switch-statement 47
4.15 Backlight in activity_main.xml . 48
4.16 Backlight Analyze . 49
4.17 Measurement of TreeGenerator with white and black background (HTC) . . 51
4.18 Measurement of TreeGenerator with white and black background (S4) . . . 53
4.19 Example for DataTransfer . 55
4.20 DataTransfer Analysis . 55
4.21 DataTransfer Restructuring . 56
4.22 Measurement of TreeGenerator with and without Data Transfer 58

90 List of Figures

6.1 Class Diagram for EnergyRefactoring . 66
6.2 Screen shot of the EnergyRefactoring results 68

A.1 Measurement of GpsPrint with and without Sim Card 76

B.1 Measurement of GpsPrint with and without AdBlock Plus 79

C.1 GpsPrint with Advertisements (modified power profile) 81
C.2 TreeGenerator Backlight measurement . 83

D.1 Screen shot of the EnergyRefactoring results (TreeGenerator) 85

91

List of Tables

2.1 HTC Power Profile . 23
2.2 S4 Power Profile . 24

4.1 Mobile Device Settings for Third-Party Advertisements (GpsPrint) 34
4.2 Mobile Device Settings for Third-Party Advertisements (TreeGenerator) . . 36
4.3 Mobile Device Settings for Binding Resources Too Early 41
4.4 Mobile Device Settings for Statement Change 46
4.5 Mobile Device Settings for Backlight on the HTC 50
4.6 Mobile Device Settings for Backlight on the S4 52
4.7 Mobile Device Settings for Data Transfer 57

7.1 Energy Refactoring Results . 69

A.1 Mobile device settings for Sim Card Request 75

B.1 Mobile device settings for AdBlock Plus 78

C.1 Modified HTC Power Profile . 82

92 List of Tables

93

References
[AdB] AdBlock Plus. Akzeptable Werbung in Adblock Plus zulassen. https://ad

blockplus.org/de/acceptable-ads Last visit on 19th August 2013.

[AdM] Build a great app business with AdMob. http://www.google.com/ads
/admob/ Last visit on 27th April 2013.

[Anda] Android. Optimizing Battery Life. http://developer.android.com/
training/monitoring-device-state/index.html Last visit on
11th October 2013.

[Andb] Android Developers. Activity. http://developer.android.com/re
ference/android/app/Activity.html Last visit on 23rd May 2013.

[Andc] Android Developers. android-query. https://code.google.com/p/an
droid-query/ Last visit on 5th September 2013.

[Andd] Android Developers. Android, the world’s most popular mobile platform. ht
tp://developer.android.com/about/index.html Last visit on
24th May 2013.

[Ande] Android Developers. Application Fundamentals. http://developer.an
droid.com/guide/components/fundamentals.html Last visit on
24th May 2013.

[Andf] Android Developers. Intent. http://developer.android.com/refe
rence/android/content/Intent.html Last visit 7th August 2013.

[Andg] Android Developers. Monitoring the Battery Level and Charging
State. http://developer.android.com/training/monitorin
g-device-state/battery-monitoring.html Last visit 7th August
2013.

[Andh] Android, Developers. PowerManager.WakeLock. http://developer.an
droid.com/reference/android/os/PowerManager.WakeLock
.html. Last visited on 10th June, 2012.

[Ang] AngryBirds. https://play.google.com/store/apps/details
?id=com.rovio.angrybirds Last visit on 30th March 2013.

[BBC] BBC. Free mobile apps ’drain battery faster’, March. http://www.bbc.co
.uk/news/technology-17431109 Last visited on 10th June 2012.

[BGNW13] Christian Bunse, Marion Gottschalk, Stefan Naumann, and Andreas Win-
ter, editors. 2nd Workshop EASED@BUIS 2013 - Energy Aware Software-
Engineering and Development, number 4/2013, Oldenburg, 04 2013. Carl von
Ossietzeky University, Oldenburg, Software-Engineering.

