
Dissertation

Semantic Processing of Digital Documents

Christian Schönberg
mail@cschoenberg.de

http://uri.cschoenberg.de?contact

Submitted to the Faculty for Informatics and Mathematics, University of Passau.

13th November 2013

1st Examiner: Prof. Dr. Burkard Freitag
2nd Examiner: Prof. Dr. Dietmar Seipel

mailto:mail@cschoenberg.de
http://uri.cschoenberg.de?contact

Abstract In this thesis we present a novel approach to modelling and processing
digital documents. In contrast to other modelling approaches, we model the structure
of documents as indicated by the content, not as defined by technical attributes like
the file format. Additionally, our meta-model can be applied to a wide range of
different documents, not just to a small set of documents with a predefined set of
features. The models include semantic data and content relationships, which can be
further extended with domain knowledge. All of this makes our document models
immediately suitable for a wide range of applications, including document consistency
verification and knowledge extraction.

Our new separation of technical and semantic document models fuels a standardised
method for obtaining semantic models. This method is effective, suitable for live
processing, and easily transferable to other document types and other domains. As
it is makes extensive use of background knowledge, we also present techniques for
obtaining such knowledge, and for representing complex forms of knowledge with
multiple meta-layers.

A flexible technique for obtaining relevant data from our document models completes
the approach. This includes the ability to obtain various verification models, suitable
for different types of consistency criteria and for different validation formalisms.

We conclude this thesis with an evaluation that shows the viability and effectiveness
of the proposed approach. We present runtime results that are adequate for live pro-
cessing, and we provide and successfully apply techniques for measuring the quality
of both document models and background knowledge.

Acknowledgements

I would like to thank my supervisor Prof. Burkhard Freitag for many fruitful discussions, for
valuable criticisms, and for his support whenever it was needed;

Prof. Harald Kosch and Prof. Mario Döller for sharing their expertise about multimedia
documents and hypervideos;

Prof. Ursula Reutner for insightful discussions about what Wikipedia can be (and what it
cannot be);

Prof. Manfred Hinz for his insights about what documents can be (if we let them);
Prof. Rüdiger Harnisch for sharing his knowledge about language taxonomies;
Franz Weitl and Mirjana Jakšić for many interesting discussions and for the collaboration on

multiple papers;
Stephan Kiemle, Sabine Engelbrecht, and Eberhard Mikusch of the German Aerospace Center

(DLR) for access to their most sacred documents and for their help with figuring them out;
Gerard de Melo of the Max Planck Institute for Informatics for a valuable discussion about

Wikipedia’s category structure;
Ulrike Sattler of the University of Rostock for granting me access to a large corpus of docu-

ments;
my friends and colleagues for many helpful discussions, for their proofreading, and for their

understanding of my lack of spare time;
and last but not least my parents for their unconditional support.

The work for this thesis was partially funded by grants by the Deutsche Forschungsgemeinsch-
aft (DFG) under grant numbers FR 1021/7-1 and -2.

Contents

I Preliminaries 3

1 Introduction 5

1.1 Motivation . 5

1.2 Problem Description . 6

1.3 Approach . 7

1.4 Contributions . 7

2 Other Work 9

2.1 Documents . 9

2.1.1 Document Types . 9

2.1.2 Digital Video . 10

2.2 Document Modelling and Verification . 10

II Foundations 13

3 Technologies 15

3.1 XML Technologies . 15

3.1.1 XML . 15

3.1.2 XPath . 18

3.1.3 XQuery . 20

3.2 Description Logics . 21

3.2.1 Syntax of Description Logics . 22

3.2.2 Semantics of Description Logics . 25

3.2.3 Description Logic Languages . 30

3.3 Semantic Web Technologies . 33

3.3.1 RDF . 33

3.3.2 RDF Schema . 37

3.3.3 OWL . 40

3.3.4 SKOS . 43

3.3.5 SPARQL . 45

3.3.6 RDF Frameworks . 49

3.4 Rule Languages . 50

3.5 Model Checking . 51

3.5.1 CTL . 51

3.5.2 ALCCTL . 54

I

II CONTENTS

4 Modelling Digital Documents 57
4.1 Terminology . 57

4.1.1 What is a Document? . 57
4.1.2 Our Notion of a Document . 61
4.1.3 Interactivity in Documents . 65
4.1.4 Other Types of Documents . 66
4.1.5 Layers of Abstraction on Documents . 67
4.1.6 Formalised Notion of a Document . 71

4.2 Modelling Semantic Data . 76
4.2.1 Modelling Documents . 76
4.2.2 Modelling Processes . 92

5 Processing Digital Documents 97
5.1 Extracting Data Models . 97
5.2 Inference on Document Models . 117
5.3 Modelling Towers of Meta . 119

6 Background Knowledge 131
6.1 Obtaining Knowledge from Wikipedia . 132

6.1.1 Preparing Wikipedia for Knowledge Extraction 134
6.1.2 Harvesting Wikipedia . 143
6.1.3 Practical Considerations . 146

6.2 Obtaining Knowledge from other Sources . 149

III Implementation 153

7 System Architecture 155
7.1 System Overview . 155
7.2 Preprocessing . 163
7.3 Semantic Processing . 163
7.4 Postprocessing . 165

8 Implementing Document Models 171
8.1 Implementation Basics . 171
8.2 Implementing Document Fragments . 172
8.3 Implementing Relations . 172

8.3.1 Implementing Include Relations . 172
8.3.2 Implementing Reference Relations . 173
8.3.3 Implementing Has-Part Relations . 174
8.3.4 Implementing Literal-Valued Relations . 175

8.4 Document Lifecycle . 177
8.5 Implementing Process Models . 178

9 Processing Document Models 179
9.1 Extracting Data Models . 179

9.1.1 Program-based Extraction . 180
9.1.2 Query-based Extraction . 183
9.1.3 Rule-based Extraction . 186

9.2 Inference on Document Models . 215

CONTENTS III

9.3 Views on a Document Model . 219

10 Use Cases 229
10.1 Document Verification . 229

10.1.1 Realistic Technical Documentation Use Case 229
10.1.2 Real E-Learning Use Case . 234
10.1.3 Real Lecture Notes Use Case . 236

10.2 Process Verification . 236
10.3 Other Use Cases . 241

IV Evaluation 243

11 Quantitative Evaluation 245
11.1 Generated Documents . 245
11.2 Real Documents from Different Domains . 249

11.2.1 E-Learning Documents . 250
11.2.2 Technical Documentation . 251
11.2.3 Process Descriptions (NPB) . 252
11.2.4 Process Descriptions (DLR) . 253

11.3 Comparison with Alternative Methods . 256
11.4 Adaptability of the Processing Rules . 263
11.5 Inference on Large Ontologies . 264

12 Qualitative Evaluation 271
12.1 Expressive Power of Transformation Rules and Background Knowledge 271
12.2 Quality of the Document Models . 273
12.3 Quality of the Background Knowledge . 275
12.4 Relationship between Qualities . 276
12.5 Applicability to Different Types of Documents 277

V Conclusion 281

13 Conclusion 283

14 Extensions and Future Work 285

Bibliography 287

List of Figures 297

List of Tables 301

Index 304

VI Appendix 309

A Model Vocabulary 311
A.1 Common Vocabulary . 311

IV CONTENTS

A.1.1 Object Properties . 311
A.1.2 Datatype Properties . 312
A.1.3 Classes . 318

A.2 Vocabulary for Documents . 319
A.2.1 Object Properties . 319
A.2.2 Datatype Properties . 319
A.2.3 Classes . 319

A.3 Vocabulary for Processes . 322
A.3.1 Object Properties . 322
A.3.2 Datatype Properties . 322
A.3.3 Classes . 323

B Use Cases 325
B.1 Technical documentations in DocBook format . 325
B.2 Process specifications in BPMN format (NPB) 332
B.3 Process specifications in Visio format (NPB) . 335
B.4 Process specifications in XML format (NPB) . 338
B.5 Process specifications in Word format (DLR) . 342
B.6 Game of Life . 350

Thesis Outline

This thesis is divided into six parts. The first part holds the introduction and an overview of the
relevant literature.

Part II deals with the foundations required for this work, starting with the technologies that
are used. This is followed by a discussion on the nature of documents and how they can be
modelled. The next chapter contains information about document processing, how to obtain a
document model from a source document, how to augment this model with additional domain
knowledge, and how to use it. Finally, in chapter 6, various methods for obtaining background
knowledge are discussed.

The third part describes the implementation of the proposed approach, starting with an
overview of the system architecture. Then follows a chapter on how to implement document
models, succeeded by a chapter on how to implement document processing. Part III is concluded
by a discussion of several use cases for the proposed approach.

The evaluation is contained in part IV, including a quantitative evaluation and a qualitative
evaluation.

Part V concludes this theses, with a conclusion, a chapter on future work, and the biblio-
graphy.
Finally, the sixth and final part holds the appendix.

1

2 CONTENTS

Part I

Preliminaries

Chapter 1

Introduction

In this thesis, we will concern ourselves with digital documents. We will explore the limits of
what is and what is not a document. We will then attempt to find a metamodel for documents
that is suitable for different documents, for different domains, and for different applications. We
will also try to find a way to obtain instances of such a metamodel that is effective, efficient
and transferable between different types of documents. Finally, we will investigate techniques on
how to augment an existing model with additional information, and on how to derive from this
general model more specialised models that are suitable for specific tasks.

1.1 Motivation

The verification of consistency criteria for documents is an increasingly common [Jel02, ABF04,
Wei08] and very useful application. Yet for formal validation techniques, equally formalised
document models are required, which are not always easy to obtain. Especially for a multitude
of documents in different file formats and from different domains, it is both complex and expensive
to obtain document models that meet specific requirements. This problem becomes increasingly
worse for a growing number of different formats, for a growing number of different domains, and
also for a growing number of different target applications such as different verification formalisms
that require different verification models. But even for a single target formalism more than a
single verification model per document is often necessary, as we will explore in more detail in
section 9.3.

As an example that we will revisit throughout this thesis, consider an e-learning document
with five chapters. The first chapter is an introduction. It is followed by a chapter (chapter 2)
that contains the definition of a “data structure”. From this chapter, two other chapters can be
reached: chapter 3 that contains an example of a “data structure”, and chapter 4 that contains
both the definition and an illustration of a “binary tree”. Both chapters 3 and 4 then reference
the final chapter 5, which contains a conclusion.

Now imagine a consistency criterion stating that after every definition, there must always
be an example with the same topic. At first glance, this criterion is violated by the example
document because after the “data structure” definition in chapter 2, the reader can follow up
with chapter 4 which does not contain an appropriate example. At second glance, however,
this perception changes. Chapter 4 does indeed not contain an example with the topic “data
structure”, but it does contain an illustration of a “binary tree”. It can be argued that a “binary
tree” is a specific “data structure”, and that an “illustration” is a specialisation of an “example”.
Therefore, with additional knowledge about both the content and the structure of a document

5

6 CHAPTER 1. INTRODUCTION

infused into a document model, the verification process can not only be made less complex but
also more precise.

It is also possible that the document’s reader has previous knowledge, for example from
required reading that is a prerequisite for this document. The contents of these prerequisite
documents can be formalised and be made available to the verification process, thereby improving
its fact base. Previous knowledge about binary trees might also serve to defuse the criteria
violation explained above.

An abstract document model that contains all relevant information from the original source
document can solve these issues. There is no longer a need for defining transformation instruc-
tions from every document format into every target format. Instead, a single set of transformation
instructions must be defined for each format, and a standardised way to access this model allows
the easy derivation of more specialised models for specific tasks. The standardisation of the
target format (for the extraction from source documents) and the standardisation of the source
format (for the generation of task-specific models) also allows for a stronger standardisation
of the respective transformation processes, which makes them more easily transferable to new
formats, domains or applications. In addition, further processing of such a distinct document
model allows its enhancement with new facts that are part of the domain knowledge but that
are not explicitly incorporated in the source document.

Next to document verification, another application for a document model that contains only
the most relevant information from a source document, but that may also be augmented with
further domain knowledge is information retrieval. With such models, it is not only possible
to search for documents that contain specific keywords, but it is also possible to extend the
search to semantically related keywords, to structurally limit the search to keywords that occur
in the same document part, or to limit the results to the relevant parts of a document. Is is also
possible to judge the relevance of a document for a keyword query based on the prominence of
the keyword usage: a keyword that is used several times in an obscure sub-section might be less
relevant than a keyword that is only used once but in a top-level headline.

1.2 Problem Description

To the best of our knowledge, there exists no model for documents that goes beyond a simple
reproduction of content and references and that is at the same time independent of the document’s
format and domain. We will attempt to create such a model. The first question that we will
have to answer is what exactly a document is. In the computer science literature, it is usually
implied that the term is either well-understood or self-evident. Yet most publications have a
different understanding of documents, ranging from small data records over single files to complex
structures spanning multiple files. After answered this, we must then identify properties that a
document must have (or must not have), in order to be viable for generic modelling.

A model that is useful as a go-between for different document formats and different domains on
the one hand side, and different applications on the other, must contain all pertinent information
from the source document as well as relevant domain knowledge. This includes information about
the content and the structure of the document, but also about relationships within the content
and the structure, such as related terms or structural hierarchies. A metamodel must be created
that takes these requirements into account.

We will also need to define standardised methods for obtaining an instance of such a metamodel,
as well as for processing a model further. The latter includes deriving other, more specialised
models. These methods may employ techniques known from the fields of information extraction
and information retrieval, but we will not attempt to create new extraction, text mining, or

1.3. APPROACH 7

retrieval techniques.

