
Preprint: Bühring P., Kuryazov D., Sandau A., Winter A. (2021) A Sustainable Software Ar-

chitecture for Mobility Platforms. In: Marx Gómez J. et al. (eds) Progress in Sustainable Mo-

bility Research. Progress in IS. Springer, pp 115-136, https://doi.org/10.1007/978-3-030-

70841-2_7

A Sustainable Software Architecture

for Mobility Platforms

Phillip Bühring, Dilshodbek Kuryazov, Alexander Sandau, Andreas Winter

Abstract: The NEMo project aims at providing new mobility means to facilitate

sustainable fulfillment of mobility needs in rural areas. The collection of mobility

services provided by NEMo serve to develop mobility platforms fulfilling inter-

modal needs. In order to meet the core objectives of NEMo, the envisioned mobility

platforms must be sustainable itself by providing flexibility in co-evolution with

changing and novel mobility needs, services, and business models. With the overall

objective of NEMo being sustainable, it is only appropriate to strive for it in terms

of sustainable software design and architecture. Thus, in order to be technically sus-

tainable, the architectural provision behind a mobility platform has to be flexible

and adaptable.

SENSEI and DORI provide architectural support to enable sustainability on soft-

ware engineering level. They are applied to NEMo in order to achieve the aforemen-

tioned goals to create, extend and adapt a NEMo inter-modal mobility scenario.

SENSEI provides flexibility, adaptability and long-term sustainability by utilizing

model-driven, service-oriented and component-based concepts to provide flexible

orchestration of NEMo’s functionality. The users of a mobility platform further

need support for interacting with the mobility platform. To this end, the DORI ap-

proach is applied to design user interactions in NEMo. DORI intends to provide flex-

ible interaction modeling support for designing state-based interactivity models to

describe the overall interaction by GUI states and transitions between these states.

It defines abstract GUI widgets and their underlying implementations, separately.

This paper summarizes the sustainable architecture of NEMo and shows the exten-

sibility and adaptability of the NEMo mobility platform.

Andreas Winter, Phillip Bühring, Alexander Sandau, University of Oldenburg,
e-mail: winter@se.uol.de {phillip.buehring,alexander.sandau}uol.de
Dilshodbek Kuryazov, Urgench branch of Tashkent University of Information Technolo-

gies named after Muhammad al-Khwarizmi, e-mail: kuryazov@se.uol.de

mailto:winter@se.uol.de
mailto:kuryazov@se.uol.de

1 Motivation

The interdisciplinary research project NEMo (Jelschen et al., 2016) aims at the sus-

tainable fulfillment of mobility needs in rural areas considering social, demo-

graphic, accessibility, legal, economic, and ecological conditions and objectives. It

intends to facilitate the provision of smart mobility services based on social self-

organization. NEMo develops novel business models (Akyol et al., 2017) that in-

crease utilization of public and private transport, while reducing the overall stream

of vehicles on the streets (Kuryazov et al., 2019). In smarter cities, which also in-

clude rural areas, information and communication technologies (ICT) are viewed as

the key enabler to support these objectives implementing a mobility platform that

is accessible through various devices and media. This paper strictly focuses on de-

signing a flexible and adaptable, i.e., a sustainable software architecture to provide

appropriate ICT support.

Like any software system, the NEMo mobility platform needs to evolve to re-

main up to date with new or modified requirements, e.g., new business models, mo-

bility services and their implementations. Continuously adapting the mobility plat-

form leads to more complex and less maintainable software systems (Lehman

1996). Due to the innovative nature of the NEMo mobility project, a sustainable

software architecture plays an essential role in simple and fast development, inte-

gration and maintenance of new mobility services (Jelschen et al. 2016). Even dur-

ing the course of the project, developing the NEMo system required various revi-

sions and adaptations.

The application domain of smart mobility services also requires highly flexible

software support. The NEMo mobility platform should be able to support all kinds

of mobility needs and scenarios, modes of transportation, and business models. Ac-

cording to (Combemale et al. 2016), the evolution of NEMo has to facilitate the

recombination of existing mobility services to provide enhanced services, as well

as completely new, unanticipated usage scenarios.

Finally, with the overall objective of NEMo aiming at sustainability, it is only

appropriate to strive for it in terms of software design. A rigid, monolithic software

system would lead to high maintenance costs, and ultimately to its phaseout, close

down, and forced replacement (Rajlich and Bennett 2000). To be sustainable, the

NEMo mobility platform must make architectural provisions for sustainability, flex-

ibility and adaptability (Kateule and Winter 2018). In this way, a smart system can

be continuously adapted and made smarter and smarter.

A major use case, that is expected to play an essential role for the NEMo mobility

platform, is inter-modal routing, combining the different modes of transportation,

e.g., walk, bike, bus, train, carpooling, etc. The existing infrastructure and function-

ality of the ICT Platform and Services (ICTS) project (Wagner vom Berg 2015) is

already able to support the use case of inter-modal routing to a large extent. On the

top of this platform, the ICT Services project build another software system to com-

bine its basic software services and offer value-added services to support the desig-

nated business processes. These mobility services are reused in developing the sus-

tainable prototypical NEMo mobility platform in Section 3.

1.1 Challenges

Due to the fast development of early prototypes of ICTS to enable applied research

on rural mobility at early stages, the existing infrastructure was designed and devel-

oped without a particular focus on flexibility, sustainability and adaptability. In or-

der to achieve sustainable development and maintenance of the mobility platform,

the NEMo project addresses to several challenges considering sustainability, inno-

vation and evolution:

• The software architecture of the mobility platform has to be developed focusing

on flexibility, adaptability, extensibility and long-term sustainability.

