
Maximilian Eibl, Martin Gaedke (Hrsg.): INFORMATIK 2017, Lecture Notes in Informatics

(LNI), Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2017 1

Flexible Software Support for Mobility Services

Ali Akyol1, Jantje Halberstadt1, Kimberly Hebig2, Jan Jelschen2, Andreas Winter2,

Alexander Sandau3, Jorge Marx Gómez3

Abstract: Demographic change and growing urbanization are essential reasons for the increasing

demand for mobility in rural areas in Germany. Municipalities in sparsely populated counties are

confronted with the problem of providing a basic supply of public mobility services. Especially for

rural areas, established public transport means have to be complemented by additional, new, and

innovative mobility services.

NEMo (Sustainable satisfaction of mobility demands in rural regions) pursues the development of

sustainable and innovative mobility services based on tailored business models for rural areas.

Traveler information systems are enhanced to handle a range of active and passive mobility

services in a very flexible way. Within this paper, three flexible cases are demonstrated. The

SENSEI framework for software evolution provides improved software support by adding and

modifying capabilities of the existing services to re-orchestrate and re-implement mobility

services.

Keywords: mobility services, sustainability mobility, flexible software architecture, software

integration, service oriented architecture.

1 Introduction

In Germany, more than 60% of the population lives in rural areas [Bu15]. For rural

municipalities and counties, it is becoming increasingly more difficult to ensure a basic

supply of public mobility services, such as buses and trains, without asking the question

of necessary social participation, meaningful regional creation of value, and last but not

least feasible environmental objectives. As rural areas often lack their own

infrastructure, such as medical services or shopping malls, a greater dependency on the

nearby cities arises. The important connection to these institutions cannot be achieved

reliably by public transport [Zä00] [Mo06]. With the help of information and

communications technology (ICT), the interdisciplinary and transdisciplinary research

project NEMo offers a new opportunity for citizens in rural areas, to simplify their

mobility [Je16]. One objective of the NEMo is to provide solutions for sustainable

mobility and at the same time ensure an eco-friendly mobility system [CP15].

Nevertheless, it is very important to achieve maximum flexibility in the software system

1 Leuphana University Lüneburg, Social Entrepreneurship, {ali.akyol, jantje.halberstadt}@leuphana.de
2 Carl von Ossietzky University Oldenburg, Software Engineering, {hebig,jelschen,winter}@se.uni-

oldenburg.de
3 Carl von Ossietzky University Oldenburg, Very Large Business Applications,

{alexander.sandau, jorge.marx.gomez}@uni-oldenburg.de

2 A. Akyol, J. Marx Gómez, J. Halberstadt, K. Hebig, J. Jelschen, A. Sandau, A. Winter

in order to implement new mobility services and increase the flexibility to integrate new

business models, components and processes [AH12; Sa13]. The NEMo project focuses

on an interdisciplinary and transdisciplinary approach with different departments, such

as software engineering, business information systems, law, service management, social

entrepreneurship, etc. [NE17]. Therefore, it is essential to create one taxonomy which

integrates several heterogeneous business models and their software support in the

NEMo information system.

The next chapter will explain the intention of the taxonomy, clarify the benefits, and

show its importance. Afterwards, the third chapter will present the business models,

which can be included into the mobility platform by using SENSEI which provides

flexibility in orchestrating service [Je15a]. Its flexibility will be illustrated by three

examples: adding capabilities, extending orchestrations, and changing component

mappings. The conclusion will summarize the relationship between flexible software

design and sustainability.

2 Taxonomy of mobility services

In the last chapter, the problem state was shown. With the taxonomy in this new chapter

there are the means to build a foundation for communication in the NEMo project. The

taxonomy outlines the layers of NEMo and highlights the associations between them. It

constitutes the frame to describe any mobility service from the business process to the

technical view. One can differentiate between four layers composed equally of

composite patters: Mobility Services, Business Models & Processes, IT Services and IT

Components.

Figure 1: UML class diagram depicting the main concepts of the NEMo taxonomy.

This distinction is needed because the mobility services are part of the mobility while the

business models and processes take place in information management. IT-services

provide abstract descriptions of the software which are implemented by IT-components.

Mobility Services

A mobility service aims at transporting people (or things) by using vehicles

economically and ecologically [AH06]. In other words, having environmentally

Flexible Software Support for Mobility Services 3

conscious behaviour while earning money. A mobility service is also a combination of

atomic mobility services. This is needed because of intermodal route planning.