1.3 Approach

We will first attempt to identify a set of features or attributes that are common to documents
that can be used for verification or similar applications. We will then try to develop a technical
understanding of documents, which we will juxtapose with a more abstract understanding that
is based on the structure and content semantics of a document. Two metamodels will be created
that can be used to represent documents in each form, the technical or the semantic form,
respectively. We will also define a formal semantics for the semantic metamodel, which will be
required for further processing of semantic models.

Based on these metamodels we then plan to define a technique to obtain instances of the
latter metamodel from instances of the former, i.e., to create semantic models from technical
models. Similarly, we plan to define a technique for obtaining other types of models from the
created semantic models.

We will implement the proposed approach to test and analyse its viability, its effectiveness
and also the runtime cost of the implementation for real-world tasks. For our evaluation, we
will use, among others, e-learning documents obtained from a national research and industry
program; technical documentations created for several open source projects; process descriptions
specified by the German Aerospace Center; and workflow specifications created by various public
institutions. Finally, we will attempt to find ways to measure the quality of the obtained models
based on standard information extraction techniques like precision and recall.

1.4 Contributions

Our main contributions are the following:

1. Consolidation and formalisation of the notion of a document. This will be done both
empirically and under consideration of the former and current discourse in the domains of
computer science and literary science.

2. Creation of a coherent, multi-purpose metamodel for documents. Instances of this metamodel
can represent the semantics of the content as well as the structure as interpreted by a reader.

I Creation of a description logics-based implementation and formal semantics of such a
model.

I Development of a technique for obtaining such models using domain knowledge, with
a focus on maintainability in the face of changed to the document format, and trans-
ferability to other formats and domains.

I Transferring the approach from documents to process specifications.

3. Development of an approach for automated retrieval of domain knowledge from Wikipedia,
complementing existing techniques, and design of a process for obtaining such knowledge
semi-automatically from other sources.

4. Introduction of measures for the quality of document models.

8 CHAPTER 1. INTRODUCTION

Chapter 2

Other Work

Documents are a topic of interest in many domains and applications, and are frequently the
subject of research. In this chapter, we will provide an overview of the primary research areas.
We will insert additional literature reviews in appropriate places throughout this thesis.

2.1 Documents

First, we will summarise some of the most important document types and formats for text-centred
documents, followed by a summary of video formats.

2.1.1 Document Types

The Hypertext Markup Language (HTML) [HTMa] is the standard document format for web doc-
uments. In combination with Cascading Style Sheets (CSS) and Javascript, HTML is a powerful
specification format (see below).

A standard for (mostly) static and non-changeable documents is Adobe’s Portable Document
Format (PDF) [PDF]. It is often used as a publishing format, but it is rarely the native file
format of any document.

For electronic books, the ePub format [EPU] and Amazon’s Kindle format are very common.
Both have capabilities that are a subset of HTML and CSS. But HTML is also often used directly
as an e-book format, as is PDF.

Another large host of documents is encoded in office formats, such as Microsoft’s Word ,
Powerpoint, Excel , or Visio formats, as well as their free counterparts.

XML-based open source formats like DocBook [Wal09] or DITA [DEAJ10] are popular for
documentations, in particular among the open source community. Documents in either format
are rarely published directly in their source format, but are rather compiled to PDF or HTML.

LATEX is a standard format for small and large texts in academia, often used for research
papers, lecture notes, and even books. It is compiled into a target document format, usually
PDF.

Two sophisticated e-learning formats are LMML [SF99] and ML3 [TLV03]. Both offer support
for a broad range of content and can be exported to HTML and (in the case of LMML) PDF.

9

10 CHAPTER 2. OTHER WORK

2.1.2 Digital Video

There are many different technical representation schemas for digital video: there are different
container formats that can hold the actual encoded video or audio data like Audio Video Interleave
(AVI), Matroska or Quicktime. There are even more encoding/decoding formats for the video data
like MPEG-2 , MPEG-4 , Theora or Flash Video.

In addition, meta formats like MPEG-7 [Kos04] allow the codification of video metadata.
This includes low level descriptors like image colour, texture, or object shapes and motions. It
also includes high level semantic descriptors like information about persons and locations shown
in the video, as well as information about relationships between depicted entities. [Got06]

Several digital video formats provide support for user interaction. The Synchronized Multime-
dia Integration Language (SMIL) [SMI] allows the specification of time-synchronised multimedia
content like audio, video, text, or images, similar to the proprietary Adobe Flash format. SMIL
can be scripted, which includes reacting to simple user inputs. It can also interact with web
services to facilitate complex behaviour such as database access.

HTML5 [HTMb] documents use multiple standards: the content, such as text, images, video
and audio, can be specified in HTML, CSS can be used to define layout and visualisation, and
Javascript can be used for interaction. Interaction options include navigation, playback control
of audio and video content (e.g., pause or adjust volume), and dynamically displaying additional
content (e.g., textual descriptions for specific video sequences). HTML5 allows splitting video
content into sequential sections to ease navigation, especially to improve barrier-free access.

SVG (Scalable Vector Graphics) [SVG] is a vector-based image format that supports animation
both natively and through Javascript. Through Javascript, it also supports interaction. SVG
documents can be embedded in SMIL and in HTML5 documents.

The SIVA (Simple Interactive Video Authoring Suite) [MMGK12] tool and format allows the
specification of hypervideos including a table of contents for video sequences, multiple choice
elements (i.e., navigation based on user answers), video hotspots (e.g., objects with additional
information that can be displayed on user interaction), and a keyword-based search. An HTML5-
based implementation exists for the hypervideo model.

2.2 Document Modelling and Verification

There are several approaches to document verification that are based on the XML DOM model
of the source documents.

Schematron, developed by [Jel02], allows for XPath-based verification. The advantage of this
approach is that it only relies on readily available, standardised technologies. The disadvantage
is that the entire process is slaved to the file format, i.e., for different file formats – possibly even
just for different files – the components need to be re-implemented.

A similar method is employed by [NCEF02] in the xlinkit tool, which is also closely enmeshed
with the source document’s XML structure. The authors use XPath to find inconsistencies in
the data, then generate links to either “proof” (witnesses) for consistency or to counter-examples
that show inconsistencies.

The Verdi approach [ABF04] is a single-purpose method for verifying web documents. It is
restricted to a single document format and the underlying rule-based specification language for
consistency criteria does not support order criteria such as “before”, “after”, or “until”.

Also based on the XML-structure of documents, [Sch04] uses full first order logics for verifying
the consistency of collections of interrelated documents

Other approaches focus on modelling the structure of documents, sometimes also allowing

2.2. DOCUMENT MODELLING AND VERIFICATION 11

for verification. Most of these publications followed in the wake of the advent of hypertext as a
serious theoretical and practical concept.

Coming from the field of discourse analysis, [vDK83] attempt to capture the structure of
discourse in so-called “discourse superstructures”. They are defined as grammars, but their
focus is mainly on the cognitive aspects of how the structure is captured “on the fly” by a
reader.

[Gar87] defines a model for hypertexts that is based on a graph-view. This graph is repres-
ented as a set of edges between document nodes.

Furuta and Stotts provide several models for hypertexts. One is based on Petri nets, which al-
lows for checks of simple pre-conditions when traversing a hypertext [SF89]. They also developed
a metamodel that describes different layers of abstraction for hypertexts, but they focus less on
the content and more on the broad underlying structure and navigation [FS90]. In [SFC98], they
model hypertexts as automata, but again limited to the structure [SFC98].

[HS94] presents a graph-based hypertext model that focusses on the technical aspects of
hypertext. It is an early attempt to capture the general properties of hypertexts.

Van der Aalst et. al. use Petri nets to represent formal structures, in particular processes and
workflows. Their approach is limited to the control flow (i.e., the structure), however, ignoring
the data flow [vdA03, OVvdA+07].

A third type of approaches puts the primary emphasis on the document’s content, to the
detriment of the structure.

[ESS05] describe a verification technique based on description logics. It is built on top of
Schema1, which treats all documents as collections of XML fragments that can be re-arranged
into new documents. Its focus is on dissecting and re-combining document content instead of
the document’s structure [Gru06].

The Text Encoding Initiative [TEI07] has developed a set of guidelines and tools for encoding
the texts of humanity. Their XML-based structural metamodel offers no generalisations, but
instead a large number of very concrete types for the classification of document elements. The
metamodel is therefore very broad, but also very flat and provides little abstraction. Its focus
lies on the layout and on the content, less on the structure. While it covers many domains, it
lacks an underlying semantic formalism.

Finally, there are approaches to document modelling that attempt to represent the document
layout as faithfully as possible, or to render it as effectively as possible.

The group around David Brailsford has proposed a document layout model defined by distinct
atomic objects that are arranged on a page [BBH03]. They also developed a model consisting of
multiple pre-typeset document fragments that can be used for the dynamic display and layout
of e-books [PBB11].

[PCC+11] suggest a physics-based approach to semi-automatically layout documents, sup-
porting document creators. It uses graph-layout techniques applied to atomic document ele-
ments.

The focus of current document modelling or verification techniques is either on the content
or on the structure. In the latter case, the approach is either format-driven, i.e., slaved to
the schema of the document format, or captures only very broad structural elements like “file”
instead of smaller and more specific elements like “paragraph” or “definition”. A combination
of these different emphases is still missing.

1http://www.schema.de

http://www.schema.de

12 CHAPTER 2. OTHER WORK

Part II

Foundations

Chapter 3

Technologies

In this chapter, we will discuss several basic formalisms and technologies that we will use in the
course of this theses.

3.1 XML Technologies

In this section, we will give a brief introduction into three XML technologies used in this theses.
For further details, see [BPSM+08, CD99, BCF+10].

3.1.1 XML

XML, the extensible markup language, is a semi-structured markup language and a W3C recom-
mendation since early 1998. It is based on unicode, allowing for international letters in both
content and markup [BPSM+08].

The three primary building blocks of XML are elements, attributes, and text. An element
consists of an opening and a closing tag with identical names. It may have a number of attributes
and it may have content that consists of text, XML elements, or a mixture of both. The opening
tag is indicated by <...>, and the closing tag is indicated by </...>. An attribute consists of
a name and a textual value, written as name="value". While an element may have several child
elements with identical names, each of its attributes must have a different name.

To avoid confusion between XML elements that have the same name but a different intended
meaning, XML supports namespaces. Assigning XML elements to a unique namespace removes
the ambiguity between elements from different namespaces. A namespace is represented by its
name, which must be a URI such as http://purl.org/dc/terms/.
XML elements in a namespace are identified by their complete name, for example http://purl.

org/dc/terms/subject.
By defining a shorthand prefix for a namespace, elements can be written as for example

<dc:subject xmlns:dc="http://purl.org/dc/terms/">. In addition, a default namespace
can be declared that encompasses all XML elements below and including the element where it
was defined, for example <subject xmlns="http://purl.org/dc/terms/">.

Attributes may have a namespace as well, but it must be used explicitly because the default
namespace is disregarded in attribute definitions.

Example 3.1.1 (XML). The following XML fragment models basic data about two dances, the
slow waltz and the Viennese waltz. It lists some figures for the dances, each with a name that

15

http://purl.org/dc/terms/
http://purl.org/dc/terms/subject
http://purl.org/dc/terms/subject

16 CHAPTER 3. TECHNOLOGIES

is unique within the scope of that dance. The description of a figure may include references to
figures that can be danced after this figure and a textural description.

1 <dances xmlns="http: //www.dancedescriptions.net/">

2 <dance>

3 <name>Slow Waltz </name>

4 <figure name="Natural Turn">

5 <follow -with>Natural Turn</follow -with>

6 <follow -with>Closed Change 1</follow -with>

7 <description >

8 The basic figure of the waltz is a turn

9 to the right , as opposed to the

10 <reference >Reverse Turn</reference >, which

11 turns to the left.

12 </description >

13 </figure >

14 <figure name="Reverse Turn">

15 <follow -with>Reverse Turn</follow -with>

16 <follow -with>Closed Change 2</follow -with>

17 </figure >

18 <figure name="Closed Change 1">

19 <follow -with>Reverse Turn</follow -with>

20 <follow -with>Closed Change 2</follow -with>

21 <description >

22 The closed change is the simplest segue between the

23 <reference >Natural Turn</reference > and the

24 <reference >Reverse Turn</reference >.

25 </description >

26 </figure >

27 <figure name="Closed Change 2">

28 <follow -with>Natural Turn</follow -with>

29 <follow -with>Closed Change 1</follow -with>

30 <description >

31 The closed change is the simplest segue between the

32 <reference >Natural Turn</reference > and the

33 <reference >Reverse Turn</reference >.

34 </description >

35 </figure >

36 </dance>

37 <dance>

38 <name>Viennese Waltz </name>

39 <figure name="Natural Turn">

40 <description >

41 The steps of the basic figure of the Viennese walz

42 are similar to the steps of the natural turn in

43 the slow waltz.

44 </description >

45 </figure >

46 </dance>

47 </dances >

An XML document is well-formed if it only contains legal characters, if all opening and closing
element names match, if element names contain only certain characters (basically alphanumeric
letters, dash, underscore, dot, and colon), and if the elements form a tree-structure with a distinct
root element. XML parsers have to reject documents that are not well-formed.

Other XML building blocks are comments, indicated by <!-- -->, processing instructions,
and entities. Processing instructions contain information for parsers or other processors, such as
encoding information. They are indicated by <? ?>. Entities act like macros that are resolved

3.1. XML TECHNOLOGIES 17

by the XML parser, which replaces the macro with its definition. Character entities such as
@ refer to the unicode character with the given number. Named entities such as '

refer to a string.
As a convenience for using XML markup characters in text and attribute values, the entities

', ", &, <, and > for ’, ", &, <, and > are predefined in XML. Named
entities can be defined in a DTD (see below).

Example 3.1.2 (XML (continued)). The following XML code adds XML version and encoding
information to a fragment from example 3.1.1. It also shows the use of comments and entities.