https://adblockplus.org/de/acceptable-ads
https://adblockplus.org/de/acceptable-ads
http://www.google.com/ads/admob/
http://www.google.com/ads/admob/
http://developer.android.com/training/monitoring-device-state/index.html
http://developer.android.com/training/monitoring-device-state/index.html
http://developer.android.com/reference/android/app/Activity.html
http://developer.android.com/reference/android/app/Activity.html
https://code.google.com/p/android-query/
https://code.google.com/p/android-query/
http://developer.android.com/about/index.html
http://developer.android.com/about/index.html
http://developer.android.com/guide/components/fundamentals.html
http://developer.android.com/guide/components/fundamentals.html
http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/reference/android/content/Intent.html
http://developer.android.com/training/monitoring-device-state/battery-monitoring.html
http://developer.android.com/training/monitoring-device-state/battery-monitoring.html
http://developer.android.com/reference/android/os/PowerManager.WakeLock.html
http://developer.android.com/reference/android/os/PowerManager.WakeLock.html
http://developer.android.com/reference/android/os/PowerManager.WakeLock.html
https://play.google.com/store/apps/details?id=com.rovio.angrybirds
https://play.google.com/store/apps/details?id=com.rovio.angrybirds
http://www.bbc.co.uk/news/technology-17431109
http://www.bbc.co.uk/news/technology-17431109

94 References

[Bin07] D. Binkley. Source Code Analysis: A Road Map. In Future of Software Engi-
neering. IEEE, 2007.

[BRM09] Höpfner H. Bunse, C., S. Roychoudhury, and E. Mansour. Choosing the ”best”
Sorting Algorithm for optimal Energy Consumption. In IC SOFT 2009: 4th
International Confernce on Software and Data Technologies, 2009.

[BS13] C. Bunse and S. Stiemer. On the Energy Consumption of Design Patterns. In
C. Bunse, M. Gottschalk, A. Winter, and S. Naumann, editors, 2nd Workshop
EASED@BUIS 2013 - Energy Aware Software-Engineering and Development,
page 22, 2013.

[CC90] E. J. Chikofsky and J. H. Cross. Reverse Engineering and Design Recovery: A
Taxonomy. Software, IEEE, 7(1), 1990.

[CCMF13] X. Chen, Y Chen, Z. Ma, and F. Fernandes. How is Energy Consumed in Smart-
phone Display Applications? In ACM HotMobile’13, Jekyll Island, Georgia,
USA, February 2013.

[CGKO97] Y. Chen, E. R. Ganser, and E. Koutso Os. A C++ Data Model Supporting
Reachability Analysis and Dead Code Detection. In Proc. 6th European Soft-
ware Engineering Conference and 5th ACM SIGSOFT Symposium on the Foun-
dations of Software Engineering, April 1997.

[CH10] A. Carroll and G. Heiser. An Analysis of Power Consumption in a Smartphone.
In USENIX: Annual Technical Conference, 2010.

[CNR90] Y Chen, M. Y. Nishimoto, and C. V. Ramamoorthy. The C Information Ab-
straction System. In Transactions on Software Engineering, pages 325–334.
IEEE, March 1990.

[CSC02] I. Choi, H. Shim, and N. Chang. Low-Power Color TFT LCD Display for
Hand-Held Embedded Systems. In ISLPED’02, August 2002.

[dSB10] W. G. P. da Silva and L. Brisolara. Evaluation of the Impact of Code Refactoring
on Embedded Software Efficiency. In 1. Workshop de Sistemas Embarcados,
pages 145–150, 2010.

[EKRW02] J. Ebert, B. Kullbach, V. Riediger, and A. Winter. GUPPRO. Generic Under-
standing of Programs - An Overview. Electronic Notes in Theoretical Computer
Science, 72(2), 2002.

[EKW97] J. Ebert, M. Kamp, and A. Winter. A Generic System to Support Multi-
Level Understanding of Heterogeneous Software. Technical report, University
Koblenz-Landau, June 1997.

[Ern03] M. D. Ernst. Static and dynamic analysis: synergy and duality. In WODA 2003
ICSE Workshop on Dynamic Analysis, pages 25–28, 2003.

95

[ERW08] J. Ebert, V. Riediger, and A. Winter. Graph Technology in Reverse Engineering,
The TGraph Approach. In R. Gimnich, U. Kaiser, J. Quante, and A. Winter, ed-
itors, 10th Workshop Software Reengineering (WSR 2008), pages 67–81, Bonn,
2008. GI.

[FBB+02] M. Fowler, K. Beck, J. Brant, W. Opdyke, and D. Roberts. Refactoring: Im-
proving the Design of Existing Code. Addison Wesley, 2002.