Whenever a person wants to get to one point and move on to another, a combination of

mobility services is used. Any mobility service can be used to directly transport people,

indirectly transport things, or to both transport people and things simultaneously. This is

called the “impact of the mobility service”. Moreover, a mobility service has a provider

who offers it and a description where the business model is shown. The business model

is how the mobility service strategically acts to earn money [Ba96].

Business Models & Processes

No mobility service can act without people using it. The latter describes human actions.

It defines the tasks they must take before, during, and after using the mobility service.

Activities that are made up of more than one task are called business processes [Ro05].

Every activity has a description and a name showing what people are doing in the

business process and the tasks themselves. The activities can be supported by IT-

services. In chapter 3 the user oriented layers, mobility services, and activities will be

characterized in detail.

IT-Services

An IT-service is a description of how a software component should work and how a

software component should work and instead of focusing on activities related to human

behavior, IT-services focus on appropriate functionalities. [Je15b]. An IT-service is not

the implementation as one part of the software but its description. The description is

sufficiently complex and granular to be understood from the technical and from a more

activity based view. The atomic ones are small parts of the software which must be

orchestrated to IT-services. The required capabilities are needed because of the SENSEI-

approach, as it can generate components with same capabilities.

Components

A component is the technical implementation of the IT-Service. Many components are

based on atomic services that are combined by components leading to composed

components. This is necessary because many functions are provided by combinations of

smaller components [Je15b]. It is also needed to have components that implement

SENSEI-services because of the recoverability a component has. Moreover, even if the

SENSEI-services are different the components could be the same. In the fourth chapter,

these two technical layers will be characterized in detail.

Summarized, the taxonomy shows four layers building the frame to describe a mobility

service from the business model, the user interactions, the ICT support, and the software

components. This taxonomy is needed for the following chapters in order to properly

describe mobility services.

4 A. Akyol, J. Marx Gómez, J. Halberstadt, K. Hebig, J. Jelschen, A. Sandau, A. Winter

3 Business Models of Mobility Services

In NEMo, business models with direct and indirect impact on mobility services (Fig. 1)

are developed and generate the additional value to simplify the mobility and to improve

sustainability. The following table shows mobility services separated by the two

different impacts each can have. Mobility services 1-3 have a direct effect while mobility

services 4-6 have an indirect effect on the mobility of citizens in rural areas. The

mobility services with a direct effect address the mobility of the citizens and try to

improve the ecological balance. The others are avoiding mobility by providing surrogate

services. All of the shown mobility services are used in the software built into the NEMo

project as support for the user, a citizen in a rural area. Business model 1 is the mobility

service of carpooling realizing an intelligent coordination platform.

 No MS with direct impact No MS with indirect impact

 1 Carpooling 4 Supermarket delivery service

 2 Collection service for groups 5 Babysitting vs. Shopping

 3 Supermarket collection service 6 Social cook

Table 1: Mobility services sorted in types

A user having a car can integrate the routes into the software he usually takes (e.g. to

work). He must state information such as start location, start time, and destination. A

user without a car has the opportunity to search for routes, he wants to take. The NEMo

platform will identify possible carpools and initiate the communication between driver

and passenger. A user, searching for available routes will get the results of his search

request shown on a dashboard. The request can be accepted or denied by the car owner.

The business model „collection service for groups„ (business model 2) will improve the

mobility for a group of people through the NEMo platform. The objective of this service

is to provide a sustainable mobility service in rural areas. The service is designed as a

pick-up and delivery service. This service is flexible to use and eco-friendly when

citizens create groups to use mobility services.

The next business model is the „supermarket collection„ service (business model 3).

This mobility service will collect a group of users for a shopping trip to a nearby

supermarket. After their purchases, they will get home via the collecting service. The

supermarket earns a profit by offering this mobility service because of rising the number

of customers. Additionally, the citizens of the rural areas have a better and more

comfortable opportunity to get to a supermarket.

The „supermarket delivery service„ (business model 4) is also a kind of delivery service

but more eco-friendly. This business model is a mobility service with an indirect impact

to the environment. The difference from a classic delivery service is, that the delivery

starts, when several households order their goods. The supermarket will deliver twice a

week and flexibly, if more households take an order.

Flexible Software Support for Mobility Services 5

The business model „babysitting vs. shopping„ (business model 5) is also a mobility

service with indirect impact. This mobility service creates an additional value for users.