1 <?xml version="1.0" encoding="UTF -8"?>

2 <dances xmlns="http: //www.dancedescriptions.net/">

3 <dance>

4 <name>Slow Waltz </name>

5 <figure name="Natural Turn">

6 <!-- add quotation to the text -->

7 <description >

8 The basic figure of the "waltz" is a turn

9 to the &right;, as opposed to the

10 <reference >Reverse Turn</reference >, which

11 turns to the &left;.

12 </description >

13 </figure >

14 </dance>

15 </dances >

A Document Type DefinitionDocument Type Definition, or DTD, is a schema definition for
an XML document. In a DTD, element and attribute names can be defined, including where
they may be used and what values they may have. In addition, named entities can be defined.

<!ELEMENT figure (follow-with+, description?)> is a declaration that defines an ele-
ment named “figure”, which may have one or more (+) <follow-with> child elements and an
optional (?) <description> child element. A star (*) indicates zero or more child elements,
and #PCDATA represents text.

<!ATTLIST figure name CDATA #REQUIRED> is a declaration that defines an attribute “name”
for the <figure> element with a textual value (CDATA). The attribute is required (#REQUIRED),
not optional (#IMPLIED).

<!ENTITY right ‘‘right’’> defines a named entity with the value “right”. It can be
referenced with &right;. The content of external files can be referenced with <ENTITY external

SYSTEM ‘‘filename.xml’’>.
A document type definition can be written to an external file and referenced from within an

XML document with <!DOCTYPE dances SYSTEM ‘‘dances.dtd’’> before the root element.
A DTD can also be embedded into an XML document with <!DOCTYPE dances [...]>.

Example 3.1.3 (DTD). The following lists a DTD schema for the XML document from ex-
ample 3.1.1. It makes use of the default namespace defined there in line 1.

1 <!ELEMENT dances (dance *)>

2 <!ELEMENT dance (name , figure *)>

3 <!ELEMENT name (# PCDATA)>

4 <!ELEMENT figure (follow -with+, description ?)>

5 <!ATTLIST figure name CDATA #REQUIRED >

6 <!ELEMENT follow -with (# PCDATA)>

7 <!ELEMENT description (# PCDATA | reference)*>

8 <!ELEMENT reference (# PCDATA)>

18 CHAPTER 3. TECHNOLOGIES

9 <!ENTITY right "right">

10 <!ENTITY left "left">

XML Schema is another language for specifying XML schema definition. It is more powerful
than DTD, but also far more complex and verbose. For further information on XML Schema,
we refer the reader to [TBMM04, BM04b].

In addition to well-formedness, XML parsers can check an XML document against a schema
and check if it satisfies the requirements specified there. If an XML document can be successfully
verified against a schema, it is called valid with respect to that schema.

There are two primary types of XML parsers, SAX and DOM parsers. SAX (Simple API for
XML) parsers linearly scan a document and provide handlers whenever an XML building block
such as an opening element, a comment, a string, or a closing element is encountered. They are
fast and require few resources, but they leave the work of assembling a model for the parsed data
to the handler.

DOM (Document Object Model) parsers read an entire XML file into a memory model that
closely represents the XML structure. They provide a high level of comfort for the user, but at
the cost of high resource consumption.

Since Java 1.4, Java provides a Java API for XML Processing (JAXP) that includes interfaces
for both SAX and DOM. There are multiple implementations for this API, including one from
Oracle that is bundled with Java, and one from the Apache Project called Xerces.

XML is used in many different ways, for example as a document format in DocBook, vari-
ous office formats, and XHTML. It is also used to specify graphics (SVG) or annotated video
(MPEG7), and for data interchange (SOAP).

3.1.2 XPath

XPath is a selector language on XML, recommended by the W3C in late 1999 [CD99]. For path
selectors in general, and how they are evaluated, see also definitions 5.2.2 and 5.2.4.

XPath expressions are a sequence of path expressions, separated by /, or the union of two
XPath expressions, separated by |. A path expression consists of an optional axis expression, a
path match, and an optional condition.

An axis expression changes the scope of the following path match:

3.1. XML TECHNOLOGIES 19

ancestor applies the path match to the transitive closure of
parent elements of the current element,

ancestor-or-self includes the current element with the ancestor
elements,

attribute applies the path match to all attributes of the
current element,

child applies the path match to all child elements for
the current element (this is the default behaviour
when no axis is defined),

descendant applies the path match to the transitive closure of
child elements of the current element,

descendant-or-self includes the current element with the descendant
elements,

following applies the path match to all elements that come
after the current element in document order,

following-sibling applies the path match to all following elements on
the same level in the tree structure and with the
same parent element as the current element,

namespace applies the path match to all namespace definitions
of the current element,

parent applies the path match to the parent element of
the current element,

preceding applies the path match to all elements that come
before the current element in document order,

preceding-sibling applies the match to all preceding elements on the
same level in the tree structure and with the same
parent element as the current element, and

self applies the match only to the current element.
Axis expressions always apply the path match to elements starting at the current element

and moving away from it. For example, the first element on the ancestor axis is the current
element’s parent, and the last element is the document’s root element. Axis expressions are
syntactically separated from path matches by ::.

Path matches can match an element or an attribute by name (element, @attribute), they
can match the root element (/), they can match the current element (.), and they can match the
current element’s parent (..). They can also match any element, attribute, text node or simply
any node using wildcards (*, @*, text(), node()).

Conditions are expressions with a Boolean value, such as constants, function calls, equality or
inequality assertions, or Boolean relations on other expressions. Syntactically, they are enclosed
in [].

Example 3.1.4 (XPath). The following XPath expressions select nodes and values from the
XML document from example 3.1.1.
Select the names of all figures:

/descendant-or-self::figure/@name

Select the names of all figures, using the shorthand // for descendant-or-self:

//figure/@name

Select the names of all figures in the slow waltz:

20 CHAPTER 3. TECHNOLOGIES

//dance[name = ‘Slow Waltz’]/figure/@name

Select all <description> elements that contain <reference> elements:

//description[.//reference]

Select the first <follow-with> element of each figure:

//figure/follow-with[not(preceding-sibling::follow-with)]

XPath defines several functions, including numerical functions like abs() and round(), string
functions like concat(), upper-case(), substring(), and translate() (which replaces occur-
rences of one character in a string with another character), node and node sequence functions
such as name() (which returns the name of a node), position() (which returns the position of
a node within a node sequence), and last() (which returns the last node of a node sequence),
as well as aggregation functions like max() and sum().

Example 3.1.5 (XPath (continued)). The following XPath expressions select nodes and values
from the XML document from example 3.1.1.
Select all <dance> elements with more than one figure:

//dance[count(figure) > 1]

Select the names of all figures that end in “turn”:

//figure[ends-with(lower-case(@name), ‘turn’)]/@name

Select the first <follow-with> element of each figure:

//figure/follow-with[position() = 1]

Select the first <follow-with> element of each figure, using a shorthand:

//figure/follow-with[1]

3.1.3 XQuery

In contrast to XPath, XQuery is a Turing-complete XML query language, recommended by the
W3C since early 2007 [BCF+10]. It does rely heavily on XPath, though. Conceptually, it is a
functional programming language, but without support for higher-order functions.

It provides so-called FLWOR-expressions: FOR, LET, WHERE, ORDER BY, and RETURN. This is
illustrated in example 3.1.6.

Example 3.1.6 (XQuery). The following is an XQuery program that returns the names of all
dances ordered alphabetically. The doc() function returns the DOM of an external file.

1 declare default element namespace = "http :// www.dancedescriptions.net/";

2 for $dance in doc("dances.xml")// dance

3 let $name := $dance/name

4 where count($dance/figure) > 0

5 order by $name

6 return $name

XQuery allows for the definition of custom functions, as illustrated in example 3.1.7. In
addition to iteration with FOR, it supports recursion.

3.2. DESCRIPTION LOGICS 21

Example 3.1.7 (XQuery (continued)). The following XQuery program returns an XML element
sequence of named figures. For every figure, if it has a description, the text is included and the
references are resolved. For each reference, both the name of the dance and the name of the figure
are returned.

1 declare default element namespace = "http :// www.dancedescriptions.net/";

2 declare function local:getDescription($desc) {

3 for $node in $desc/node()

4 return if (local -name($node) = "reference")

5 then ($node/ancestor ::dance/name/text(), " ", $node/text())

6 else $node

7 };

8 for $figure in doc("dances.xml")// figure

9 return

10 <figure name="{$figure/@name}">

11 {

12 if ($figure/description)

13 then <desc >

14 { local:getDescription($figure/description) }

15 </desc >

16 else ()

17 }

18 </figure >

While there exist several XQuery processors, the number of freeware or open-source processors
of decent quality is rather limited. We will make use of the GNU Qexo processor, which not
only implements the XQuery language, but also provides the possibility for Java-callbacks from
XQuery programs. The processor is written in Java, it can be accessed directly from Java
code, and calls to Java methods can be integrated into the XQuery code. This is illustrated in
example 3.1.8.

Example 3.1.8 (XQuery and Java). The following XQuery program calls a Java method to
spell-check descriptions. The namespace declaration syntax is used to reference Java classes.

1 declare default element namespace = "http :// www.dancedescriptions.net/";

2 declare namespace SpellChecker = "class:net.dancedescriptions.SpellChecker";

3 for $desc in doc("dances.xml")// description

4 return SpellChecker:check($desc)

3.2 Description Logics

The following section is based in large parts on [BCM+03] and [Fre11], extended with state of
the art developments and some proofs not contained in the original research. We will give a
compact overview, using a syntax and terminology that we unified across the literature.

We will begin with a language-independent discussion of the syntax of descriptions logics, fol-
lowed by a discussion of its semantics. We will then introduce several description logic languages
of varying expressiveness, and conclude with a brief discussion of decidability.

Description logics are commonly used in knowledge representation. They offer an expressive
formalism combined with efficient reasoning services.

22 CHAPTER 3. TECHNOLOGIES

3.2.1 Syntax of Description Logics

The basic building blocks of description logics are individuals, concepts, and roles.

Definition 3.2.1 (Individual). An individual is a distinct object in a domain. It is defined and
identified solely by its name.

Example 3.2.2 (Individual). chapter2 and datastructure are individual names.

Definition 3.2.3 (Atomic Concept). An atomic concept represents a set of individuals. It is
defined and identified solely by its name.

Example 3.2.4 (Atomic Concept). Chapter and Topic are atomic concept names.

Definition 3.2.5 (Atomic Role). An atomic role represents a binary relation on a set of indi-
viduals. It is defined and identified solely by its name.

Example 3.2.6 (Atomic Role). successor and hasTopic are atomic role names.

Definition 3.2.7 (Complex Concept). A complex concept represents a set of individuals. For
an atomic concept A, an individual i, complex concepts C1 and C2, a complex role R (see below),
and a number n ∈ N0, the following constructs are complex concepts:

> (top or universal concept),
⊥ (bottom concept),
A (atomic concept),
{i} (set constructor),
¬C1 (complement),
C1 u C2 (intersection),
C1 t C2 (union),
∃R.C1 (existential quantification),
∀R.C1 (universal quantification or value restriction),
≥ nR.C1 (qualified number restriction),
≤ nR.C1 (qualified number restriction),
= nR.C1 (qualified number restriction), and
∃R.∇ (self reference).

Remark 3.2.8. Note that the set constructor is a convenient way to define a concept in an
extensional way. Complement, intersection, union, quantification, number restriction and self
reference are ways to define concepts in an intensional way.

Example 3.2.9 (Complex Concept). A u B, ¬Definition t Example, and
∃relatedTo.∇ are complex concepts.

Definition 3.2.10 (Complex Role). A complex role represents a binary relation on a set of
individuals. For an atomic role A and complex roles R1 and R2, the following constructs are
complex roles:

>> (top or universal role),
⊥⊥ (bottom role),
A (atomic role),
¬R1 (complement),
R1 uR2 (intersection),
R1 tR2 (union),
R+

1 (transitive closure),
R−1 (inverse), and
R1 ◦R2 (composition).

3.2. DESCRIPTION LOGICS 23

Example 3.2.11 (Complex Role). relatedTo+, hasTopic t hasSubject, and
hasPart ◦ hasTopic are complex roles.

Next to individuals, description logics can also deal with concrete data types.

Definition 3.2.12 (Concrete Role). Let D be a set of concrete data types.
A concrete role represents a binary relation between a set of individuals and D. It is defined

and identified solely by its name.
Let RC1 and RC2 be concrete roles, d ∈ D a concrete data type, and R a complex role. Then

concrete roles and data types can be used in the following constructs:
¬d (data type complement),
∃RC1.d (data type existence),
∀RC1.d (data type restriction),
≥ nRC1.d (qualified number restriction),
≤ nRC1.d (qualified number restriction),
= nRC1.d (qualified number restriction),
¬RC1 (complement),
RC1 uRC2 (intersection),
RC1 tRC2 (union), and
R ◦RC1 (role composition).

Note that ¬d can be used anywhere in place of d.

Example 3.2.13 (Concrete Data Type). N ∈ D is a concrete data type. age is a concrete role.
∀age.N is a complex concept using the concrete role.

Individuals, concepts, roles and concrete data types can be used in more complex statements
to assert facts in a knowledge base.

Definition 3.2.14 (Terminological Axiom). A terminological axiom defines a relationship between
two concepts or between two roles. For complex concepts C1 and C2 and for complex or concrete
roles R1 and R2, the following constructs are terminological axioms:

C1 ≡ C2 (equality),
C1 v C2 (inclusion, subsumption),
R1 ≡ R2 (equality), and
R1 v R2 (inclusion, subsumption).

Equality axioms with solely an atomic concept or an atomic role on the left hand side of the
equality operator are called definitions. In a definition, the atomic concept is called the symbolic
name for the complex concept on the other side of the equality operator.
In definitions, the symbol ≡ is often replaced with

.
=.