[FWE+12] A. Fuhr, A. Winter, U. Erdmenger, T. Horn, U. Kaiser, V. Riediger, and
W. Teppe. Model-Driven Software-Migration - Process Model, Tool Support
and Application. In A. D. Ionita, M. Litoiu, and G. Lewis, editors, Migrating
Legacy Applications: Challenges in Service Oriented Architecture and Cloud
Computing Environment. IGI Global, Hershey, PA, 2012.

[GHJV93] E. Gamma, R. Helm, R. E. Johnson, and J. M. Vlissides. Design Patterns:
Abstraction and reuse of object-oriented design. In ECOOP, 1993.

[GJJW12] M. Gottschalk, M. Josefiok, J. Jelschen, and A. Winter. Removing Energy Code
Smells with Reengineering Services. In Lecture Notes in Informatics. GI, 2012.

[GNU] GNU. Gnu.de. http://www.gnu.de/ Last visit on 30th March 2013.

[Gooa] Google play. https://play.google.com Last visit on 13th October
2013.

[Goob] Google Developers. Google Mobile Ads SDK. https://developers.g
oogle.com/mobile-ads-sdk/?hl=de Last visit on 7th August 2013.

[GZT] M. Gordon, L. Zhang, and B. Tiwana. A Power Monitor for Android-Based
Mobile Platforms. http://powertutor.org/ Last visit on 30th Septem-
ber 2013.

[Hav09] K. Havelund. Java Coding Standard. Technical report, California Institute of
Technology, 2009. p. 17.

[HB10] H. Höpfner and C. Bunse. Towards an Energy-Consumption based Complex-
ity Classification for Resource Substitution Strategies. In W. Balke and C. Lofi,
editors, Proceedings of the 22. Workshop on Foundations of Databases (Grund-
lagen von Datenbanken), Bad Helmstedt, Germany, May 2010.

[HB11] H. Höpfner and C. Bunse. Energy Awareness Needs a Rethinking in Software
Development. In ICSOFT 2011 - Proceedings of the 6th International Confer-
ence on Software and Data Technologies, Seville, Spain, 2011. SciTePress.

[HE11] T. Horn and J. Ebert. The GReTL Transformation Language. In Theory and
Practice of Model Transformations - 4th International Conference, ICMT 2011,
pages 183–197, Zurich, Switzerland, June 2011. Springer Berlin / Heidelberg.

http://www.gnu.de/
https://play.google.com
https://developers.google.com/mobile-ads-sdk/?hl=de
https://developers.google.com/mobile-ads-sdk/?hl=de
http://powertutor.org/

96 References

[Hei12] Heise online. Adblock Plus für Android entfernt In-App-Werbung, 2012.
http://www.heise.de/newsticker/meldung/Adblock-Plus-
fuer-Android-entfernt-In-App-Werbung-1757454.html
Last visit on 30th March 2013.

[Hom09] J. Homann. Begrüßungsansprache. In A. Picot and K.-H. Neumann, editors,
E-Energy: Wandel und Chance durch das Internet der Energie, pages 3–11.
Springer, 2009. p. 9.

[Hor10] T. Horn. Model MigrationWith GReTL. In Proceedings of Transformation and
Tool Contest, May 2010.

[HTCa] HTC Corporation. HTC One X. http://www.htc.com/uk/smartphon
es/htc-one/ Last visit on 27th August 2013.

[HTCb] HTC Inside. HTC One X erhält Update auf 3.20.401.1, April.
http://www.htcinside.de/htc-one-x-erhaelt-update-
auf-3-20-401-1/ Last visit on 2nd September 2013.

[JCD02] D. Jin, J. R. Cordy, and T. R. Dean. Where’s the Schema? A Taxonomy of
Patterns for Software Exchange. In IWPC, pages 65–74, 2002.

[JGJ+12] J. Jelschen, M. Gottschalk, M. Josefiok, C. Pitu, and A. Winter. Towards Ap-
plying Reengineering Services to Energy-Efficient Applications. In R. Ferenc,
T. Mens, and A. Cleve, editors, Proceedings of the 16th European Conference
on Software Maintenance and Reengineering. IEEE, 2012.

[Jos12] M. Josefiok. An Energy Abstraction Layer for Mobile Computing Devices.
Master’s thesis, Carl von Ossietzky Universität Oldenburg, 2012.