People, who are not able to drive to the shopping mall themselves, can register on the

NEMo platform for babysitting. Parents with children can search on the platform for a

babysitter. They have to state the times a babysitter is needed. In return for the work of

the babysitter, the parents will do the shopping for them.

An extended version of the previous mobility service is the business model of „social

cooking„ (business model 6) which also has an indirect impact. The scenario is similar to

the babysitting model. The main difference is the work of the person having no

opportunity to get to the supermarket has to do. They will prepare a dinner and calculate

the costs for the visitors signing in. In return the dinner, the visitor will do the shopping

for them. To implement the mobility services mentioned before as IT components, it is

necessary to describe the IT services. The IT services show how an IT component should

work functionally. In the next chapter one IT service is described in detail: findRoute.

The IT service was chosen because it takes part in each mobility service. The SENSEI

approach is used to build up a catalog of IT services generating a higher level of

flexibility. These flexibilities can be mapped to the mobility services (sec. 4).

For example, the first flexibility scenario for findRoute is to add capabilities, add a

vehicle, and choose the shortest route with the vehicle (sec. 4.1). The second flexibility

scenario shows it is possible to support intermodal route finding (sec. 4.2). Different

mobility services, such as carpooling and supermarket collection service can be

orchestrated, whereby the user gets the maximum amount of flexibility to plan a route.

The third software flexibility support of SENSEI enables components to be modified,

updated or replaced (sec 4.3). Therefore, it is possible to add a new route finding, modify

the current route finding, or replace the current route finding component with a new one.

4 SENSEI

The last chapter gave an overview about mobility services and their business models.

This chapter will show the way IT services are building the foundation to implement IT

components in order to provide software for citizens in rural areas. Moreover, the

SENSEI approach will be introduced.

SENSEI (Software Evolution Services Integration) is a service-oriented approach and

framework towards building and integrating highly flexible applications from reusable

components [Je15b]. On the one hand, it prescribes a strict separation of conceptual,

technology-independent services, and the implementation by components on the other

hand. Much more than generally practiced in service-oriented architectures, let alone the

technical standards commonly associated with them for their realization (e.g. SOAP-

based web services, or RESTful services). The service and component layers are bridged

6 A. Akyol, J. Marx Gómez, J. Halberstadt, K. Hebig, J. Jelschen, A. Sandau, A. Winter

using model-driven techniques, to automatically derive processes and integration logic

from high-level models – either by means of code generation, or by a model interpreter

at runtime.

Using SENSEI, basic units of functionality, their inputs, outputs, and capabilities are

defined, described, and collated in a service catalog. Subsequently, desired application

behavior is modeled as orchestrations of services: SENSEI defines a process-oriented,

graphical language to specify control and data flow between instances of services

selected from the catalog as needed.

Figure 2 shows a very simple orchestration, using only a small IT service, FindRoute, to

implement basic route planning functionality. The service catalog defines FindRoute to

require two inputs, the desired mode of transportation, and the trip request, which

encodes starting point, destination, time of departure or arrival, and potentially further

travelling constraints. The service’s output contains the traveling information (e.g. a list

of driving directions). The orchestration nests the service instance within a map control

flow construct. This is basically a (potentially concurrent) loop that executes its body

once for every element in the input stream (expand), and collects the individual results

(coalesce). As a result, this orchestration calculates a route for each of the specified

transportation modes, and returns them as collection of suggested routes.

SENSEI services can further have capabilities to model specific features which

implementations may or may not support. For FindRoute, there are two capability

classes defined in its catalog entry, which represent variation points for implementing

components: an optimization goal, with individual capabilities to find (e.g. the fastest,

shortest, or cheapest route), and a transport mode, whose capabilities representing

support for finding (e.g. car, bus, or walking routes). In orchestrations, designers can

declare their required capabilities for each instantiated service: in Figure 2, the

FindRoute function is required to support finding the fastest routes for private cars and

public busses.

The actual implementation of the functionality, defined by the IT services, is

implemented by components, listed in SENSEI’s component registry. Besides each IT

component implementing specific IT services, registry entries also declare provided

capabilities to further specify the extent of the provided functionality. SENSEI’s

Figure 2: Simplistic SENSEI service orchestration for basic route planning.

Flexible Software Support for Mobility Services 7

capability model is leveraged by its tooling to automatically match orchestrated IT

services and their required capabilities to appropriate IT components that provide them.