• The existing functionality of the existing mobility platforms has to be easily re-

used, enhanced and modified.

• The realization of the mobility platform has to focus on consistent separation of

functionality (services) and implementation (components), following the princi-

ple of separation of concerns (Dijkstra, 1982).

• Development of novel, flexible interaction user interfaces has to be automated so

that changes and new user requirements can easily be adapted in user interactions

of the mobility platforms.

These challenges are considered as the main engineering and technical-conceptual

challenges that can be resolved by the novel software engineering trends, which are

addressed in this contribution.

1.2 Objectives

In order to solve the scientific challenges described in Section 1.1, this section de-

scribes several objectives that are addressed throughout this paper. The sustainabil-

ity objectives of the NEMo project, from a software engineering point of view, are

manifold:

• Sustainable Software Architecture. First of all, there is a need for a flexible,

adaptable and extensible software architecture that incorporates the existing

functionality, but highlights flexibility, adaptability, and long-term sustainabil-

ity. A sustainable software architecture serves as a common blueprint in reusing

existing features of mobility platforms and developing and adapting new fea-

tures.

• Reusable Mobility Services. In case of existing mobility platforms, the existing

functionality of the mobility platforms should be enhanced, modified and reused.

Future changes (i.e., extensions, optimization and corrections) based on the re-

search findings within the NEMo project have to be adaptable and reusable.

• Separation of Concerns. Sustainable software architecture and reusable mobility

services should support novel business models, model-driven and service-ori-

ented mobility services and component-based functionality enabling consistent

separation of functionality (services) and implementation (components), This

allows for eased maintenance of business models, mobility services and compo-

nents.

• Interaction Modeling. As long as users interact with mobility platforms by using

various user interfaces and media devices, there is a need for a model-driven,

flexible interaction modeling feature by separation of user interaction and user

interface designs. Utilization of interaction modeling provides developing user

interaction independent from various platforms and devices.

These objectives remain on the central focus throughout this contribution. So far,

some prototypical results are achieved by providing the existing mobility platform

with the flexible, sustainable and adaptable software support based on component-

based, service-oriented software development and maintenance. This feature sup-

ports including the achieved research results in an interdisciplinary research project

lite NEMo to its software support from a software engineering’s perspective.

The remainder of this paper is outlined as follows: Section 2 introduces a reference

architecture for sustainable mobility platform development. The same section de-

scribes the central concepts of the SENSEI and DORI approaches. Section 3

sketches the application of SENSEI and DORI approaches to the NEMo mobility

platform based on the reference architecture using an example. Section 4 defines

several user requirements that have to be adapted in the running NEMo example

throughout this paper. Section 5 presents the complete solution combining all re-

quirements defined in Section 4. Section 6 explains the core results and contribu-

tions of this research and draws conclusions about sustainable architecture and

SENSEI in NEMo.

2 Conceptual Idea

This section sketches the theoretical foundations of the engineering technologies

used in development of the NEMo mobility platform. These foundations consist of

a sustainable reference architecture (explained in Section 2.1), an introduction of

the SENSEI (Section 2.2) and DORI approach (Section 2.3). A sustainable refer-

ence architecture helps to develop an evolvable mobility platform for providing mo-

bility services.

2.1 Sustainable Reference Architecture for Mobility Platforms
One of the main objectives in NEMo is the development and application of a sus-

tainable reference software architecture. Figure 2.1 depicts the four-layer NEMo tax-

onomy (Akyol et al., 2017). This taxonomy serves as a common blueprint and foun-

dation in developing the sustainable NEMo mobility platform. The taxonomy pro-

vides clear separation of concerns by distinguishing between the mobility services,

business models, information-technology-(IT)-services and IT-components.

Figure 2.1. Four Layer NEMo-Taxonomy for Mobility Platform (Akyol et al., 2017)

As the NEMo taxonomy depicted in Figure 2.1 enables separation of concerns, mo-

bility platforms developed based on this taxonomy can achieve higher level of sus-

tainability, adaptability and flexibility. Each level of the taxonomy can be sustained

separately, independent from the rest. It allows for eased adaptation of changes in

user requirements, business models, IT-services and IT-components.

Mobility Services. In general, the mobility platform offers mobility services by

means of transportation (vehicle) and offered by providers. A mobility service can

also be comprised of more fine-grained mobility services which is referred to as a

composite mobility service. This is due to the inter-modal nature of mobility ser-

vices. Any mobility service can be performed directly by transporting people, indi-

rectly by transporting things, or both by transporting people and things at once. Each

mobility service may be associated to several business models and processes.

Business Models and Processes. In the second column, the taxonomy describes

business models and processes that might be related to many mobility services. The

business models and processes consist of activities performed by the users and pro-

viders of the mobility platform. The activities can further be defined as tasks that

the users should perform before, while and/or after using the mobility service. The

activities are supported by IT-services.

IT-Services. An IT-service defines a piece of functionality. It adds appropriate

functionality to the activities focusing on human behavior (Jelschen, 2015). An IT-

service is a description of what a software component should do. In case of the

mobility platform, each mobility service is provided by several IT-services, e.g.,

each inter-model mobility service combines several IT-services supporting the

transportation mode. In the same vein, each IT-service provides a functionality, e.g.

finding the nearest stations to an origin or destination, finding sub-routes with dif-

ferent transport modes, etc. These IT-services are usually implemented by IT-com-

ponents.