[JSW13] M. Josefiok, M. Schröder, and A. Winter. An Energy Abstraction Layer for
Mobile Computing Devices. In C. Bunse, M. Gottschalk, S. Naumann, and
A. Winter, editors, 2nd Workshop EASED@BUIS 2013, number 04/2013. Old-
enburger Lecture Notes on Software Engineering, 2013.

[Kah06] S. Kahle. JGraLab: Konzeption, Entwurf und Implementierung einer Java-
Klassenbibliothek für TGraphen. Master’s thesis, University Koblenz-Landau,
2006.

[Kam11] T. Kaminski. Intel erfindet den Transistor mit einer 3D-Struktur neu. online,
Mai 2011. http://newsroom.intel.com/community/de_de/b
log/2011/05/04/intel-erfindet-den-transistor-mit-
einer-3d-struktur-neu Last visit on 8th December 2011.

[Khu] K. Khunkham. Mit Apple in acht einfachen Schritten reich werden. http:
//www.welt.de/wirtschaft/webwelt/article8315044/Mit-
Apple-in-acht-einfachen-Schritten-reich-werden.html
Last visit on 27th August 2013.

http://www.heise.de/newsticker/meldung/Adblock-Plus-fuer-Android-entfernt-In-App-Werbung-1757454.html
http://www.heise.de/newsticker/meldung/Adblock-Plus-fuer-Android-entfernt-In-App-Werbung-1757454.html
http://www.htc.com/uk/smartphones/htc-one/
http://www.htc.com/uk/smartphones/htc-one/
http://www.htcinside.de/htc-one-x-erhaelt-update-auf-3-20-401-1/
http://www.htcinside.de/htc-one-x-erhaelt-update-auf-3-20-401-1/
http://newsroom.intel.com/community/de_de/blog/2011/05/04/intel-erfindet-den-transistor-mit-einer-3d-struktur-neu
http://newsroom.intel.com/community/de_de/blog/2011/05/04/intel-erfindet-den-transistor-mit-einer-3d-struktur-neu
http://newsroom.intel.com/community/de_de/blog/2011/05/04/intel-erfindet-den-transistor-mit-einer-3d-struktur-neu
http://www.welt.de/wirtschaft/webwelt/article8315044/Mit-Apple-in-acht-einfachen-Schritten-reich-werden.html
http://www.welt.de/wirtschaft/webwelt/article8315044/Mit-Apple-in-acht-einfachen-Schritten-reich-werden.html
http://www.welt.de/wirtschaft/webwelt/article8315044/Mit-Apple-in-acht-einfachen-Schritten-reich-werden.html

97

[Kre13] M. Kremp. Blackberry Z10 im Test: Handy mit Nottank, January
2013. http://www.spiegel.de/netzwelt/gadgets/angefass
t-der-blackberry-z10-im-test-a-880411.html Last visit on
1st March 2013.

[KWC98] R. Kazman, S. G. Woods, and J. Carriere. Requirements for Integrating Soft-
ware Architecture and Reengineering Models: CORUM II. In Working Confer-
ence on Reverse Engineering, 1998.

[leo] LEO Wörterbuch. https://play.google.com/store/apps/detai
ls?id=org.leo.android.dict&hl=de Last visit on 7th April 2013.

[Mic] Microsoft. Windows 8: Windows Neu Erfunden. http://www.micros
oft.com/germany/msdn/academic/windows-8/infos-fuer-
entwickler.aspx Last visit on 27th August 2013.

[MyT] MyTracks. https://code.google.com/p/mytracks/ Last visit on
2nd March 2013.

[OnV12] Neues GPS-Modul Telit Jupiter SE880 ist das kleinste im Markt und nutzt 3D-
Embedded- Technologie, 2012. http://www.onvista.de/news/al
le-news/artikel/11.10.2012-09:26:00-neues-gps-modul-
telit-jupiter-se880-ist-das-kleinste-im-markt-und-
nutzt-3d-embedded-technologie Last visit on 20th December 2012.

[PCHZ11] A. Pathak, Y. Charlie Hu, and M. Zhang. Bootstrapping Energy Debugging on
Smartphones: A First Look at Energy Bugs in Mobile Devices. In Hotnets ’11,
Cambridge, MA, USA, November 2011. ACM.

[PCHZ12] A. Pathak, Y. Charlie Hu, and M. Zhang. Fine Grained Energy Accounting on
Smartphones with Eprof. In EuroSys’12, 2012.