Through the clear separation of specification and actual implementation, the service
layer is kept clean of technical details and complexities, making it easier to develop and
evolve. The separation also enforces a strict encapsulation of individual IT services and
IT components, respectively, ensuring that no accidental dependencies “creep in”, an
otherwise common effect of long-term software evolution. Integration logic is either
generated, or provided generically by an interpreter, reducing manual effort and further
improved flexibility. Three basic flexibility mechanics can be identified in SENSEI and
for each of these mechanics, an example scenario is given in the following section to
provide details of their respective workings.

1. Adding or modifying required capabilities.

2. Extending or modifying existing orchestrations, or re-orchestrating existing
services.

3. Mapping orchestrated IT services to different IT components, or partitioning
functionality in IT components in different ways.

4.1 Adding Capabilities

The NEMo project aims at supporting mobility in rural areas in a sustainable,

environmental friendly manner. Mobility services like the <carpooling> could therefore

be improved if route planning would also provide shortest routes, instead of fastest

routes, assuming the former are generally more ecological than the latter due to lower

carbon emissions.

Figure 3 shows an orchestration that has been extended to support this use case. The only

difference from Figure 2 is the additional required capabilities for private cars, shortest

routes will also be provided. In the optimal case, this minimal change is all that is

required to add this functionality. SENSEI will automatically integrate additional IT

components as needed. In simple cases, as with this example, it is not unlikely that the

originally used implementation might also already support this additional functionality.

However, SENSEI does not depend on a single component to provide all the required

capabilities, but is able to map a small service instance to combined components. The

right IT component will be chosen at runtime, based on the declared or provided

capabilities and the actual input data.

Figure 3: Basic route planning with an additional required capability.

8 A. Akyol, J. Marx Gómez, J. Halberstadt, K. Hebig, J. Jelschen, A. Sandau, A. Winter

In the same manner, support for additional transportation modes can be added. What

kind of features can be added or modified depends on how IT services are modeled, i.e.

what capability classes they define. Of course, this flexibility mechanism assumes that

the actual functionality is already available, implemented in registered components, so

that SENSEI will be able to integrate them into the modified software solution, fully

automatic. Even if IT components are missing and have to be implemented, another

benefit of using SENSEI is that the standardization provided through the service catalog

facilitates reuse: Once a service is implemented in an IT component, it becomes

available for future usage in different contexts. In the long run, the set of components

will grow, reducing the need for manual implementation and the effort involved. This

makes this scenario more viable over time.

4.2 Extending Orchestrations

An important consideration to take regarding NEMo is the combination of mobility

services to provide comprehensive, demand-based mobility options. The basic route

planning example is insufficient for this: instead, the ability to provide inter-modal

routing is needed, meaning the combination of multiple modes of transportation within a

single route [Je16].

A straight-forward way to evolve the SENSEI-integrated software system that provides

the route planning functionality is to extend the existing orchestration with additional IT

service instances. Figure 4 shows an orchestration for inter-model route planning. At its

core, it still contains basic route planning, but has two additional IT service instances,

and uses another map control flow construct.

The first step is now performed by an instance of the FindStops service, which takes the

trip request and tries to partition it by determining reasonable places to switch transport

mode (e.g. bus stops and train stations). This results in a set of sub-requests, with the

discovered stops as new points of origin or destinations. The outer map construct iterates

these, so that the FindRoute instance will now be invoked once for each pairing of sub-

request and transportation mode, yielding multiple, partial routes. The last step is to

stitch these partial routes together again, so that they satisfy the original travel request,

Figure 4: Inter-modal route planning orchestration.

Flexible Software Support for Mobility Services 9

which is done by CombineRoutes.

The high abstraction level of orchestrations simplifies the task of defining and evolving

the desired processes. Orchestration designers do not have to address different interface

or binding technologies, disparate data formats, and technical incompatibilities between

IT components of different vendors or providers. SENSEI shifts the burden of providing

interface adapter and data transformation logic from software integrators to component

developers, and imposes a structure that promotes its reusability, as opposed to fusing it

to individual components. The fact that integration logic is either auto-generated and

thus “discardable”, or provided at runtime by an interpreter, prevents SENSEI-based

software systems from becoming entangled in hard-wired dependencies.

4.3 Changing Component Mappings

To realize the functionality modeled in orchestrations, SENSEI maps the instantiated IT

services to the IT components providing them. There is an n-to-m relationship between

IT services and IT components: as stated earlier, a small service can be implemented by

combined components employing different capabilities, and the opposite is also possible,

with an atomic component providing multiple, different services.