IT-Components. IT-components are the concrete implementations of the function-

ality defined by IT- services (Jelschen, 2015). A service can be implemented by

several combined components. For instance, a find route service might use several

components for each transportation means, e.g., bus, walk, etc.

Figure 2.2 depicts a sustainable reference architecture based on the NEMo

Taxonomy in Figure 2.1. In this architecture, the mobility services on the

top level are described by business models and processes in the second

level. These business models are then defined as IT-services, whereas each

activity (i.e., functionality) is defined as one abstract service in a service

catalog. In the same vein, these services are implemented by IT-compo-

nents enabling reuse and sustainability of IT-services and IT-components.

Each level of the architecture in Figure 2.2 can be sustained separately, independent

from the rest of the taxonomy. It allows for eased adaptation of changes in user

requirements, business models, IT-services and IT-components.

Figure 2.2. Sustainable Reference Architecture for Mobility Platforms (Jelschen, 2015)

This sustainable reference architecture in Figure 2.2. is utilized in Section 3.1 to

develop a concrete mobility platform. As there is a need for technical support for

realizing this reference architecture, the SENSEI approach explained in Section 2.2

is utilized as realization technology.

2.2 SENSEI Approach

The sustainable reference architecture explained in Section 2.1 serves as a common

blueprint for model-driven (Kleppe et al., 2003), service-oriented and component-

based development and maintenance of the mobility platforms (Breivold and Lars-

son, 2007). This section explains the SENSEI approach making the sustainable ref-

erence architecture as the central architectural provisions for developing model-

driven, service-oriented and component-based mobility platform. Eventually, the

SENSEI approach serves as main technical grounds for realizing sustainable refer-

ence architecture depicted in Figure 2.2.

SENSEI (Software EvolutioN SErvice Integration) (Jelschen 2015, Jelschen 2020)

provides service-oriented software design facilities (service orchestration) on an ab-

straction level close to the application domain of mobility needs. Strictly separated

from this layer, concrete implementations of these services are realized in compo-

nent-based terms. An automated mapping from services to components bridges the

gap between service-oriented specification and component-based realization.

SENSEI provides a toolchain-building support framework providing flexibil-

ity, reusability, and productivity. It combines service-oriented, component-based,

and model-driven techniques to automatically map high-level, process models (ser-

vice orchestrations) onto reusable and interoperable components possessing the re-

quired capabilities and generate code that combines and coordinates them in the

required manner (Jelschen 2015). Using the SENSEI framework, applications are

built sustainably by combining (and reusing) components providing clearly speci-

fied functionality (services). For this purpose, services are kept in a service catalog.

A component registry maps this functionality to potential implementing compo-

nents (Service-Component-Matching). Based on orchestrations of the services, suit-

able components are automatically linked to the desired application by the SENSEI

generator. SENSEI consists of the following core concepts which can easily be

mapped to the four levels of the reference architecture in Figure 2.2.

Service Catalog. A service catalog serves as a central repository containing service

definitions that are described in a standardized way. The mobility services are de-

fined in the SENSEI service catalog. All services defined in the service catalog

have names and descriptions, along with input and output parameters, and associ-

ated data types. The implementations (IT-components in the reference architecture)

of these services usually provide traveling information for various imaginable

modes of transport, and the users of the service might only need a subset of them.

At the same time, the service catalog would become extremely cluttered if a service

were to be defined for every possible variant. SENSEI solves this issue by intro-

ducing capabilities to describe service variants concisely. Services define capability

classes to represent aspects that can vary independently. This service catalog is uti-

lized to collect mobility services in the NEMo project.

Component Registry. The component registry establishes relations between ser-

vices defined in the service catalog, and IT-components that provide the functional-

ity. Services are implemented by components offered by various providers. Each

entry in the component registry refers to a component and lists one or more services

it implements. With each service, the provided capabilities are specified in the same

way as required capabilities for orchestrations. Existing mobility services, provided

by the NEMo mobility platform, are wrapped for SENSEI compatibility and inter-

preted as implementations behind mobility services in orchestrations.

Service-Component-Matching. Considering required capabilities of orchestrated

services, provided capabilities of registered components, as well as constraints re-

sulting, e.g., from data type compatibility concerns, a suitable composition of com-

ponents will be searched for to realize the orchestrations.

Service Orchestrations. Service orchestrations (e.g., depicted in Figure 3.3 and

Figure 5.3) allow to instantiate and combine abstract services from the service

catalog to create more complex functionality, using a process-oriented, graphical

modeling language. In order to fulfill business models and processes (in the refer-

ence architecture), IT-services are orchestrated using one or many IT-services from

the service catalog. For instance, different, single IT-services provide different rout-

ing services by different transport modes and capabilities, whereas they are orches-

trated to provide the complete inter-modal routing scenarios for developing a mo-

bility platform in the NEMo project.

Application Generation. To conclude the process, the SENSEI orchestration

model is mapped to a particular target platform providing a runtime environment,

e.g. WSO2, the middleware used by the ICT Platform project. This step is per-

formed by a model-driven code generator. It results in a fully auto generated com-

ponent that depends on the components found in the previous step to perform the

work specified by the orchestrated services. The result is an executable software

application, ready to be deployed, e.g., to the WSO2 application server. After all,

the deployed application can be called by different means of media such as mobile,

web, desktop and other frontend clients.