Inclusion axioms with solely an atomic concept or an atomic role on the left hand side of the
subsumption operator are called specialisations.

Example 3.2.15 (Terminological Axiom). The following statements are terminological axioms:

Illustration v Example,
List ≡ OrderedList t UnorderedList, and

successor v references.

The following statements are definitions:

List
.
= OrderedList t UnorderedList and

partOf
.
= hasPart−.

24 CHAPTER 3. TECHNOLOGIES

Definition 3.2.16 (Instance Assertion). An instance assertion defines a relationship between an
individual and a concept, or between two individuals and a role. For individuals i1 and i2, a
complex concept C, a complex role R, a value v belonging to a concrete data type d ∈ D, and a
concrete role RC , the following constructs are instance assertions:

C(i1) (concept assertion),
R(i1, i2) (role assertion), and
RC(i1, v) (value assertion).

Example 3.2.17 (Instance Assertion). Chapter(chapter2), Topic(datastructure), and
(hasPart ◦ hasTopic)(chapter2,datastructure) are instance assertions.

Definition 3.2.18 (TBox). A TBox T = (C,R,XT) specifies terminological information. It
consists of a finite set of concepts C, a finite set of roles R, and a finite set of terminological
axioms XT using C and R that only contains definitions and specialisations, and that does not
define any symbolic name more than once.

Example 3.2.19 (TBox). Let
C = {Chapter, Topic}
R = {hasPart, hasTopic}
XT = {Chapter u Topic v ⊥,

hasTransTopic
.
= hasPart+ ◦ hasTopic}

Then T = (C,R,XT) is a TBox.

Definition 3.2.20 (ABox). An ABox A = (I,XI) specifies assertions about individuals. It
consists of a finite set of domain objects I and a finite set of instance assertions XI that use I
and the terminology specified in a TBox.

Example 3.2.21 (ABox). Let
I = {chapter2,paragraph2.1,datastructure}
XI = {Chapter(chapter2),

Topic(datastructure),
hasPart(chapter2,paragraph2.1),
hasTopic(paragraph2.1,datastructure)}

Then A = (I,XI) is an ABox.

Definition 3.2.22 (Description Logic System). A description logic system is a knowledge base
consisting of a TBox and an ABox that uses the TBox. It provides inference services (see below)
on both the TBox and the ABox.

Definition 3.2.23 (Ontology). In the domain of knowledge management and informatics, an
ontology is a knowledge base that defines a terminology for a domain and facts about a domain
using the terminology.

In the context of this thesis, we will regard and use the term “ontology” as an equivalent to
“description logic system”, even though in general there exist ontologies that are not based on
description logics.

Formally, an ontology O = (C,R, I,X) contains a TBox T = (C,R,XT) and an ABox
A = (I,XI), with X = XT ∪XI . T defines the terminology that can be used to make assertions
in A.

Example 3.2.24 (Ontology). Let T = (C,R,XT) be the TBox from example 3.2.19. Let A =
(I,XI) be the ABox from example 3.2.21.
Then O = (C,R, I,X) with X = XT ∪XI is an ontology containing T and A.

3.2. DESCRIPTION LOGICS 25

A special type of ontology that defines a hierarchy on its individuals is called a taxonomy .

Definition 3.2.25 (Taxonomy). An ontology X = (C,R, I,X) is a taxonomy, iff it contains at
least one role r ∈ R with 6 ∃x ∈ I : r+(x, x), where r+ is the transitive closure of r.
In other words, r defines an acyclic directed graph on I.

r typically models a relationship similar to a generalisation.

Example 3.2.26 (Taxonomy). Let

C = ∅,
R = {hasNarrower},
I = {mammal,bird, animal}, and
X = {hasNarrower(animal,mammal), hasNarrower(animal,bird)}.

Then X = (C,R, I,X) is a taxonomy.

Description 3.2.27 (Knowledge Base). A knowledge base is an ontology or a taxonomy. Some-
times, a knowledge base is defined as an ontology O = (∅, R, I,X) without concepts, also written
as (R, I,X).

3.2.2 Semantics of Description Logics

Having defined the syntax of description logics, we will now discuss its semantics.

Definition 3.2.28 (Interpretation). Let O be an ontology.

Then IO = (∆I , ()
I
) is an interpretation of O, where ∆I is a non-empty set of objects called

the domain of IO, and ()
I

is a function in postfix superscript notation. Let ∆D be the domain of
all data types d ∈ D, with dD ⊆ ∆D the domain of d.
∆I and ∆D are assumed to be disjoint. Then ()

I
assigns

1. to every individual from O a member of ∆I ,

2. to every atomic concept from O a subset of ∆I ,

3. to every atomic role from O a subset of ∆I ×∆I ,

4. to every concrete role from O a subset of ∆I ×∆D,

5. to every concrete data type d ∈ D a subset dD of ∆D, and

6. to every value v belonging to a concrete data type d a member of dD.

For complex concepts C1 and C2, for complex roles R1 and R2, for concrete roles RC1 and
RC2

, for a concrete data type d, and for n ∈ N0, ()
I

is inductively extended to complex concepts
and roles as follows:

26 CHAPTER 3. TECHNOLOGIES

>I := ∆I

⊥I := ∅
(¬C1)I := ∆I\CI1
(C1 u C2)I := CI1 ∩ CI2
(C1 t C2)I := CI1 ∪ CI2
(∃R1.C1)I := {x ∈ ∆I | for all y ∈ ∆I : (x, y) ∈ RI1 implies y ∈ CI1}
(∀R1.C1)I := {x ∈ ∆I | there exists y ∈ ∆I : (x, y) ∈ RI1 and y ∈ CI1}
(≥ nR1.C1)

I :=
{
x ∈ ∆I |

∣∣{y ∈ ∆I | (x, y) ∈ RI1 and y ∈ CI1
}∣∣ ≥ n}

(≤ nR1.C1)
I :=

{
x ∈ ∆I |

∣∣{y ∈ ∆I | (x, y) ∈ RI1 and y ∈ CI1
}∣∣ ≤ n}

(= nR1.C1)
I :=

{
x ∈ ∆I |

∣∣{y ∈ ∆I | (x, y) ∈ RI1 and y ∈ CI1
}∣∣ = n

}
(∃R1.∇)I := {x ∈ ∆I | (x, x) ∈ RI1}
>>I := ∆I ×∆I

⊥⊥I := ∅
(¬R1)I := (∆I ×∆I)\RI1
(R1 uR2)I := RI1 ∩RI2
(R1 tR2)I := RI1 ∪RI2
(R+

1)I := transitive closure of RI1
(R−1)I := {(y, x) ∈ ∆I ×∆I | (x, y) ∈ RI1}
(R1 ◦R2)I := {(x, z) ∈ ∆I ×∆I | there exists y : (x, y) ∈ RI1

and (y, z) ∈ RI2}
dI := dD

(¬d)I := ∆D\dI
(∃RC1.d)I := {x ∈ ∆I | for all y ∈ ∆D : (x, y) ∈ RIC1 implies y ∈ dI}
(∀RC1.d)I := {x ∈ ∆I | there exists y ∈ ∆D : (x, y) ∈ RIC1 and y ∈ dI}
(≥ nRC1.d)

I :=
{
x ∈ ∆I |

∣∣{y ∈ ∆D | (x, y) ∈ RIC1 and y ∈ dI
}∣∣ ≥ n}

(≤ nRC1.d)
I :=

{
x ∈ ∆I |

∣∣{y ∈ ∆D | (x, y) ∈ RIC1 and y ∈ dI
}∣∣ ≤ n}

(= nRC1.d)
I :=

{
x ∈ ∆I |

∣∣{y ∈ ∆D | (x, y) ∈ RIC1 and y ∈ dI
}∣∣ = n

}
(¬RC1)I := (∆I ×∆D)\RIC1

(RC1 uRC2)I := RIC1 ∩RIC2

(RC1 tRC2)I := RIC1 ∪RIC2

(R1 ◦RC1)I := {(x, z) ∈ ∆I ×∆D | there exists y : (x, y) ∈ RI1
and (y, z) ∈ RIC1}

Example 3.2.29 (Interpretation). Let O = (C,R, I,XT∪XI) be the ontology from example 3.2.24.

Then IO = (∆I , ()
I
) is an interpretation of O, with

∆I = {Chapter 2, Paragraph 2.1, Data Structure}
chapter2I = Chapter 2,

paragraph2.1I = Paragraph 2.1,

datastructureI = Data Structure
ChapterI = {Chapter 2},
TopicI = {Data Structure}
hasPartI = {(Chapter 2, Paragraph 2.1)},
hasTopicI = {(Paragraph 2.1, Data Structure)}

Description 3.2.30 (Unique Name Assumption). An interpretation IO respects the unique name
assumption iff

i1 6= i2 ⇒ iI1 6= iI2

for individuals i1 and i2, i.e., if distinct individual names must have distinct interpretations.

3.2. DESCRIPTION LOGICS 27

In the context of this thesis, we will assume that every interpretation respects the unique name
assumption unless indicated otherwise.

Definition 3.2.31 (Model). An axiom or assertion x can be valid in an interpretation IO, written
as IO |= x.

For individuals i1 and i2, for complex concepts C1 and C2, for complex or concrete roles R1

and R2, for a complex role R, for a value v belonging to a concrete data type d ∈ D, and for a
concrete role RC , this is defined as follows:

IO |= C1 v C2 ⇔ CI1 ⊆ CI2
IO |= C1 ≡ C2 ⇔ CI1 = CI2
IO |= R1 v R2 ⇔ RI1 ⊆ RI2
IO |= R1 ≡ R2 ⇔ RI1 = RI2
IO |= C1(i1) ⇔ iI1 ∈ CI1
IO |= R(i1, i2) ⇔ (iI1, i

I
2) ∈ RI

IO |= RC(i1, v) ⇔ (iI1, v
I) ∈ RIC

An interpretation IO is also called a model of an axiom or assertion x iff x is valid in IO.
An interpretation IO is a model of an ontology O = (C,R, I,X) iff all axioms and assertions

x ∈ X are valid in IO, written as IO |= O.

Example 3.2.32 (Model). Let O = (C,R, I,XT ∪ XI) be the ontology from example 3.2.24.

Then the interpretation IO = (∆I , ()
I
) from example 3.2.29 is a model of O.

Proposition 3.2.33 (Concept Equivalences). For complex concepts C1 and C2, and a complex
role R, the following equivalences hold in any model:

C1 t C2 ≡ ¬(¬C1 u ¬C2) (a)
∃R.C1 ≡ ¬∀R.¬C1 (b)

Proof of Proposition 3.2.33 (a). Let O be an ontology containing the two complex concepts C1t
C2 and ¬(¬C1 u ¬C2), for complex concepts C1 and C2. Let IO be a model of O. Then

(¬ (¬C1 u ¬C2))
I

= ∆I\(¬C1 u ¬C2)I

= ∆I\
(

(¬C1)
I ∩ (¬C2)

I
)

= ∆I\
(
∆I\CI1 ∩∆I\CI2

)
= CI1 ∪ CI2
= (C1 t C2)I

Proof of Proposition 3.2.33 (b). LetO be an ontology containing the two complex concepts ∃R.C
and ¬∀R.¬C, for a complex concept C and a complex role R. Let IO be a model of O. Then

(¬∀R.¬C)
I

= ∆I\ (∀R.¬C)
I

= ∆I\{x ∈ ∆I | exists y ∈ ∆I : (x, y) ∈ RI and y ∈ (¬C)I}
= ∆I\{x ∈ ∆I | exists y ∈ ∆I : (x, y) ∈ RI and y ∈ ∆I\CI}
= ∆I\{x ∈ ∆I | for all y ∈ ∆I : (x, y) 6∈ RI or y 6∈ ∆I\CI}
= ∆I\{x ∈ ∆I | for all y ∈ ∆I : (x, y) ∈ RI implies y ∈ CI}
= (∃R.C)I

Definition 3.2.34 (Expansion). Let OD = (C,R, I,XT ∪XI) be an ontology that only contains
definitions in XT . Let O′D be the expansion of OD. O′D is obtained from OD as follows:

28 CHAPTER 3. TECHNOLOGIES

I For every definition x ∈ XT of the form A
.
= D, where A ∈ C ∪R is a symbolic concept or

role name and D is a complex concept or role:

. in every other concept or role axiom y ∈ XT ∪XI where A is not the symbolic concept
or role name:

– replace all occurrences of A with D.

For ontologies without cyclic definitions, i.e., where A does not occur in the expansion of D,
this process terminates after a finite number of steps.

For ontologies that also contain specialisations, a more complex inference procedure is re-
quired.

For inference tasks, it is often helpful to be able to disregard the TBox, i.e., to only regard
an ABox A = (I,XI) with respect to a TBox T = (C,R, ∅). This can be achieved by

1. expanding the TBox, and then

2. replacing all concept and role names in XI with their expansion.

For an ontology, different inference services can be defined. For the TBox, a satisfiability check
can identify “empty” concepts, and a subsumption check can identify hierarchical relationships
between concepts. For the ABox, its consistency with a given TBox can be checked, and new
assertions that are logical consequences of existing assertions and axioms can be inferred. For a
TBox and an ABox, all individuals belonging to a concept can be retrieved, and the most specific
concepts to which a given individual belongs can be found.

Definition 3.2.35 (Satisfiability). For a TBox T , a concept or role C is satisfiable with respect
to T iff there exists a model IT with CI 6= ∅.

Example 3.2.36 (Satisfiability). For the TBox T from example 3.2.19, all concepts and roles
are satisfiable with respect to T . The concept ChapterAndTopic

.
= Chapter u Topic is not

satisfiable with respect to T because Chapter and Topic are defined to be disjoint.