Figure 5: Composition of combined components, and a monolithic component, both implementing

the PlanIntermodalRoute service

In this regard, SENSEI does not make any assumptions. In other words, invoking IT

services for IT components always assumes that they have no knowledge of the overall

process they are contributing to, and that they cannot, and will not, communicate directly

with other IT components. All information goes through a central hub, the composer,

which can be seen in the top half of Figure 5. This IT component diagram shows an IT

component composition that realizes intermodal route planning, as specified by the

orchestration in Figure 4. The FindStops service is mapped to the component

StopFinder, and CombineRoutes is mapped to RouteCombiner. FindRoute is associated

to two components: PublicTransportRouteFinder provides the capability for bus and

train routes, while PrivateTransportRouteFinder provides routes for driving a private car

and walking.

10 A. Akyol, J. Marx Gómez, J. Halberstadt, K. Hebig, J. Jelschen, A. Sandau, A. Winter

The composer realizes the control and data flow specified by the orchestration, invoking

the right IT components in the right order, and passing along data. The composer is

either fully auto-generated, or is embodied by an interpreter. The whole composition of

composer and service-providing IT components provides the PlanIntermodalRoute

service, which is also induced by the corresponding orchestration. This IT service can be

instantiated in other orchestrations, forming the hierarchy of IT services and

orchestrations seen in the IT Services layer of Figure 1.

This architecture of completely isolating individual components is essential to delivering

SENSEI’s stated goal of sustainable, high flexibility and reusability. Allowing direct

communication between components and interdependencies would quickly undermine

this objective. However, these benefits are traded in for a potential curtailment of other

attributes, e.g. run-time performance. While a smart composer, and the overall SENSEI

infrastructure, could certainly try to put optimizations in place (e.g. to reduce the data

traffic through caching, in general, there will be an overhead). It is also a matter of

finding the right level of granularity for IT services: more finely-grained IT services may

be more reusable, but more coarsely-grained ones may allow for more internal cohesion,

and optimizations that would otherwise incur a steep performance penalty because of the

higher communication overhead.

While orchestrations are also IT service instances (PlanIntermodalRoute), they can also

be mapped to an atomic monolithic IT component, as suggested in the bottom half of

Figure 5. Such an IT component could, for example, realize a more complex route-

finding algorithm that requires its constituents to be more closely attuned to each other

and share large amounts of data. Comparable to the individual service-providing IT

components above, such an atomic IT component is viewed by SENSEI as a black box,

only having to adhere to the interface defined by the IT service, while the exact manner

of implementation is left unconstrained. Specifically, a monolithic component does not

have to follow the process prescribed by an orchestration. With this mechanism, SENSEI

allows trade performance and scalability against flexibility and reusability. The latter

only has to be sacrificed for select parts of an overall software system, for which

performance is critical. Also, such monolithic implementations fit into SENSEI

seamlessly, being treated like any other component, just providing a more coarse-grained

service.

5 Evaluation

As previously introduced, the mobility landscapes change rapidly with ongoing market

dynamics. As a result, new mobility providers with correlating mobility services arising

have to be integrated into the corresponding traveler information system. The proposed

integration of the SENSEI framework enhances the existing traveler information system

of the NEMo project in terms of flexibility and leading to a more sustainable software

Flexible Software Support for Mobility Services 11

design. To show the benefits of this integration three different scenarios have been

chosen to demonstrate the software support by adding/modifying capabilities of services,

re-orchestrating, and re-implementing mobility services. To achieve the integration of

the SENSEI framework, the existing IT services have to be cut up into small parts of

functionalities. This enables the existing and the integration of new functionalities to be

reused and support upcoming business models. In terms of the project, the existing

public transport planning service will be divided into the proposed manner according to

Figure 3 and Figure 4, resulting in a system architecture as shown in Figure 5. For the

first step, existing functionalities of the traveler information system migrate to new

architecture. During the following steps, the approach is tested with new business

models that are developed in the NEMo project. The system is iteratively tested with

citizen participation in field trials in rural areas.

6 Conclusion

The challenge of the inter- and transdisciplinary research project NEMo was to improve

the insufficient mobility offers in rural areas. To prevent misunderstanding, a taxonomy

was created for the project. Furthermore, business models with direct and indirect impact

were developed to simplify the sustainable mobility. For realization, an intelligent and

flexible software is required to integrate new business models. With the application of

SENSEI, the software system is sustainable and supports three flexibility scenarios.