Based on the sustainable reference architecture depicted in Figure 2.2, the SENSEI

approach is applied to the concrete NEMo mobility applications in Section 3.

2.3 DORI Approach

The mobility platform is bound to offer a wider range of functionality (e.g. route

planning, carpooling, etc.), and is supposed to be used in an everyday context by

people with limited technical proficiency, which creates a need for user interaction.

The SENSEI orchestrations are based on the input-process-output principle, and

thus not capable of interacting with the user at runtime. Thus, there is a need for

another, complementary approach to enable users to interact with the mobility plat-

form and utilize its services in their daily routing planning activities.

In order to provide such flexible, model-driven means for the development of user

interactions with the mobility platform, the students' project group DORI (Do Your

Own Reactive Interface) has developed a concept and tool support for modeling

user interactions through the use of the DORI Domain Specific Language, which

was based on UML state charts and the IFML (Interaction Flow Modeling Lan-

guage) (Brambilla and Fraternali 2014). Interaction diagrams representing the in-

teractive behavior of applications, are executed by a dedicated interpreter. Follow-

ing the SENSEI structure given in Section 2.2, abstract behavior is represented in

the abstract widget catalog. Its platform-specific implementation is provided by the

concrete widget catalog.

Abstract Widget Catalog. This contains abstract Widgets and Functions. Abstract

Widgets serve as ''blueprints'' for the actual interaction states (called Abstract

Widget Instances - AWI), defining the set of data fields in their possession, as well

as the events which they may react to. Conceptually, they are similar to SENSEI

services. They may also contain Sockets, enabling composition or parallel

https://wso2.com/
https://uol.de/en/computingscience/se/teaching/project-groups/?generated-content/lectures=generated-content/pgDori.html
https://uol.de/en/computingscience/se/teaching/project-groups/?generated-content/lectures=generated-content/pgDori.html
https://uol.de/en/computingscience/se/teaching/project-groups/?generated-content/lectures=generated-content/pgDori.html
https://uol.de/en/computingscience/se/teaching/project-groups/?generated-content/lectures=generated-content/pgDori.html

processing, albeit only on instance level. The second kind of abstract elements, Ab-

stract Functions, define a return type and a set of parameters.

Widget Catalog. The concrete catalog consists of a list of concrete widgets for each

of the pre-defined abstract widgets. While abstract widgets merely describe a sig-

nature, their concrete counterparts contain implementation-dependent information.

Concrete Widgets contain a path to the implementation of the UI element which is

supposed to represent it and Concrete Functions a path to the implementation of

their logic (e.g., a REST endpoint). Their roles are similar to those of SENSEI com-

ponents.

Platform Catalog. This catalog contains a list of platforms. In the context of DORI,

a platform is a set of elements whose implementations target a common platform.

This allows interpreters targeting different platforms to choose the appropriate con-

crete implementations from the catalog before executing a model. So far, there are

two interpreters available; one based on Java Server Faces to enable desktop appli-

cations and the other one supporting the android platform.

Interaction Diagram. The flow of user interactions through states (AWIs) and tran-

sitions is described by interaction diagrams. The states are instantiated from the pre-

defined abstract widgets; transitions may be supplemented with guards and Param-

eter Binding Groups (see Figure 3.2). The Parameter Binding Groups (1) define

which events may trigger their host-transition, (2) which (abstract) functions are to

be called once its host-transition fires, and (3) how data is transferred between the

involved variables. Since the interaction diagrams themselves are based on abstract

elements, they may be realized on different platforms, which makes this approach

quite useful for multi-platform or multi-device applications, as it would be the case

for the NEMo Mobility Platform. DORI is applied to development of the NEMo

application in Section 3.

3 NEMo application

The sustainable reference architecture for the mobility platform in Section 2.2 is

used as blueprint for model-driven, service-oriented and component-based devel-

opment and maintenance of the NEMo mobility platform. As the proof of the con-

cept, this section applies the SENSEI and DORI approaches to the NEMo mobility

platform. This section depicts a simplified scenario of the mobility platform. Sec-

tion 4 defines several additional user requirements (i.e., change requests) raising a

need for changing, adapting and sustaining the existing mobility platform. Accord-

ing to these user requirements, Section 5 describes what changes and adaptations

are required in the user interface, orchestration and interaction model in order to

adapt these requirements to the mobility platform. It is shown that using the

SENSEI/DORI-approach results in a technical sustainable software evolution.

The inter-modal routing finds routes to connect a point of origin and a destination

(Brake and Vechta in this example). Combining different modes of transport, e.g.,

walking, riding a bike, taking a bus or train, driving a private car, or joining a car-

pool, makes this inter-modal routing.

Figure 3.1. depicts the user interface of this simple inter-modal routing use case

representing two different states of user interaction with the mobility platform. In

the first window, origin and destination of a route, and time of departure are entered

for searching possible routes between these places.

Figure 3.1. Mobility Service UI. mapdata ©2019 GeoBasis-DE/BKG (©2009), Google

Once the Add Tour button is clicked (left side of Figure 3.1), all possible routes,

regardless of the transport mode, are calculated and added to the list of routes visible

on the dashboard (right side of Figure 3.1). Upon selection of a route, it is drawn on

the map below the list. In this example, the user interface is based on Java Server

Faces, using a slightly modified dialect to access the data of the DORI interaction

states from the .xhtml sources describing their corresponding UI counterparts.