Definition 3.2.37 (Subsumption). For a TBox T , a concept or role C1 is subsumed with respect
to T by a concept or role C2 iff CI1 ⊆ CI2 for every model IT of T .

For a TBox T , two concepts C1 and C2 are equivalent with respect to T iff CI1 = CI2 for every
model IT of T .

Example 3.2.38 (Subsumption). For the TBox T from example 3.2.19, the concept
ChapterAndTopic

.
= Chapter u Topic is subsumed by the bottom concept with respect to T :

ChapterAndTopic v ⊥.

Definition 3.2.39 (Consistency). For a TBox T , an ABox A is consistent with respect to T iff
there exists a model IT ,A.

Example 3.2.40 (Consistency). The ABox from example 3.2.21 is consistent with respect to
the TBox from example 3.2.19, as shown by the model given in example 3.2.29.

Definition 3.2.41 (Instantiation). For a TBox T and an ABox A, a concept or role assertion
x is a logical consequence of T and A iff IT ,A |= x for every model IT ,A.

Example 3.2.42 (Instantiation). For the ontology O from example 3.2.24, the role assertion
hasTransTopic(chapter2,datastructure) is a logical consequence of O.

3.2. DESCRIPTION LOGICS 29

Proof. To show: for every model I of O:

I |= hasTransTopic(chapter2,datastructure).

Therefore, to show: for every model I of O:

(chapter2I ,datastructureI) ∈ hasTransTopicI .

W.l.o.g., let I be any model of O. The assertions and axioms

hasPart(chapter2,paragraph2.1),
hasTopic(paragraph2.1,datastructure), and
hasTransTopic

.
= hasPart+ ◦ hasTopic

are all part of O. Since I |= O, the following must also be true:

(chapter2I ,paragraph2.1I) ∈ hasPartI ,
(paragraph2.1I ,datastructureI) ∈ hasTopicI , and

hasTransTopicI = (hasPart+ ◦ hasTopic)I .

Resolving ◦ leads to

(hasPart+ ◦ hasTopic)I =
{(x, z) | there exists y : (x, y) ∈ (hasPart+)I and (y, z) ∈ hasTopicI},

which contains (chapter2I ,datastructureI).

Definition 3.2.43 (Individual Retrieval). For an ontology O, a model IO of O, and a concept
C from O, the individual retrieval problem is to find all individuals i in O such that IO |= C(i).

Example 3.2.44 (Individual Retrieval). For the ontology and model from example 3.2.29, the
individual chapter2 can be retrieved for the concept Chapter.

Definition 3.2.45 (Concept Realisation). For an ontology O, a model IO of O, and and in-
dividual i, the concept realisation problem is to find the most specific concepts C in O such that
IO |= C(i).

Example 3.2.46 (Concept Realisation). For the ontology and model from example 3.2.29, the
concept Chapter can be found for the individual chapter2.

In contrast to, for example, database systems that follow the closed world assumption, de-
scription logics adhere to the open world assumption.

Description 3.2.47 (Closed World Assumption). Under the closed world assumption (CWA),
the data represented in an information system is regarded as complete. It is assumed that any
information that is not represented in the system has been explicitly omitted and is therefore
missing for a reason. In other words, any datum that cannot be retrieved from an information
system is regarded as logically false under the CWA.

Example 3.2.48 (Closed World Assumption). Let an information system contain only the single
assertion that “The moon is made of rock”. Under the closed world assumption, we can infer
that the moon is not made out of cheese, because this datum is not contained in the information
system.

30 CHAPTER 3. TECHNOLOGIES

Description 3.2.49 (Open World Assumption). Under the open world assumption (OWA), the
data represented in an information system is regarded as incomplete. It is assumed that any
information that is not represented in the system may simply be missing, may have been over-
looked, or will be inserted at a later time. In other words, only if a datum can be inferred to be
logically false, can it be regarded as logically false under the OWA.

Example 3.2.50 (Open World Assumption). Let an information system contain only the single
assertion that “The moon is made of rock”. Under the open world assumption, we can neither
infer that the moon is made out of cheese, nor that it is not made out of cheese. The information
system does not contain any indication one way or the other. Formally, there exist models for
this information system in which the moon is made of cheese, and other models in which the
moon is not made of cheese.

If, however, the information system contains a more precise assertion that “The moon is
made entirely of rock and nothing else”, then we can logically infer that the moon is not made
of cheese, and there exist no models in which it is.

3.2.3 Description Logic Languages

There exist several description logics languages with varying degrees of expressiveness. As a base
language with rudimentary capabilities, we will use the description logics language AL.

Definition 3.2.51 (AL). The AL description logics language supports the top and bottom con-
cepts (> and ⊥), atomic concept negation (¬A for an atomic concept A), concept intersection
(C1 u C2 for complex concepts C1 and C2), value restriction (∀R.C for an atomic role R and a
complex concept C), restricted existential quantification (∃R.> for an atomic role R), complex
concept axioms (C1 v C2, C1 ≡ C2 for complex concepts C1 and C2), and concept and role
assertions (C(i1), R(i1, i2) for an atomic concept C, an atomic role R, and individuals i1 and
i2).

Description 3.2.52 (AL Language Extensions). The following symbols indicate extensions for
the AL description logic language:

C: complex complement (¬C for a complex concept C)
(D): concrete data types
E: full existential quantification (∃R.C for an atomic role R and a

complex concept C). Recall that full existential quantification can be
expressed using universal quantification and complex complement
(cf. proposition 3.2.33)

F : functional roles (≤ 1R.C for an atomic role R and a complex
concept C)

H: role hierarchies (R1 v R2, R1 ≡ R2 for complex roles R1 and R2)
I: inverse roles (R− for an atomic role R)
N : number restrictions (≤ nR.>, ≥ nR.>, = nR.> for an atomic role

R and n ∈ N0)
O: nominals, set constructor ({i} for an individual i)
Q: qualified number restrictions (≤ nR.C, ≥ nR.C, = nR.C for an

atomic role R, a complex concept C, and n ∈ N)
R: disjoint roles (R1 uR2 v ⊥), reflexive and irreflexive roles, negated

role assertions (¬R(i1, i2)), role inclusion axioms of the form
R1 ◦R2 v R1 and R2 ◦R1 v R1, a universal role (>>), and a self
concept (∃R1.∇), for atomic roles R1 and R2, and individuals i1 and i2

3.2. DESCRIPTION LOGICS 31

S: shorthand for AL with complex complement and transitive roles
(R+ for an atomic role R)

U : concept union (C1 t C2 for two complex concepts C1 and C2).
Recall that concept union can be expressed using concept intersection
and complex complement (cf. proposition 3.2.33).

Proposition 3.2.53 (Reflexive and Irreflexive Roles). For an atomic role R, reflexivity can be
expressed as > v ∃R.∇ (a), and irreflexivity can be expressed as > v ¬∃R.∇ (b).

Proof of Proposition 3.2.53 (a). Let R be an atomic role and IO a model for R.

R is reflexive ⇔ ∀x ∈ ∆I : (x, x) ∈ RI
⇔ ∆I ⊆ {x ∈ ∆I | (x, x) ∈ RI}
⇔ IO |= > v ∃R.∇

Proof of Proposition 3.2.53 (b). Let R be an atomic role and IO a model for R.

R is irreflexive ⇔ ∀x ∈ ∆I : (x, x) 6∈ RI
⇔ ∆I ⊆ ∆I\{x ∈ ∆I | (x, x) ∈ RI}
⇔ IO |= > v ¬∃R.∇

One of the most common description logic languages is ALC.

Definition 3.2.54 (ALC). The AL extension with complex complement is called ALC.

Description logics are a fragment of first order predicate logic. A major challenge with
description logic languages is to make that fragment as expressive as possible, while still keeping
it decidable. Three expressive but decidable descriptions logic languages are SHIF , SHOIN ,
and SROIQ. They are of particular importance in the context of the semantic web (see below).

Definition 3.2.55 (SHIF). The AL extension with transitive, inverse, hierarchical and func-
tional roles is called SHIF . SHIF extended with concrete data types is called SHIF (D).
[HPSH03]

Definition 3.2.56 (SHOIN). The AL extension with transitive, inverse, and hierarchical roles,
nominals, and number restrictions is called SHOIN . SHOIN extended with concrete data types
is called SHOIN (D). [HPSH03]

Definition 3.2.57 (SROIQ). The AL extension with extended expressiveness for roles, with
nominals, and with qualified number restrictions is called SROIQ. SROIQ extended with
concrete data types is called SROIQ(D). [HKS06]

All AL languages presented here are decidable. Decidability can be shown by providing a
sound and complete algorithm for calculating a model (iff one exists). One type of such algorithms
are tableau algorithms. We will sketch a tableau algorithm for ALC (for ALU , to be precise). A
tableau for the very expressive SROIQ language can be found in [HKS06].

Note that for reasons of simplicity, in the discussion of tableau algorithms we will treat an
ABox as though it were solely a set of individual assertions A = XI instead of A = (I,XI).

32 CHAPTER 3. TECHNOLOGIES

Definition 3.2.58 (Tableau Algorithm for ALC). A description logics tableau algorithm checks if
a complex concept C is satisfiable, i.e., if there exists an interpretation IC for which IC |= C(p),
for some individual p.

A description logics tableau is a set of ABoxes that contain complex concepts parameterised
with “new” individuals.

The tableau algorithm for ALC takes a complex concept C in negated normal form1 and returns
a set of ABoxes. It starts with a tableau containing only the assertion C(p) for some “new”
individual p. This tableau is successively extended by applying rules from table 3.1, replacing
ABoxes until no more rules can be applied.

An ABox contains a clash if it either contains the assertion ⊥(p), or if it contains both the
assertion A(p) and ¬A(p), for an individual p and an atomic concept A. If all of the ABoxes
returned by the tableau algorithm contain a clash, then the concept C is unsatisfiable, else if at
least one ABox does not contain a clash, C is satisfiable.

Remark 3.2.59. The tableau algorithm requires “new” individuals at several points. These are
individuals that are not part of any ontology from which the concepts are taken. New individuals
are required to avoid confusion with existing ones. They serve as place holders for existing
individuals from an ontology, asserting the existence but not the identity of an individual with
certain properties.

Remark 3.2.60. By using the equivalence

C1 v C2 ⇔ C1 u ¬C2 is unsatisfiable

for complex concepts C1 and C2, the tableau algorithm can be used to determine the validity of
subsumptions: the subsumption is valid iff the intersection is unsatisfiable, i.e., iff all ABoxes
returned by the tableau algorithms contain a clash.

u-rule if A contains (C1 u C2)(p) but not both C1(p) and C2(p):
return A′ = A ∪ {C1(p), C2(p)}

t-rule if A contains (C1 t C2)(p) but neither C1(p) nor C2(p):
return A′ = A ∪ {C1(p)} and A′′ = A ∪ {C2(p)}

∃-rule if A contains ∃R.C(p) but neither C(p′) nor R(p, p′) for some p′:
return A′ = A ∪ {C(q), R(p, q)}

∀-rule if A contains ∀R.C(p) and R(p, p′), but not C(p′) for some p′:
return A′ = A ∪ {C(p′)}

Table 3.1: ALC tableau rules for an ABox A, for complex concepts C1 and C2, an atomic role
R, and individuals p and p′, and a “new” individual q. p, p′ and q are parameters.

Example 3.2.61 (Tableau Algorithm for ALC). In order to check the validity of the subsumption

∃R.A v ∀R.A

for an atomic role R and an atomic concept A, we check the unsatisfiability of

∃R.A u ¬∀R.A.
1a complex concept where negation is only applied to atomic concepts; cf. proposition 3.2.33

3.3. SEMANTIC WEB TECHNOLOGIES 33

Transformed into negated normal form, the concept reads

C0
.
= ∃R.A u ∃R.¬A.

If C0 is satisfiable, there must be an individual p0 such that C0(p0). We therefore start the
tableau algorithm with a set containing a single ABox {{C0(p0)}}. Applying the u-rule yields
{{C0(p0),∃R.A(p0),∃R.¬A(p0)}}. Applying the ∃-rule twice leads to
{{. . . , A(p1), R(p0, p1),¬A(p2), R(p0, p2)}}. At this point, no further rules can be applied.

Not all of the ABoxes contain a clash, which means that C0 is satisfiable. Therefore, the
initial subsumption is invalid.

3.3 Semantic Web Technologies

This section is partially based on [Fre11]. Additional details can be found in [KC04, BG04,
BvHH+, PS08].

3.3.1 RDF

The Resource Description Framework (RDF), a W3C recommendation since early 2004, is – as
the name implies – a language for describing resources [KC04].

Definition 3.3.1 (RDF Resource). An RDF resource is either a named RDF resource or a blank
node.

A named RDF resource is anything that can be identified by a URI (or by an IRI, a URI with
international symbols). The URI serves primarily as a unique identifier, but best practice is to
use URLs that point to content that is relevant for or that describes the resource. Namespace
prefixes can be used to increase clarity.

Blank nodes are placeholders in an artificial “ ” namespace. They are anonymous resources
that are identified uniquely only in a local context, fulfilling a role similar to that of existential
quantification.

Example 3.3.2 (RDF Resource). <http://www.uni-passau.de>,
<http://www.dancedescriptions.net/waltz>, and
<http://www.w3.org/2001/XMLSchema#integer> are named RDF resources.
:a and :b01645 are blank nodes.

Definition 3.3.3 (RDF Literal). An RDF literal is either an untyped literal, a typed literal, or
a language literal.

Untyped literals are literal, i.e., uninterpreted, values without data type information.
Typed literals are literal values with type information. RDF makes use of the XML Schema

data types such as integer, string, or date. In addition, typed literals can have the XMLLiteral

type, which refers to well-formed XML data. Formally, a typed literal is a tuple (l, t), where l is
an untyped literal and t is a data type.