The first flexibility scenario demonstrated the ability to add capabilities in the mobility

services. Despite the changes, the software system proposed the optimized route based

on the customer’s preferences. For example, the customer can set preferences like fastest

or shortest trip, when the software calculates the route it will automatically include all

aspects (vehicles such as bus, railway carpooling etc.) and return an optimized result.

The SENSEI approach makes it possible, that components can be replaced and new

components can be added without to change the whole software system (second

flexibility). By using a software which is flexible, it is easier to change IT components,

maintain the software, and update with new developed components or business models

[Sa13]. For example, to clarify the advantage of the SENSEI framework, the public

transport map for bus stops will be updated with new times and parameters which

replace or change the maps. It is also possible to add new vehicles like e-cars using one’s

own map for e-car stations and a new system for calculating the best routes. The third

flexibility scenario is the application of SENSEI support of the software in its flexibility

and all included components. In summary, of the mentioned facts about the flexible

software system, the life cycle of a software system will be extended when it is flexible

and expandable [CP15].

Acknowledgement This work takes part in the project “NEMo - Sustainable satisfaction

of mobility demands in rural regions". The project is funded by the Ministry of Science

and Culture of Lower Saxony and the Volkswagen Foundation (VolkswagenStiftung)

12 A. Akyol, J. Marx Gómez, J. Halberstadt, K. Hebig, J. Jelschen, A. Sandau, A. Winter

through the “Niedersächsisches Vorab” grant program (grant number VWZN3122).”

References

[AH06] Ammoser, H.; Hoppe, M.: Glossar Verkehrswesen und Verkehrswissenschaften:

Definitionen und Erläuterungen zu Begriffen des Transport- und Nachrichtenwesens,

ger, Diskussionsbeiträge aus dem Institut für Wirtschaft und Verkehr 2006,2; 2/2006,

2006, url: http://hdl.handle.net/10419/22704.

[AH12] Ahrend, C.; Herget, M.: Umwelt-und familien-freundliche Mobilität im ländlichen

Raum. Handbuch für nachhaltige Regionalentwicklung. Berlin/, 2012.

[Ba96] Baatz, E.: Baatz, E.B.: Will Your Business Model Float? In: WebMaster Magazine,

Stand: 10.1996, 1996, url: http://www.cio.com/archive/webbusiness/

100196_float.html.

[Bu15] Bundesamt, S.: Statistisches Bundesamt (ed.): Statistisches Jahrbuch Deutschland.

Wiesbaden/, 2015.

[CP15] Calero, C.; Piattini, M.: Green in Software Engineering. Springer International

Publishing, 2015.

[Je15a] Jelschen,J.:Service-OrientedToolchainsforSoftwareEvolution.9thInternational

Symposium on the Maintenance and Evolution of Service-Oriented and CloudBased

Environments (MESOCA)/, pp. 51–58, 2015.

[Je15b] Jelschen, J.: Service-oriented toolchains for software evolution. In: 2015 IEEE 9th

International Symposium on the Maintenance and Evolution of Service-Oriented and

Cloud-Based Environments (MESOCA). IEEE, pp. 51–58, Oct. 2015, isbn: 978-1-

4673-7935-9,

[Je16] Jelschen, J.; Küpker, C.A.; Winter, A.; Sandau, A.; Wagner vom Berg, B.; Gómez,

J.M.: Towards a Sustainable Software Architecture for the NEMo Mobility Platform.

In: Proceedings of the 30th International Conference on Environmental Informatics

Stability, Continuity, Innovation: Current trends and future perspectives based on 30

years of history (EnviroInfo 2016). Berlin, 2016.

[Mo06] Für Mobilitätsforschung, I.: Öffentlicher Personennahverkehr - Herausforderungen und

Chancen. Springer, Berlin, 2006.

[NE17] NEMo: NEMo - Mobilität, Wissenschaftliche Leistung, Stand: 13.04.17, 2017, url:

https://www.nemo-mobilitaet.de/blog/de/projektkonsortium/ wissenschaftliche-leitung.

[Ro05] Rosenkranz, F.: Geschäftsprozesse: Modell- und computergestützte Planung. Springer

Berlin Heidelberg, 2005.

[Sa13] Sametinger, J.: Software Engineering with Reusable Components. Springer Berlin

Heidelberg, 2013.

[Zä00] Zängler,T.:Mikroanalyse des Mobilitätsverhaltens in Alltag und Freizeit. Springer,

Berlin, 2000.