Interaction Model

The DORI-Interaction Diagram behind this example makes use of seven abstract

widget instanced (AWI) in total (see Figure 3.2), although only four of them are of

immediate interest for the use case. The Dashboard-AWI (centermost in Figure 3.2)

serves as a hub for the application. Depending on the incoming events it allows for

switching to other widgets (e.g., Login, Profile and RouteFinder). It also grants ac-

cess to a list of pre-calculated routes (or tours). A map is used to depict the selected

route. For this purpose, both RouteList- and RouteMap widgets are nested within

the Dashboard through the use of sockets. The RouteList widget possesses three

data fields: a list of route-objects, an ID determining which of the routes is to be

removed once the event removeRoute is received, and finally the navigation data of

the route which supposed to be sent to the RouteMap widget for depiction once the

user triggered the showRoute event. The RouteMap widget itself does nothing but

contains a field to store the route-data received by the RouteList widget. Via the

gotoRouteFinder event on the Dashboard, a user can switch to the RouteFinder

widget, which is coupled to the route planning dialog as shown in Figure 3.1. The

RouteFinder widget allows a user to define new routes to be added to the Dash-

board's RouteList, and possesses one data field for each of the input fields visible in

the form of Figure 3.1. The event findRoute starts the process meant to calculate

routes, afterwards stores the calculated routes within the user's list, and finally re-

turns to the Dashboard. This is done with the help of two subsequent transitions

with a pseudo-state between them: the first transition calls the function meant to

calculate the new routes (navigational) data, ultimately referencing to a WSO2 ser-

vice, which in turns executes the SENSEI orchestration (Figure 3.3) used in this

example. Necessary parameters are prepared beforehand using Parameter Bindings

(longitude, latitude, etc.). Parameter Binding is also used to store the resulting

route-data within the intermediate pseudo-state.

Figure 3.2. Simplified Interaction Model for Calculating Inter-modal Routes

IT-Services

According to the sample mobility scenario explained above, the following IT-ser-

vices are needed:

• Converter: As shown in Figure 3.1, origin and destination locations are initially

given by coordinates. But all locations and routes are processed by their identifi-

ers within the already existing implementation. Thus, a converter service is

needed to convert coordinates to identifiers of these locations.

• Route Finder: This service is utilized for finding all possible routes between

origin and destination. It finds all routes by combining different transport modes.

• Route Details: In the existing ICT mobility platform, mobility services return the

sub-set of route data, i.e., the identifiers of locations connecting subroutes. De-

tailed information including stops (i.e., coordinates, names, etc.) between the

given two locations is then extracted by this additional service.

These three services are defined in the SENSEI service catalog. All services defined

in the service catalog have names and descriptions, along with input and output

parameters, and associated data types, also modeled in the catalog as data structures.

These pre-defined services are implemented by IT-components already existing in

the previous ICT-implementation (Wagner vom Berg et al., 2010). Within the gen-

eration step, these components are linked to manifest the SENSEI orchestration.

IT-Components

IT-components are the concrete implementations of the functionality defined by IT-

services. As long as some mobility functionality is already developed as the out-

come of the Electric Mobility Showcase program (Wagner vom Berg et al., 2010),

these existing functionality of ICT are invoked as components in the context of

NEMo. Existing mobility services provided by the ICTS are wrapped for SENSEI

compatibility and interpreted as implementations behind mobility services in the

SENSEI orchestrations. These components are published as REST Web services

and made available to reuse in the framework of NEMo.

Various route planning algorithms are used in the NEMo project. For instance,

new route planning services come with their own planer algorithms in the form of

further IT-components. To include those, a service implementation can firstly be

embedded behind its sole routing service, which has to be combined with a global

one. This allows for early adaptation of the new mobility services in an unoptimized

way. Later, the routing services can be implemented in a global routing component

to provide an optimized routing in Section 5.

Service Orchestrations

In order to fulfill this particular mobility services, IT-services defined above are

orchestrated selecting from the service catalog. Figure 3.3 depicts a SENSEI or-

chestration model for the initially simple mobility platform above. Services are in-

stantiated from the catalog by selecting the required capabilities. In the orchestra-

tions, the invocation order of services defined by the control flows (gray arrows)

and the flow of data among these services is defined by the data flows (green ar-

rows) connecting the inputs and outputs (green boxes) of the services. Services are

marked with an encircled "S" ahead their names. The input parameters of the overall

orchestration are defined by bigger green boxes, e.g., three boxes on the most left

side of Figure 3.3 with names origin, destination and tripRequest, and one green

box named route on the most right side.

Figure 3.3. Service Orchestration before changes

The orchestration consists of applying two instances of the service Coordinator-

ToID. As the origin and destination locations of the searched route are given in the

form of the coordinates, these services convert the coordinates to identifiers. Then,

the converted identifiers are sent to the RouteFinder service as startLocation and

endLocation, whereas it also receives the third parameter tripRequest. The latter

consists of the time of departure and the modes of transportation. In this case, the

RouteFinder service provides the capability PUBLIC, meaning the service searches

for all possible combination of transport modes including bus, train, walk, bike, etc.

After finding an optimal route, the route finder service sends its identifier to the

RouteDetails service, where further details about the found route are extracted.

Eventually, the result of this orchestration is displayed in the second user interface

depicted in Figure 3.1.

4 User Stories (Change Requests)
Section 3 has explained a simplified mobility service example. This mobility service

is the subject to various changes such as extensions, improvements and optimization

because of evolving user requirements over time. In this sense, the mobility plat-

form must be sustainable, easy to adapt and flexible to meet new and changed user

requirements. In order to demonstrate sustainability of the reference architecture

and associated technical support explained in Section 2, this section introduces sev-

eral user requirements (i.e., change requests) for the mobility platform explained in

Section 3.