Language literals are textual values with language information. The language information
should be written in a standardised manner, for example using ISO 639 language codes such as
“en” or “de”. Formally, a typed literal is a tuple (l, a), where l is an untyped literal and a is a
language code.

Note that an RDF literal cannot have both type and language information at the same time.
In particular, language literals are not of type string.

34 CHAPTER 3. TECHNOLOGIES

Typed literals are not validated when they are parsed. Only when, for example, arithmetic
operations are performed on integer-typed literals, does the processing system check if the literal
values are actually integers. This is called “lazy validation”, in contrast to “eager validation” at
parse-time.

Example 3.3.4 (RDF Literal). "Waltz", "ID638-238-910", and "23 1
2" are untyped literals.

("Waltz", xsd:string), ("85", xsd:integer), and
("<dance>Waltz</dance>", XMLLiteral) are typed literals.

("Waltz", en) and ("Langsamer Walzer", de) are language literals.

Definition 3.3.5 (RDF Statement). An RDF statement is a triple consisting of subject, predicate
and object. The subject can be any RDF resource, the predicate must by a named resource, and
the object can be either an RDF resource or an RDF literal.

A statement (s, p, o) with a predicate p is also called a p-statement, and o is called the
p-property value of s.

Example 3.3.6 (RDF Statement). The triple
(dnc:waltz, dnc:name, ("Waltz", en)) is an RDF statement, with dnc a prefix for the namespace
<http://www.dancedescriptions.net/>.

Definition 3.3.7 (RDF Graph). An RDF graph is a collection of RDF statements. We call
RN the set of named resources, RB the set of blank nodes, and R = RN ∪ RB the set of RDF
resources in these statements. We call LU the set of untyped literals, LT the set of typed literals,
LL the set of language literals, and L = LU ∪LT ∪LL the set of RDF literals in these statements.

As a graph structure, an RDF graph is a tuple (N,E), where N = R∪L and E ⊆ R×RN ×
(R ∪ L). An RDF graph is an edge-annotated directed graph.

Example 3.3.8 (RDF Graph). Figure 3.1 shows an example of an RDF graph. It contains ten
named resources, one blank node (indicated by a dashed circle), one untyped literal, one typed
literal, four language literals, and a total of ten statements. Of the ten named resources, six are
used as predicates in the statements.

We will briefly discuss two serialisation methods for RDF graphs here: turtle and XML. In
turtle format, all statements are listed one by one, separated by a single dot “.”. URIs are
enclosed in <>, literals are enclosed in quotation marks, type information is appended to a
literal after “^^”, and language information is appended to a literal after “@”.

Namespace prefixes can be defined using the @prefix keyword. There are shorthands for
multiple statements with the same subject and for blank nodes.

Example 3.3.9 (Turtle). The following code shows the RDF graph from example 3.3.8 in turtle

3.3. SEMANTIC WEB TECHNOLOGIES 35

dnc:natTurn

dnc:waltz

dnc:vienneseWaltz

dnc:quickstep

"Natural Turn"@en

"Slow Waltz“@en

"Langsamer Walzer"@de

"Viennese Waltz"@en

"160"^^xsd:integer

"bpm"

dnc:value

dn
c:
be

lo
ng

s_
to

dnc:is_relevant_for

d
n
c:n

a
m

e d
n
c
:a

v
e
ra

g
e
_
s
p
e
e
d

dnc:unit

d
n

c
:b

e
lo

n
g

s
_

to

dnc:nam
e

dnc:name

dnc:name

Figure 3.1: RDF Graph

36 CHAPTER 3. TECHNOLOGIES

syntax.

@prefix dnc: <http://www.dancedescriptions.net/> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
dnc:natTurn dnc:name "Natural Turn"@en .

dnc:waltz dnc:name "Slow Waltz"@en ;

dnc:name "Langsamer Walzer"@de ;

dnc:average speed [

dnc:value "160"^^xsd:integer ;

dnc:unit "bpm"

] .

dnc:vienneseWaltz dnc:name "Viennese Waltz"@en .

dnc:natTurn dnc:belongs to dnc:waltz .

dnc:natTurn dnc:belongs to dnc:vienneseWaltz .

dnc:natTurn dnc:is relevant for dnc:quickstep .

First, two namespace prefixes are defined. Then, the ten statements are listed one after the
other. For dnc:Waltz, several statements with the same subject are written in abbreviated form.
The blank node is also used in abbreviated syntax, instead of introducing a :x resource and
writing the statements as

dnc:waltz dnc:average speed :x .

:x dnc:value "160"^^xsd:integer .

:x dnc:unit "bpm" .

The XML serialisation is more verbose than the turtle syntax, and it offers many alternatives
for specifying the same data. The XML root element is always <rdf:RDF>, in the
<http://www.w3.org/1999/02/22-rdf-syntax-ns#> namespace. RDF statements are en-
coded as <rdf:Description> elements, with an rdf:about attribute that specifies the subject
resource. There also exist several options for abbreviating the XML syntax. Additional details
can be found in [BM04a].

Example 3.3.10 (RDF XML). The following XML code is a serialisation the RDF graph from
example 3.3.8.

1 <!DOCTYPE RDF [

2 <!ENTITY dnc "http://www.dancedescriptions.org/">

3 <!ENTITY xsd "http://www.w3.org /2001/ XMLSchema#">

4]>

5 <rdf:RDF xmlns:rdf="http: //www.w3.org /1999/02/22 -rdf -syntax -ns#"

6 xmlns:dnc="http: //www.dancedescriptions.org/">

7 <rdf:Description rdf:about="&dnc;natTurn">

8 <dnc:name xml:lang="en">Natural Turn</dnc:name >

9 <dnc:belongs_to rdf:resource="&dnc;waltz"/>

10 <dnc:belongs_to >

11 <rdf:Description rdf:about="&dnc;vienneseWaltz">

12 <dnc:name xml:lang="en">Viennese Waltz </dnc:name >

13 </rdf:Description >

14 </dnc:belongs_to >

15 <dnc:is_relevant_for >

16 <rdf:Description rdf:about="&dnc;quickstep"/>

17 </dnc:is_relevant_for >

18 </rdf:Description >

19 <rdf:Description rdf:about="&dnc;waltz">

20 <dnc:name xml:lang="en">Slow Waltz </dnc:name >

21 <dnc:name xml:lang="de">Langsamer Walzer </dnc:name >

22 <dnc:average_speed rdf:parseType="Resource">

23 <dnc:value rdf:datatype="&xsd;integer">160</dnc:value >

24 <dnc:unit >bpm</dnc:unit >

3.3. SEMANTIC WEB TECHNOLOGIES 37

25 </dnc:average_speed >

26 </rdf:Description >

27 </rdf:RDF >

First, two XML entities are defined to improve the legibility of the code. In lines 7 and 19, two
<description> elements are opened that serve as the subjects for several statements. In line 11,
another <description> element is opened that serves as both the object for one statement and
as the subject for another statement. Line 22 starts a blank node.

3.3.2 RDF Schema

RDF Schema (RDFS) is also a W3C recommendation as of early 2004 [BG04]. It is a language
for specifying RDF vocabulary. It is built on top of RDF and introduces semantics based on
first-order predicate logic. It adheres to the open world assumption.

RDFS introduces a resource named rdfs:Class in the
<http://www.w3.org/2000/01/rdf-schema#> namespace for classifying resources. If an RDF
graph contains a statement (c, rdf:type, rdfs:Class), then c is considered to be a “class”. If,
in turn, the same RDF graph also contains a statement (r, rdf:type, c), then the resource r is
considered to instantiate the class c. A resource can instantiate multiple classes, and each class
represents the set of resources that instantiate it.

Similarly, rdf:Property in the
<http://www.w3.org/1999/02/22-rdf-syntax-ns#> namespace is used for the classification
of resources that are used as predicates in statements. Instantiation of rdf:Property is again
indicated with rdf:type, which is a property itself and thus instantiates rdf:Property.

RDFS supports generalisation of both classes and property types with the properties
rdfs:subClassOf and rdfs:subPropertyOf. Both properties are transitive and reflexive. The
class rdfs:Resource serves as a common super-class for all RDF classes.

Example 3.3.11 (RDFS). The following RDF graph in turtle syntax defines two classes, one a
sub-class of the other, a class instantiation, and two properties in a generalisation relationship.

dnc:StandardDance rdf:type rdfs:Class .

dnc:Dance rdf:type rdfs:Class .

dnc:StandardDance rdfs:subClassOf dnc:Dance .

dnc:waltz rdf:type dnc:StandardDance .

dnc:belongs to rdf:type rdf:Property .

dnc:is relevant for rdf:type rdf:Property .

dnc:belongs to rdfs:subPropertyOf dnc:is relevant for .

Some of the behaviour of RDFS classes is similar to classes or types in other paradigms.
For example, if an RDF resource r instantiates an RDFS class c, then it also instantiates all
super-classes of c. In an enhanced entity-relationship (EER) model, if an entity e belongs to an
entity type t, then there is an associated entity e′ in the super-type of t (provided that t has a
super-type). In the unified modelling language (UML), if an object o instantiates a class c, then
o can be used in any place where an instance of a super-class of c is required.

However, in UML and EER, attributes are specified locally for a class or entity type. In
RDFS, properties are specified globally. Also, in UML, class attributes cannot be optional: if a
class defines an attribute, then all instantiating objects have this attribute. On the other hand,
in RDFS, properties cannot be defined as mandatory for instances of a class.

38 CHAPTER 3. TECHNOLOGIES

RDFS allows the specification of restrictions on the domain and range of properties. Using
rdfs:domain and rdfs:range, the classification of subjects and objects in statements with a
specific property can be restricted.

For example, the statement (rdf:type, rdfs:range, rdfs:Class) specifies that all objects
in rdf:type-statements are instances of rdfs:Class. This is consistent with the open world
assumption: if a resource is used as the object in an rdf:type-statement, then it is assumed (or
actually inferred) to be a class. Under the closed world assumption, an RDFS processor would
have to check if the object is explicitly known to be a class, and throw an error if it is not.

It is possible to place multiple restrictions on a property. The semantics of multiple restriction
is the intersection of their class requirements. So if the range of a property p is restricted to
two classes c1 and c2, then only resources that instantiate both c1 and c2 can be the object of
p-statements.

RDFS introduces two types of aggregations: rdfs:Container and
rdfs:Collection. There are three types of containers, namely rdf:Bag, which represents an
unordered list, rdf:Seq, which represents an ordered list, and rdf:Alt, which represents a list
of alternatives. Membership in any container is defined using the rdfs:member property and its
sub-properties rdf: 1, rdf: 2,

There is currently only one collection type, rdf:List. Lists are defined in a manner remin-
iscent of functional programming languages. The empty list is represented by the special list
instance rdf:nil. A non-empty list is defined as a resource (usually a blank node) with a head
and a tail. The head, specified using the rdf:first property, points to a resource, and the tail,
specified using the rdf:rest property, points to another list. Other than containers, collections
are regarded as closed, i.e., they contain only the elements that are specified and no more. This
is in slight contrast to the open world assumption.

RDFS provides some limited support for reification. Reification is the re-specification of an
expression in a language l using the language l itself. In RDFS, reification allows treating a
statement as a resource, allowing statements about other statements.

However, the reification semantics in RDFS are very weak, because there is no logical rela-
tionship between a statement and its reified form, and neither does a regular statement entail
its reified form nor vice versa.

Example 3.3.12 (Reification). The following turtle code specifies an RDF statement about the
waltz that is then reified. A note is added to the reified statement.

dnc:waltz dnc:name "Slow Waltz"@en .

:s rdf:type rdf:Statement .

:s rdf:subject dnc:waltz .

:s rdf:predicate dnc:name .

:s rdf:object "Slow Waltz"@en .

:s dnc:note "Often simply called ‘Waltz’" .

Some RDF graphs represent formal ontologies as defined in section 3.2, provided that they
do not contain classes that instantiate other classes, or other things that are not supported
by the description logics semantics. Vice versa, some formal ontologies can be represented as
RDF graphs, provided that they do not contain transitivity axioms or other things that are not
supported by the RDF semantics.

Persistent Storage

Apart from the file-based serialisations for RDF data described above, there exist several schemas
for storing RDF data in relational database systems. A schema that is both simple and very

3.3. SEMANTIC WEB TECHNOLOGIES 39

triples

subject predicate object

dnc:natTurn rdf:type dnc:Figure
dnc:natTurn dnc:belongs to dnc:waltz
dnc:natTurn dnc:belongs to dnc:vienneseWaltz
dnc:natTurn dnc:name ”Natural Turn”@en
dnc:waltz rdf:type dnc:Dance
dnc:waltz dnc:name ”Slow Waltz”@en
dnc:vienneseWaltz rdf:type dnc:Dance
dnc:vienneseWaltz dnc:name ”Viennese Waltz”@en
dnc:Figure rdf:type rdfs:Class
dnc:Dance rdf:type rdfs:Class

Table 3.2: Example: triple table

properties

subject rdf:type dnc:belongs to dnc:name

dnc:natTurn dnc:Figure dnc:waltz ”Natural Turn”@en
dnc:natTurn dnc:Figure dnc:vienneseWaltz ”Natural Turn”@en
dnc:waltz dnc:Dance NULL ”Slow Waltz”@en
dnc:vienneseWaltz dnc:Dance NULL ”Viennese Waltz”@en
dnc:Figure rdfs:Class NULL NULL
dnc:Dance rdfs:Class NULL NULL

Table 3.3: Example: property table

common is based on a triple table with three attributes subject, predicate and object to store
statements, as shown in table 3.2. Resource URIs are often put into a separate table and referred
to by an identifier. Variations on triple tables differentiate between resource-valued objects and
literal-valued objects [WSKR03], or allow for more than one RDF graph in a single table by
introducing a fourth attribute for a graph name.