[PF] W. Palant and T. Faida. Über Adblock Plus für Android. https://adbloc
kplus.org/de/about Last visit on 7th August 2013.

[Rob12] Robotmafia.org. GPS Print, 2012. https://play.google.com/st
ore/apps/details?id=com.tyfon.gpsprint&hl=en Last visit on
30th March 2012.

[RWE] RWE Power AG. Kernkraftwerk Emsland. https://www.rwe.com/we
b/cms/de/16646/rwe-power-ag/standorte/kernkraft/kkw-
emsland/ Last visit on 11th October 2013.

[Sama] Samsung. Samsung Galaxy S4. http://galaxys4.samsung.de/tech
nik/ Last visit on 9th September 2013.

[Samb] Samsung. Samsung’s Guide to Green. http://www.samsung.com/us
/guide-page/green/ Last visit on 11th October 2013.

http://www.spiegel.de/netzwelt/gadgets/angefasst-der-blackberry-z10-im-test-a-880411.html
http://www.spiegel.de/netzwelt/gadgets/angefasst-der-blackberry-z10-im-test-a-880411.html
https://play.google.com/store/apps/details?id=org.leo.android.dict&hl=de
https://play.google.com/store/apps/details?id=org.leo.android.dict&hl=de
http://www.microsoft.com/germany/msdn/academic/windows-8/infos-fuer-entwickler.aspx
http://www.microsoft.com/germany/msdn/academic/windows-8/infos-fuer-entwickler.aspx
http://www.microsoft.com/germany/msdn/academic/windows-8/infos-fuer-entwickler.aspx
https://code.google.com/p/mytracks/
http://www.onvista.de/news/alle-news/artikel/11.10.2012-09:26:00-neues-gps-modul-telit-jupiter-se880-ist-das-kleinste-im-markt-und-nutzt-3d-embedded-technologie
http://www.onvista.de/news/alle-news/artikel/11.10.2012-09:26:00-neues-gps-modul-telit-jupiter-se880-ist-das-kleinste-im-markt-und-nutzt-3d-embedded-technologie
http://www.onvista.de/news/alle-news/artikel/11.10.2012-09:26:00-neues-gps-modul-telit-jupiter-se880-ist-das-kleinste-im-markt-und-nutzt-3d-embedded-technologie
http://www.onvista.de/news/alle-news/artikel/11.10.2012-09:26:00-neues-gps-modul-telit-jupiter-se880-ist-das-kleinste-im-markt-und-nutzt-3d-embedded-technologie
https://adblockplus.org/de/about
https://adblockplus.org/de/about
https://play.google.com/store/apps/details?id=com.tyfon.gpsprint&hl=en
https://play.google.com/store/apps/details?id=com.tyfon.gpsprint&hl=en
https://www.rwe.com/web/cms/de/16646/rwe-power-ag/standorte/kernkraft/kkw-emsland/
https://www.rwe.com/web/cms/de/16646/rwe-power-ag/standorte/kernkraft/kkw-emsland/
https://www.rwe.com/web/cms/de/16646/rwe-power-ag/standorte/kernkraft/kkw-emsland/
http://galaxys4.samsung.de/technik/
http://galaxys4.samsung.de/technik/
http://www.samsung.com/us/guide-page/green/
http://www.samsung.com/us/guide-page/green/

98 References

[Sch13] M. Schröder. Erfassung des Energieverbrauchs von Android Apps. Master’s
thesis, Carl von Ossietzky University, Oldenburg, 2013.

[SH12] M. Schirmer and H. Höpfner. Towards Using Location Poly-Hierarchies for
Energy-Efficient Continuous Location Determination. In I. Schmitt, S. Saretz,
and M. Zierenberg, editors, Proceedings of the 24th GI - Workshop on Founda-
tions of Databases, Lübbenau, Germany, June 2012.

[She07] Findlay Shearer. Power management in mobile devices. Newnes, 2007.

[Sin01] A. Sinha. Energy Efficient Operating Systems and Software. PhD thesis, Mas-
sachusetts Institute of Technology, 2001. pp. 27 and 31-33.

[Sna11] Snapdragon S4 Processors: System on Chip Solutions for a New Mobile Age.
White paper, ARM, October 2011.

[Sta] Statista. Absatzprognosen für 2013: Smartphones verkaufen sich am
besten [Statistik]. http://de.statista.com/themen/647/itk-
branche/infografik/711/prognosen-zum-weltweiten-
absatz-von-itk-geraeten/ Last visit on 18th December 2012.