• Text-based Location Information. While route planning, the user wants to be

able to give the names of the origin and destination locations instead of their ge-

ographic coordinates.

• Points of Interest. The users want to spend their spare time (waiting time be-

tween the changes of transport modes) meaningfully. For instance, if a traveler

should change transport from train to train, from train to bus, or vice versa, there

might be waiting time more than one hour. Then, travelers like to travel to points

of interest (PoI), i.e., coffee shops, restaurants, ATMs, museums, gardens, fast

food chains, etc. Thus, they want to see recommended points of their interest on

the map in the second UI of the mobility platform.

• Biking. The user wants to travel any subsection of a given route by bike if that

subsection is less than five kilometers. For example, if there are subsections of

the given route which is less than five kilometers and using bus, all of such sub-

sections should be replaced by the bike transport mode. Suppose, in these cases

rental bikes are available as a new mobility service. Travelers use these rental

bikes instead of any other transport means.

These user requirements are defined as extensions, optimization and improvements

for the simple mobility platform. They must be adapted in the existing mobility

platform. The following subsections explain what to do in the user interface, service

orchestration and interaction model of the mobility platform in order to extend the

simple initial NEMo platform. The compete graphical descriptions for all adapta-

tions are given in Section 5.

4.1 Text-based Location information

This section depicts what changes have to be made to change location coordinates

to location names.

User Interface. On the first graphical user interface, four input fields (Longitude

(Origin), Latitude (Origin), Longitude (Destination), Latitude (Destination)) are re-

moved from the user interface. New input fields (Origin and Destination) are added

in order to allow the user to specify origin and destination locations by their names

instead of their geo-coordinates. The RouteList is also extended by the columns

Origin and Destination. The changes made to the graphical user interface are re-

flected in Figure 5.1.

Interaction Model. Analogously, the RouteFinder widget's data fields for longi-

tude and latitude are removed and two new ones, origin and destination, are added.

The same changes are also reflected in the parameter sets of the abstract functions

calculateRoute and addRoute, as well as in the parameter bindings. The last change

is to actualize the (one) parameter binding used to initialize the data fields of

RouteFinder with default values just before it becomes the active state by adding

the origin and destination fields as targets. The changes related to the first user story

are depicted in Figure 5.2.

Orchestration. In order to support textual location names, a new IT-service called

Geocoder is entered to the service catalog and its implementation is registered in

the component registry. In this case, the implementation of the Geocoder service

invokes a ready-to-use geocoding service of Google Inc. This service provides con-

version of location names to location coordinates. The rest of the process remains

unchanged These changes are depicted in the left part of Figure 5.3.

4.2 Points of Interest

This section explains what changes have to be made on the UI, orchestration and

interaction model in order to add support for bridging waiting time.

User Interface. NEMo supports bridging waiting time by finding the points of in-

terest (e.g., ATMs, coffee shops, etc.), if a traveler has to wait more than one hour

while changing the means of transportation. In order to adapt this user story, several

types of point of interest are added to the graphical user interface, so that the user

can choose where she/he wants to visit during that spare time. The changes made

on the graphic user interface can be seen in Figure 5.1. Here, the user can tick dif-

ferent types of PoIs, he is interested in.

Interaction Model. A new data field stores the list of types of PoI which a user

wants to spend spare time and thus to be included in the resulting route data. A new

Parameter Binding prepares the parameter accordingly. Due to the types of data

fields (List of Strings) and the current technical limitations of the DORI-Editor, a

new Function initPOIModes is used to initialize the (empty) list when transitioning

from the Dashboard to the RouteFinder widget. The changes related to the second

user story are depicted in Figure 5.2.

Orchestration. The chosen types of PoI are then given to the overall orchestration

as poiModes. To find the PoI locations, a new service called PoIFinder is added to

the service catalog. This service receives the route identifier and the PoI types as

input and returns the PoI locations. This service is instantiated on the service or-

chestration to find point of interest locations based on the user request. This service

can be invoked together with the SubrouteExtractor service in parallel which is ex-

plained below. This parallel invocation of services helps to improve the runtime

performance of the overall orchestration. The changes in the service orchestration

are displayed in Figure 5.3.

4.3 Biking

This section presents the changes made in the user interface, interaction model and

service orchestration in order to fulfill adding biking as an new mobility service for

short distances.

User Interface. Bike transport mode has to be used to travel sub-routes less than

five kilometers. This does not request changing the graphical user interface and only

requires adapting the orchestration.

Interaction Model. In the same vein neither the user interface nor the signature of

the WSO2 endpoint are modified to adapt this request. No changes have to be made

to the DORI interaction model, as well.

Orchestration. The orchestration has to be extended with several changes to add

the additional mobility service. A new service called SubrouteExtractor extends the

service catalog. This service receives a route identifier and extracts all sub-sections

within that route which are less than five kilometers. These sub-sections are then

processed to a loop as a map, where the route finder service is invoked for each with

the bike transport mode. There, the route finder service has to be associated with the

capability BIKE. In the same loop in the orchestration in Figure 5.3 the route details

are also extracted for each sub-section. After finding all sub-routes that can be trav-

eled by bike, these results are sent to the RouteCombiner service to combine all bike

sections, public sections and point of interest locations. Finally, the result is as-

signed to the variable route and returned to the second graphical user interface (Fig-

ure 5.1) of the mobility scenario. These changes are depicted in Figure 5.3.