Another common approach are property tables (as shown in table 3.3), where the table consists
of a subject attribute that represents the subjects of statements, and several attributes that
represent various common properties. Such a table holds an individual in the subject-column and
several property values (objects of statements) in its property-columns. This schema is useful if
there are a small number of very common properties and little fluctuation in the RDF Schema.
A disadvantageous selection of properties can lead to many duplicate rows (for properties with
more than one value per subject) or many NULL values (for properties with no value for some
subjects). Property tables are usually combined with a triple table to hold statements with
properties that are not represented in the property table.

A more complex schema consists of class-property tables, where a separate property table
exists for each RDFS class as shown in table 3.4. This is based on the assumption that instances
of the same class will often share more common properties than instances of different classes,
alleviating some of the disadvantages of pure property tables. Again, this approach is usually
complemented with a triple table.

Vertical partitioning is an orthogonal approach to class-property tables, as it creates separate
tables for common properties [AMMH07, AMMH09]. Each of these tables have two attributes

40 CHAPTER 3. TECHNOLOGIES

class figure

subject dnc:belongs to dnc:name

dnc:natTurn dnc:waltz ”Natural Turn”@en
dnc:natTurn dnc:vienneseWaltz ”Natural Turn”@en

class dance

subject dnc:name

dnc:waltz ”Slow Waltz”@en
dnc:vienneseWaltz ”Viennese Waltz”@en

Table 3.4: Example: class-property tables

property dnc belongs to

subject object

dnc:natTurn dnc:waltz
dnc:natTurn dnc:vienneseWaltz

property dnc name

subject object

dnc:natTurn ”Natural Turn”@en
dnc:waltz ”Slow Waltz”@en
dnc:vienneseWaltz ”Viennese Waltz”@en

property rdfs class

subject object

dnc:natTurn dnc:Figure
dnc:waltz dnc:Dance
dnc:vienneseWaltz dnc:Dance
dnc:Figure rdfs:Class
dnc:Dance rdfs:Class

Table 3.5: Example: vertical partitioning

subject and object and hold all statements with the property represented by the table. While
solving most problems of property tables and of class-property tables, the partitioning by prop-
erty does not align well with many retrieval scenarios that are often centred on the subject. This
schema can also be combined with a triple table. An example is shown in table 3.5.

There is no clear “best” solution for storing RDF data in a relational database system.
The schema that is best suited depends on the structure of the RDF data and on the usage
scenario. There are several papers claiming advantages for a specific schema in a specific case
[LM07, SGK+08, SGD+09]. Without detailed knowledge of the application domain, triple tables
are a solid catch-all solution.

3.3.3 OWL

To address some of the shortcomings of RDF in terms of semantics, the Web Ontology Language
(OWL) was developed and became a W3C recommendation early 2004 [BvHH+]. It consists of
three sub-languages: OWL Lite, OWL DL, and OWL Full, each of which is a subset of the next
one.

3.3. SEMANTIC WEB TECHNOLOGIES 41

OWL Lite is based on the description logic SHIF (D). It is a small language and is efficient
in terms of reasoning complexity. However, due to its limitations it is rarely used. OWL DL
is based on the more powerful description logic SHOIN (D). It is expressive and reasonably
efficient, and therefore the OWL sub-language that is used the most. It is also the language that
we will describe here. OWL Full contains all of RDF(S), but is undecidable and little used.

Even though RDF does not support the entire OWL semantics, all valid OWL documents are
valid RDF documents, so that the RDF syntax and serialisation can be used for OWL. Additional
OWL commands are written in the OWL namespace <http://www.w3.org/2002/07/owl#>.
An overview of OWL commands and their semantics based on description logics can be found in
table 3.6.

All OWL documents contain an OWL metadata section that describes the OWL document
itself. We will not give details about this metadata section here except to name the owl:imports
command that can be used to import other OWL documents into the current one.

While OWL is based on description logics, it uses a different terminology. Description logics
concepts are called classes in OWL, individuals are called objects, and roles are called properties.
This terminology is consistent with RDF. Different from RDF, but consistent with description
logics, is the strict separation of types: the sets of classes, objects, properties, and data values
are disjoint in OWL.

To differentiate from the less restrictive classes in RDF, OWL introduces its own class
resource owl:Class. Instantiation and generalisation are still specified with rdf:type and
rdfs:subClassOf, respectively. For class equivalence, the new owl:equivalentClass prop-
erty is introduced. Special classes that correspond the the description logics concepts > and ⊥
are defined with owl:Thing and owl:Nothing.

Classes can be defined as intersections of other classes with owl:intersectionOf, as a union
of other classes with owl:unionOf, and as the complement of another class with owl:complementOf.
Two classes can be defined as disjoint with owl:disjointWith.

Other ways to define classes are by enumeration with the set-constructor owl:oneOf, through
unqualified cardinality constraints (see example 3.3.13), and through existential and universal
quantification (see example 3.3.14).

Example 3.3.13 (OWL Cardinality Constraints). The following OWL document defines a figure
as something that has at least one step. In description logics, this can be expressed as

Figure v≥ 1has step.

dnc:Figure rdfs:subClassOf :a .

:a rdf:type owl:Restriction .

:a owl:onProperty dnc:has step .

:a owl:minCardinality "1"^^xsd:integer .

Example 3.3.14 (OWL Quantification). The following OWL document defines a figure as some-
thing that only contains steps, and a dance as something that contains at least one figure. In
description logics, this can be expressed as

Figure v ∀contains.Step, Dance v ∃contains.F igure.

42 CHAPTER 3. TECHNOLOGIES

dnc:Figure rdfs:subClassOf :b .

:b rdf:type owl:Restriction .

:b owl:onProperty dnc:contains .

:b owl:allValuesFrom dnc:Step .

dnc:Dance rdfs:subClassOf :c .

:c rdf:type owl:Restriction .

:c owl:onProperty dnc:contains .

:c owl:someValuesFrom dnc:Figure .

Similar to the new resource for classes, there are new resources for properties in OWL:
owl:ObjectProperty for properties that can have objects as values, and owl:DatatypeProperty

for properties with literal values. Property generalisation is still expressed with rdfs:subPropertyOf,
and property equivalence can now be expressed with owl:equivalentProperty.

Inverses of properties can be specified with owl:inverseOf. Transitive, symmetric, func-
tional, and injective properties can be specified as sub-properties of owl:TransitiveProperty,
owl:SymmetricProperty, owl:FunctionalProperty, and owl:InverseFunctionalProperty,
respectively. A property r is functional if ∀a, b, c : r(a, b) ∧ r(b, c) ⇒ a = b. A property r is
injective if ∀a, b, c : r(a, c) ∧ r(b, c) ⇒ a = b. Both rdfs:domain and rdfs:range can also still
be used.

Individuals (objects) can be declared as equivalent or explicitly not equivalent with owl:sameAs

and owl:differentFrom, respectively.

Late 2009, an enhanced version of OWL, OWL 2, became a W3C recommendation. OWL 2
is based on the description logic SROIQ(D). It also introduces new syntactical and modelling
conveniences.

As one of these conveniences, OWL 2 introduces the concept of punning , which relaxes the
unique name assumption by allowing a class, an object, and a property to all share the same name.
They are, however, still semantically distinct, making the usefulness of punning questionable.

In OWL 2, properties can now be specified as asymmetric, reflexive, or irreflexive by making
them sub-properties of owl:AsymmetricProperty, owl:ReflexiveProperty, or
owl:IrreflexiveProperty, respectively. A property r is asymmetric if ∀a, b : a 6= b ∧ r(a, b)⇒
¬r(b, a). A property r is reflexive if ∀a : r(a, a). A property r is irreflexive if 6 ∃a : r(a, a).

Special properties that correspond to the description logics roles >> and ⊥⊥ are
owl:topObjectProperty and owl:bottomObjectProperty for object-valued properties, and
owl:topDataProperty and owl:bottomDataProperty for literal-valued properties.

A powerful new mechanism in OWL 2 is the owl:propertyChainAxiom for property compos-
ition. This corresponds to role composition (r1 v r2 ◦ r3) in description logics.

In addition, OWL 2 now supports qualified cardinality constraints with
owl:minQualifiedCardinality, owl:maxQualifiedCardinality, and owl:qualifiedCardinality

on a class specified with owl:onClass.

OWL 2 also allows declaring that two resources are not in a specific relationship, as shown
in example 3.3.15.

Example 3.3.15 (OWL 2 Negative Property Assertion). The following OWL document states
that the natural turn does not belong to the tango. In description logics, this can be expressed as

{natTurn} u ∃belongs to.{tango} v ⊥.

3.3. SEMANTIC WEB TECHNOLOGIES 43

OWL Description logics
C1 rdfs:subClassOf C2 C1 v C2

r1 rdfs:subPropertyOf r2 r1 v r2
C1 owl:equivalentClass C2 C1 ≡ C2

r1 owl:equivalentProperty r2 r1 ≡ r2
owl:Thing >
owl:Nothing ⊥
owl:intersectionOf <C1, C2> C1 u C2

owl:unionOf <C1, C2> C1 t C2

owl:complementOf C1 ¬C1

C1 owl:disjointWith C2 C1 u C2 v ⊥
owl:oneOf <i1, i2> {i1, i2}
owl:inverseOf r1 r−1
r1 rdf:type owl:TransitiveProperty r1 ≡ r+1
r1 rdf:type owl:SymmetricProperty r1 ≡ r−1
r1 rdf:type owl:FunctionalProperty > v≤ 1r1
r1 rdf:type owl:InverseFunctionalProperty > v≤ 1r−1
r1 rdfs:domain C1 ∃r1.> v C1

r1 rdfs:range C1 > v ∀r1.C1

i1 owl:sameAs i2 {i1} ≡ {i2}
i1 owl:differentFrom i2 {i1} u {i2} v ⊥
owl:propertyChainAxiom <r1, r2> (OWL 2 only) r1 ◦ r2

Table 3.6: OWL constructs and their corresponding description logics expressions, with classes
C1 and C2, concepts C1 and C2, properties r1 and r2, roles r1 and r2, objects i1 and i2, and
individuals i1 and i2. <...> denotes a list.

:d rdf:type owl:NegativePropertyAssertion .

:d owl:sourceIndividual dnc:natTurn .

:d owl:assertionProperty dnc:belongs to .

:d owl:targetIndividual dnc:tango .

It is now also possible to define new data types by combining and restricting existing ones.
For details, we refer the reader to [HKR09, Fre11].

Table 3.6 provides an overview of important OWL constructs and their corresponding de-
scription logics counterparts.

3.3.4 SKOS

The Simple Knowledge Organization System (SKOS) is a pre-defined vocabulary for taxonomies,
implemented in OWL [SKO]. It uses the namespace
<http://www.w3.org/2004/02/skos/core#>.

SKOS defines its own notion of a concept skos:Concept, which serves as the base class for
the taxonomy. Instances of this concept can have one preferred label (skos:prefLabel) and
several alternate labels (skos:altLabel).

Concept instances can also be declared as broader (skos:broader) or narrower (skos:narrower)
than other instances. Neither skos:broader nor skos:narrower are transitive, but they are sub-

44 CHAPTER 3. TECHNOLOGIES

properties of skos:broaderTransitive and skos:narrowerTransitive, respectively, which are
transitive. Because of the sub-property relationship, the transitive closure of
skos:broaderTransitive also contains the transitive closure of skos:broader (analogue for
skos:narrower). These properties should be used to model relationships that resemble general-
isations or specialisations. Note that a statement (a, skos:broader, b) is supposed to indicate
that b is broader than a, not the other way around.

Two concept instances can also be defined as related (skos:related), which should be used
for objects that are associated with one another, but not in a hierarchical way.

Instances of the class skos:ConceptScheme should represent an aggregation of concepts, for
example all relevant concepts for a specific domain, or for a specific application. Scheme mem-
bership can be declared for any concept instance with the skos:inScheme property. A scheme
instance can have a top concept that is at the top of the hierarchy defined by skos:broader/
skos:narrower, i.e., the top concept should be the broadest concept in the scheme. This is
specified with either skos:hasTopConcept on the scheme instance, or with skos:topConceptOf

on the concept instance. There are, however, no formal semantics in place to ensure any of these
constraints, or to infer additional information.

For concept instances in different schemes, the properties skos:broadMatch and
skos:narrowMatch, which are sub-properties of skos:broader and skos:narrower, respect-
ively, can be used to define a hierarchy. In addition, the properties skos:closeMatch and
skos:exactMatch allow for the definition of a close association and an equivalence between two
concept instances, respectively.

We recognise that SKOS documents do not necessarily represent formal taxonomies as defined
in definition 3.2.25, because the hierarchical relations are not irreflexive. We will, however, treat
the relations as if they were irreflexive, allowing us to use SKOS as a modelling language for
taxonomies in this thesis. This is compatible with the intended semantics of SKOS as described
in [SKO].