[Ste12] S. Steimels. Display-Technik von Smartphones einfach erklärt, June 2012.
http://www.pcwelt.de/ratgeber/AMOLED-LCD-Co-Die-
Display-Technik-von-Smartphones-einfach-erklaert-
5913756.html Last visit on 7th September 2013.

[Sto08] L. Stobbe. Stromverbrauch von Informations- und Kommunikationstechnik in
Deutschland. Technical report, Bundesministerium für Wirtschaft und Tech-
nologie (BMWi), November 2008.

[Ull11] C. Ullenboom. Java ist auch eine Insel. Galileo Computing, 2011.

[WBM95] C. H. Wells, R. Brand, and L. Markosian. Customized Tools for Software Qual-
ity Assurance and Reengineering. In Proceedings of 2nd Working Conference
on Reverse Engineering, pages 71–77, 1995.

[Woo11] J. Wood. standup-timer, 2011. https://github.com/jwood/stand
up-timer Last visit on 2nd March 2013.

[WRP+12] C. Wilken, S. Richly, G. Püschel, C. Piechnick, S. Götz, and U. Aßmann. En-
ergy Labels for Mobile Applications. In Lecture Notes in Informatics, volume
208, pages 412–425, Bonn, 2012.

http://de.statista.com/themen/647/itk-branche/infografik/711/prognosen-zum-weltweiten-absatz-von-itk-geraeten/
http://de.statista.com/themen/647/itk-branche/infografik/711/prognosen-zum-weltweiten-absatz-von-itk-geraeten/
http://de.statista.com/themen/647/itk-branche/infografik/711/prognosen-zum-weltweiten-absatz-von-itk-geraeten/
http://www.pcwelt.de/ratgeber/AMOLED-LCD-Co-Die-Display-Technik-von-Smartphones-einfach-erklaert-5913756.html
http://www.pcwelt.de/ratgeber/AMOLED-LCD-Co-Die-Display-Technik-von-Smartphones-einfach-erklaert-5913756.html
http://www.pcwelt.de/ratgeber/AMOLED-LCD-Co-Die-Display-Technik-von-Smartphones-einfach-erklaert-5913756.html
https://github.com/jwood/standup-timer
https://github.com/jwood/standup-timer

Declaration
I declare that the work presented here is, to the best of my knowledge and belief, original and
the result of my own investigations, except as acknowledged, and has not been submitted,
either in part or whole, for a degree at this or any other University.

Formulations and ideas taken from other sources are cited as such. This work has not been
published.

Oldenburg, October 13, 2013

Marion Gottschalk

	Introduction
	Motivation
	Approach
	Related Work
	Work Packages for the Thesis
	Structure of the Thesis

	Basic Techniques
	Reengineering Techniques
	Reverse- and Forward-Engineering
	Source Code Analysis
	Restructuring
	Refactoring

	Java TGraphs
	TGraphs
	Graph Query
	Graph Transformation

	Android
	Foundations
	Android Life Cycle
	Other Operation Systems

	Tested Hardware
	Energy Measurement
	Measurement Techniques
	Process of the Evaluation
	HTC Power Profile
	S4 Power Profile

	Used Applications

	Energy Refactorings
	Energy Code Smells
	Definition
	Dependencies
	Identification
	Handling

	Template for Energy Refactorings

	Energy Refactoring Catalog
	Third-Party Advertisement
	Binding Resources Too Early
	Statement Change
	Backlight
	Data Transfer

	Further Energy Refactorings
	Using expensive Resources
	Dead Code
	Replace Sorting Algorithm
	Loop Bug
	In-Line Method
	Wake Lock for Resources
	Fowlers' Refactorings
	Design Pattern

	Implementation of Energy Refactorings
	Software
	Class Diagram of EnergyRefactoring
	Output of EnergyRefactoring
	Extensions of EnergyRefactoring

	Conclusion
	Energy Refactorings' Results
	Lesson Learned
	Work Packages for the Thesis
	Outlook
	Benefits from this Thesis

	Appendix
	Energy Measurement for Sim Card Request
	AdBlock Plus
	General
	Energy Measurement

	Modified Power Profile for HTC
	Console Output for TreeGenerator
	CD Content
	List of Figures
	List of Tables
	References