5 Complete Solution

This section presents the complete extension of the mobility platform explained in

Section 3 combining all extensions depicted in Section 4.

User Interface after Changes. Figure 5.1. depicts the screenshot of the extended

graphical user interface of the mobility scenario. The graphical user interface dis-

plays two states; the left window to search routes and the right window to show

results.

Figure 5.1. UI after Changes. Mapdata ©2019 GeoBasis-DE/BKG (© 2019), Google

The routes may be searched based on the names of their respective origin and des-

tination location, which initially required input of their geocoordinates. Addition-

ally, the route planner user interface provides a list of PoI Types in order to enable

travelers to visit their favorite points of interest, if they are expecting longer waiting

time. In the search results, the map depicts several indicators to show points of in-

terest based on the PoI requests of travelers. Finally, there is no change in both

graphic interfaces to provide biking for short distances.

Interaction Model. Figure 5.2 shows the relevant parts of the interaction diagram

in its original state (left) and the final version (right) incorporating all the necessary

changes to fulfill the three change requests.

Figure 5.2. Interaction model before (left) and after (right) the changes

The changes are not very complex. Adding location names requires the deletion (or

transformation) of some simple elements (four variables of the RouteFinder, the

four parameters for each of the functions calculateRoute and addRoute and the eight

bindings used to prepare their parameters) and subsequent addition of further ele-

ments (inserting the fields for origin and destination across widget, functions and

bindings). Adding PoIs is handled by adding one function for initializing the list of

PoI types, as well as adding the list itself to the RouteFinder widget, the calcu-

lateRoute function (as a parameter) and finally a new Parameter Binding in order to

transfer it from the widget to the function itself. Adding the bike mobility service

does not require any changes to the interaction model.

IT-Services. To adapt the user stories, several new IT-services are added to the

SENSEI service catalog. These services are: Geocoder which converts location

names to location coordinates, SubrouteExtractor which finds sub-routes less than

five kilometers, and extension of the RouteFinder service with the BIKE capability,

and PoIFinder which finds the points of interest for the given types and on the given

route. As long as different services deliver different outputs, these results are com-

bined by the RouteCombiner service, eventually.

IT-Components. The implementations of these IT-services are provided by the IT-

components registered in the SENSEI component registry. For providing the im-

plementations of the newly defined IT-services, the component registry is also ex-

tended with respective components. A new component for the Geocoder service is

added to the component registry, whereas it invokes the geocode service of Google

API. A new component for the SubrouteExtractor service is locally implemented,

and a new component implementing the existing RouteFinder service is extended

which invokes the route finder service of ICTS with the BIKE transport mode. The

latter requires to add a new capability to the RouteFinder service.

Service Orchestrations. All IT-services in the service catalog are defined as ab-

stract services. These abstract services are then instantiated as concrete services

whenever they are utilized in the orchestration model. Figure 5.3 shows the service

orchestration model for the mobility scenario, which takes into account all change

requests.

Figure 5.3. Service Orchestration after Changes

The orchestration is extended by the new services Geocoder, SubrouteExtractor,

PoIFinder, RouteCombiner and RouteFinder with new capability to adapt the afore-

mentioned change requests. The two instances of the Geocoder service, two in-

stances of the CoordinatorToID service, SubrouteFinder and PoIFinder are placed

in the concurrency container to accomplish higher runtime performance of the over-

all orchestration. As the SubrouteExtractor service instance returns the map of sub-

routes, this value is processed in the map to find the bike routes for each sub-section

by the RouteFinder service (with bike capability) and their details by the RouteDe-

tails service. Finally, all bike sections, public sections and PoI sections are com-

bined into a single result route by the RouteCombiner service instance.

These changes and extensions are made in the orchestration model without af-

fecting the underlying implementations and any other artifacts. This allows for sus-

tainable evolution of the mobility platform. Modeling service orchestrations allows

to remain abstract from technical implementation and does not require program-

ming skills or expert knowledge of the diverse technologies used by components.

6 Evaluation and Contributions

This section evaluates the objectives on sustainable software development and evo-

lution, validates the reference architecture and discusses the application of SENSEI

and DORI in the context of the NEMo mobility platform.

The NEMo mobility platform is subject to software evolution and has to remain

up to date with new or modified mobility requirements, e.g., new business models,

mobility services and implementations. Continually adapting the mobility platform

leads to more complex and less maintainable software systems. Due to the innova-

tive nature of the NEMo project, a sustainable and adaptable software architecture

plays an essential role in providing simple and fast development, integration and

maintenance of new features, i.e., sustainable software development.

The reference architecture explained in Section 2.1 serves as architectural pro-

visions for developing the NEMo-like mobility platforms focusing on sustainability,

flexibility and adaptability. The architectural provision covers the major use case;

inter-modal routing combining the different modes of transportation, e.g., walk,

bike, bus, train, carpooling, etc. The ICT mobility infrastructure, which was devel-

oped in advance to NEMo, is already able to support the use case of inter-modal

routing. However, it has not been designed with a focus on software sustainability,

which makes it hard to evolve.

Sustainability objectives defined in Section 1.2 are entirely achieved by the ref-

erence architecture (Section 2.1), and the application of the SENSEI (Section 2.2)

and the DORI approach (Section 2.3).

• Sustainable Mobility Platform by Sustainable Reference Architecture: A flexible,

adaptable and extensible reference software architecture serves as a common un-

derlying blueprint for developing mobility platforms highlighting flexibility,

adaptability, and long-term sustainability. This architecture provides clear exten-

sion points for services and components to enable software adaptations easily.

• Reusability: The existing mobility services and their implementaions (compo-

nents) can be reused, enhanced and modified, and future changes (i.e., extensions,

optimization and corrections) based on the research findings within the NEMo

project can be incorporated within the mobility platform without much technical

knowledge and effort.

• Separation of Concerns: The sustainable reference architecture and its associated

technical support (SENSEI and DORI) provides consistent separation of novel

business models, model-driven, service-oriented mobility services, and compo-

nent-based functionality enabling separation of functionality (services) and im-

plementation (components).

• Interaction Modeling: It provides a model-driven, flexible interaction modeling

feature for separation of user interaction and user interface designs.

This paper has demonstrated the application of the SENSEI and DORI approaches

to develop a sustainable and flexible mobility platform based on the sustainable

reference architecture in the framework of the NEMo project. The clear separation

of concerns, i.e., services and components in SENSEI allows to specify application

behavior on a non-technical level, close to the application domain. Service orches-

trations are comparatively easy to adapt or extend, and the corresponding software

application can be re-generated, allowing for fast turnarounds, and resulting in a

high degree of flexibility. The use of SENSEI reduces the effort required to develop

and maintain the mobility platform, particularly when sustainability raises.

The only prerequisite of applying the proposed approach, is the provision of basic

functionality, as in the NEMo case already available in the form of components pro-

vided by the existing ICT Platform. The component-based structure supported by

SENSEI promotes building up the catalog of both services and components, so that

over time existing functionality can be readily reused, adapted, extended or new

ones can be added. Both aspects potentially increase productivity and serve as the

basis for sustainable mobility platforms.

References

Jelschen J, Küpker C, Sandau A, Wagner vom Berg B, Gómez J M, Winter A: To-

wards a Sustainable Software Architecture for the NEMo Mobility Plat-

form. In: EnviroInfo (2), 2016. pp 41-47

Akyol A, Halberstadt J, Hebig K, Kuryazov D, Jelschen J, Winter A, Sandau A:

Marx G J: Flexible Software Support of Imovated Mobility Business Mod-

els, In: no.:31, Adjuct Proceedings of the 31st EnviroInfo Conference, pp.

27-34, Luxembourg, Shaker Verlag, September 2017.

Kuryazov D, Winter A, Sandau A: Sustainable Software Architecture for NEMo

Mobility Platform. In, Wiesbaden, 2019. Smart Cities/Smart Regions –

Technische, wirtschaftliche und gesellschaftliche Innovationen. Springer

Fachmedien Wiesbaden, pp 229-239

Lehman M M: Laws of software evolution revisited. In, Berlin, Heidelberg, 1996.

Software Process Technology. Springer Berlin Heidelberg, pp 108-124

Combemale B, Cheng B H, Moreira A, Bruel J-M, Gray J: Modeling for sustaina-

bility. In: 2016 IEEE/ACM 8th International Workshop on Modeling in

Software Engineering (MiSE), 2016. IEEE, pp 62-66.

Rajlich V T, Bennett K H (2000): A staged model for the software life cycle. Com-

puter 33 (7):66-71. doi:10.1109/2.869374

Kateule R, Winter A (2018): Architectural Design of Sensor based Environmental

Information Systems for Maintainability. In: Arndt H-K, Marx Gómez J,

Wohlgemuth V, Lehmann S, Pleshkanovska R (eds) Nachhaltige Betrieb-

liche Umweltinformationssysteme: Konferenzband zu den 9. BUIS-Tagen.

Springer Fachmedien Wiesbaden, Wiesbaden, pp 87-96. doi:10.1007/978-

3-658-20380-1_9

Wagner vom Berg B (2015): Konzeption eines Sustainability Customer Relations-

hip Managements (SusCRM) für Anbieter nachhaltiger Mobilität. Shaker

Verlag.

Dijkstra E W (1982): On the role of scientific thought. In Selected writings on com-

puting: a personal perspective (pp. 60-66). Springer, New York, NY.

Akyol A, Halberstadt J, Hebig K, Jelschen J, Winter A, Sandau A, Gómez J M

(2017): Flexible Software Support for Mobility Services. INFORMATIK

Jelschen J: Service-oriented toolchains for software evolution. In: 2015 IEEE 9th

International Symposium on the Maintenance and Evolution of Service-

Oriented and Cloud-Based Environments (MESOCA), 2-2 Oct. 2015

2015. pp 51-58. doi:10.1109/MESOCA.2015.7328127

Kleppe A, Warmer J, Bast W (2003): MDA explained: the model driven architec-

ture: practice and promise. Addison-Wesley Professional.

Breivold H P and Larsson M (2007): Component-based and service-oriented soft-

ware engineering: Key concepts and principles. In EUROMICRO 2007-

Proceedings of the 33rd EUROMICRO Conference on Software Engineer-

ing and Advanced Applications, SEAA 2007, pages 13–20. IEEE, aug

2007. ISBN 0769529771.

Jelschen J: Software Evolution Services, A Framework for the Integration and De-

velopment of Flexible and Reusable Toolchains, PhD thesis, University of

Oldenburg, to appear, 2020.

Brambilla M and Fraternali P (2014). Interaction flow modeling language: Model-

driven UI engineering of web and mobile apps with IFML. Morgan Kauf-

mann.