Example 3.3.16 (SKOS). The SKOS document shown in table 3.7 models the hierarchical rela-
tionships between several categories of dances. It can be written as a description logics ontology
(with stronger semantics) as follows:

C = {ConceptScheme, Concept},
R = {inScheme, topConceptOf, prefLabel, altLabel, broader},
I = {Dancing,Dances,StandardDances,LatinDances,SwayDances,

RhythmDances,Dances en,Standard Dances en,Latin Dances en,
Latin-American Dances en,Lateinamerikanische Tänze de,
Schwungtänze de}, and

X = {ConceptScheme(Dancing), Concept(Dances),
Concept(StandardDances), Concept(LatinDances),
Concept(SwayDances), Concept(RhythmDances),
inScheme(Dances)(Dancing), inScheme(StandardDances)(Dancing),
inScheme(LatinDances)(Dancing), inScheme(SwayDances)(Dancing),
inScheme(RhythmDances)(Dancing),
topConceptOf(Dances)(Dancing),
prefLabel(Dances)(Dances en),
prefLabel(StandardDances)(Standard Dances en),
prefLabel(LatinDances)(Latin Dances en),
prefLabel(SwayDances)(Schwungtänze de),
altLabel(LatinDances)(Latin-American Dances en),
altLabel(LatinDances)(Lateinamerikanische Tänze de),

3.3. SEMANTIC WEB TECHNOLOGIES 45

dnc:Dancing rdf:type skos:ConceptScheme .

dnc:Dances rdf:type skos:Concept ;

skos:inScheme dnc:Dancing ;

skos:topConceptOf dnc:Dancing ;

skos:prefLabel "Dances"@en .

dnc:StandardDances rdf:type skos:Concept ;

skos:inScheme dnc:Dancing ;

skos:prefLabel "Standard Dances"@en ;

skos:broader dnc:Dances .

dnc:LatinDances rdf:type skos:Concept ;

skos:inScheme dnc:Dancing ;

skos:prefLabel "Latin Dances"@en ;

skos:altLabel "Latin-American Dances"@en ;

skos:altLabel "Lateinamerikanische Tänze"@de ;

skos:broader dnc:Dances .

dnc:SwayDances rdf:type skos:Concept ;

skos:inScheme dnc:Dancing ;

skos:prefLabel "Schwungtänze"@de ;

skos:broader dnc:StandardDances .

dnc:RhythmDances rdf:type skos:Concept ;

skos:inScheme dnc:Dancing ;

skos:broader dnc:LatinDances .

Table 3.7: Example: SKOS document.

broader(StandardDances)(Dances),
broader(LatinDances)(Dances),
broader(SwayDances)(SwayDances),
broader(RhythmDances)(LatinDances)}.

3.3.5 SPARQL

SPARQL (pronounced “sparkle”), the SPARQL Protocol And RDF Query Language, is a W3C
recommendation since early 2008 [PS08]. It supports selection, projection, joins, filtering, order-
ing, grouping, and top-k queries. SPARQL is a query language on RDF graphs, where graph
patterns that contain placeholders are specified and matched against an RDF graph. Sub-graphs
that match the pattern are found, and the placeholders are filled with the appropriate values.
All such valuations for the placeholders form the result of the query.

Definition 3.3.17 (RDF Subgraph). Let G = (N,E) be an RDF graph. Then G′ = (N ′, E′) is
an RDF subgraph of G, with N ′ ⊆ N and E′ ⊆ E restricted to N ′, i.e., E′ ⊆ {(s, p, o) | ∃s, p, o ∈
N ′ : (s, p, o) ∈ E}.

Example 3.3.18 (RDF Subgraph). Let G be the RDF graph from example 3.3.8. Then both G
itself and G′ = ({dnc:natTurn, dnc:belongs to, dnc:waltz},
{(dnc:natTurn, dnc:belongs to, dnc:waltz)}) are RDF subgraphs of G.

Definition 3.3.19 (RDF Subgraph Pattern). Let G′ = (N ′, E′) be an RDF subgraph of an RDF
graph G. Then G′P = (N ′P , E

′
P) is an RDF subgraph pattern of G, where P is a set of placeholders,

with N ′P = N ′ ∪ P and E′P ⊆ {(s, p, o) | ∃s, p, o, s′, p′, o′ ∈ N ′P : (s′, p′, o′) ∈ E′ ∧ ((s = s′) ∨ (s ∈
P)) ∧ ((p = p′) ∨ (p ∈ P)) ∧ ((o = o′) ∨ (o ∈ P))}.

46 CHAPTER 3. TECHNOLOGIES

Intuitively, G′P is a subgraph of G, where some components of the edges E′P have been replaced
with placeholders from P .

Example 3.3.20 (RDF Subgraph Pattern). Let G be the RDF graph from example 3.3.8. Let
P = {?x} be a set of placeholders. Then G′P = ({dnc:natTurn,
dnc:belongs to, dnc:waltz, ?x}, {(dnc:natTurn, dnc:belongs to, ?x)}) is an RDF subgraph
pattern of G.

Definition 3.3.21 (SPARQL Query). A SPARQL query Q = (S,W,F, f,D, k, o) consists of

S: a list of placeholders that define the query result,
W : a combination of RDF subgraph patterns that define the actual query,
F : a set of filter conditions that can be attached to (some of) the subgraph patterns,
f : a relation that attaches filter conditions to subgraph patterns,
D: a set of ordering instructions,
k: the maximum number of rows to be returned as the query result, with

k =∞ by default, and
o: the offset of rows to be returned in the query result, with o = 0 by default.

Syntactically, S is indicated by the SELECT keyword, W is indicated by the WHERE keyword
and framed by curly braces “{ }”, elements of F are indicated by the FILTER keyword within the
confines of the W braces, f -relationships are defined by syntactic proximity of filter expression
to elements of W , D is indicated by the ORDER BY keyword, k is indicated by the LIMIT keyword,
and o is indicated by the OFFSET keyword.

Namespace prefixes can be defined using the PREFIX keyword.

Example 3.3.22 (SPARQL Query). The following SPARQL query selects the first ten resources
to which dnc:natTurn belongs and that are not blank nodes, ordered by the URI of the resource.

1 PREFIX dnc: <http :// www.dancedescriptions.net/>

2 SELECT ?x

3 WHERE {

4 dnc:natTurn dnc:belongs_to ?x

5 FILTER (! isBLANK (?x))

6 }

7 ORDER BY ?x

8 LIMIT 10

9 OFFSET 0

Definition 3.3.23 (SPARQL Query Result). For a SPARQL query Q = (S,W,F, f,D, k, o), the
SPARQL query result is an n + 1-ary relation, where n is the number of placeholders in S. The
first place in the relation is taken by a number r ∈ Z that represents the “row number”, and the
final n places are taken by the valuations of the n placeholders. The row number starts at zero
and is increased by one for each new entry in the relation that becomes part of the query result.

Intuitively, a SPARQL query result can be seen as a table, where the rows are numbered by
r and where each column is labelled with one of the placeholders. Accordingly, we will show
SPARQL query results in the form of tables where convenient.

The combination of subgraph patterns and filter expressions from the query Q is matched
against an RDF graph G, resulting in a number of matching RDF subgraphs. For each of these
subgraphs, the values that match the placeholders become a new row in the query result. The
order of these rows is either determined by the ordering instructions D, or by the query processor
if D is empty.

3.3. SEMANTIC WEB TECHNOLOGIES 47

SPARQL queries ignore the open world assumption that usually underlies RDF/OWL data
in favour of the closed world assumption. The latter is a more sensible choice for querying, since
it leads to concrete, tangible and finite results.

Example 3.3.24 (SPARQL Query Result). The SPARQL query from example 3.3.22 applied
to the RDF graph from example 3.3.8 results in two matching subgraphs:
(dnc:natTurn, dnc:belongs to, dnc:waltz) and
(dnc:natTurn, dnc:belongs to, dnc:vienneseWaltz).

Therefore, the placeholder ?x matches dnc:waltz and dnc:vienneseWaltz, resulting in a
SPARQL query result with two rows:

r ?x
0 dnc:waltz

1 dnc:vienneseWaltz

In SPARQL, placeholders are usually called variables, and are syntactically indicated by either
“?” or “$”. In a SPARQL query result, variables can be unbound in some or all rows, i.e., have
no values. This can happen for variables that are part of the projection S, but that do not
occur in the subgraph patterns. It can also happen for variables that occur in optional subgraph
patterns (see below). In query results, we will represent unbound variables by a single dash “-”.

Blank nodes can be used in subgraph patterns (W), but not in S. In a subgraph pattern, a
blank node is treated just like a variable.

Blank nodes can also occur in query results, when the query matches blank nodes that occur
in the original RDF graph. It is, however, not guaranteed that the blank nodes in the query
result will have the same names as the blank nodes in the RDF graph. It is only guaranteed that
they will be used consistently, i.e., different blank nodes in the RDF graph will have different
names in the query result, and equivalent blank nodes in the RDF graph will be equivalent in
the query result.

Literals as part of subgraph patterns are matched according to their type: untyped literals can
only be successfully matched against other untyped literals, typed literals can only be successfully
matched against other typed literals with the same data type, and language literals can only be
successfully matched against other language literals with the same language.

A SPARQL query can contain more than one subgraph pattern. They can be combined in
three ways: conjunctively, where the common query result contains only rows that match the
combination of both subgraph patterns; disjunctively, where the common result contains all rows
that match either of the subgraph patterns; and optionally, where the query result contains all
rows that match the first (mandatory) subgraph pattern, but variables in these rows may hold
values from the second (optional) subgraph pattern.

Smaller subgraph patterns can be combined to larger subgraph patterns that can, in turn,
be combined to even larger ones. A combination of subgraph patterns is called a group pattern.
The smallest possible subgraph pattern, consisting of a single statement, is called a triple.

Conjunctive subgraph pattern combination is syntactically indicated by a “.” between the
patterns. Disjunctive pattern combination is indicated by the UNION keyword, and optional
patterns are indicated by the OPTIONAL keyword. Group patterns are enclosed in “{ }”.

Filter conditions from F can be attached to any subgraph pattern with the keyword FILTER,
followed by the actual condition in parentheses “()”. Filter conditions can consist of (in-)equality
checks between literals, resources and variables. They may also contain a number of pre-defined
functions, such as type-check functions, arithmetic operations, and string functions.

Example 3.3.25 (SPARQL Query (continued)). The following SPARQL query returns all re-
sources ?x that belong to something (called ?y), or that are relevant for something (also called

48 CHAPTER 3. TECHNOLOGIES

?y). For everything that ?x belongs to, if it has an average speed, the value of this speed is
returned as ?z.

1 PREFIX dnc: <http :// www.dancedescriptions.net/>

2 SELECT ?x ?y ?z

3 WHERE {

4 {

5 ?x dnc:belongs_to ?y .

6 OPTIONAL {

7 ?y dnc:average_speed _:a .

8 _:a dnc:value ?z

9 }

10 } UNION {

11 ?x dnc:is_relevant_for ?y

12 }

13 }

Applied to the RDF graph from example 3.3.8, the query yields the following result:
r ?x ?y ?z
0 dnc:natTurn dnc:waltz ”160”ˆˆxsd:integer
1 dnc:natTurn dnc:vienneseWaltz -
2 dnc:natTurn dnc:quickstep -

While SPARQL does not support “proper” negation, the desired effect can sometimes be
achieved by filtering for unbound variables. The function BOUND(), applied to a variable name,
returns true in a specific result row iff the variable is bound in this row. Negated with “!”, an
appropriate filter condition retains only those result rows where the variable is unbound.

Example 3.3.26 (SPARQL Query (continued)). The following SPARQL query returns all re-
sources that have something belong to it and that do not have an average speed.

1 PREFIX dnc: <http :// www.dancedescriptions.net/>

2 SELECT ?x

3 WHERE {

4 _:a dnc:belongs_to ?x .

5 OPTIONAL { ?x dnc:average_speed ?y }

6 FILTER (!BOUND (?y))

7 }

Applied to the RDF graph from example 3.3.8, the query yields the following result:
r ?x
0 dnc:vienneseWaltz

Similar to SQL, SPARQL offers a DISTINCT selection keyword that prevents duplicate rows
in a query result. Top-k queries can be formulated with the keywords LIMIT and OFFSET, where
the former limits the number of rows in the query result, and the latter specifies the number of
the first row to be returned.

SPARQL provides the option of returning an RDF graph as the result of a query, instead of a
regular SPARQL query result. This is achieved by specifying the structure of the resulting graph
in the form of a number of subgraph patterns. Syntactically, the keyword SELECT is replaced by
the keyword CONSTRUCT, followed by the subgraph patterns for the result graph.

Example 3.3.27 (Construct SPARQL Query). The following SPARQL query returns an RDF
graph that reverses the direction of dnc:belongs to relationships and calls them dnc:has figure

relationships.

3.3. SEMANTIC WEB TECHNOLOGIES 49

1 PREFIX dnc: <http :// www.dancedescriptions.net/>

2 CONSTRUCT {

3 ?y dnc:has_figure ?x

4 } WHERE {

5 ?x dnc:belongs_to ?y

6 }

Applied to the RDF graph from example 3.3.8, the query yields the following result:

dnc:waltz dnc:has figure dnc:natTurn .

dnc:vienneseWaltz dnc:has figure dnc:natTurn .

There are, however, several useful features that are not supported by SPARQL (yet). The
first are recursive queries, where a subgraph pattern is recursively applied to instances of the
same property. A workaround for this limitation is to declare a property as transitive and to use
an inference engine to make the transitive closure of this property explicit. This will, however,
greatly increase the size of the RDF graph and thus increase the complexity of pattern matching
in the graph. In chapter 9, we will present an alternate approach to this problem.

Other features that SPARQL currently lacks are aggregation functions and other second-
order constructs like count, minimum/maximum, or sum, as they are known from other query
languages like SQL. SPARQL also does not provide means for data manipulation, such as insert,
update, or delete operations.

Several proposed extensions to the SPARQL language exist that address some of these short-
comings [AMS07, KJ07], but none are part of the official standard specification.

While it is possible to map large parts of SPARQL onto expressions in the relational algebra
[PB09], there are several caveats that make this mapping less than straight-forward. One of
these caveats is that NULL values in the relational algebra do not have the same semantics as
unbound variables in SPARQL: in the former, NULL is never a valid join partner, while in the
latter, unbound variables are always valid join partners. Additionally, there are several SPARQL
filter conditions, such as regular expressions, that have no equivalent in the relational algebra.
Further details can be found in [Cyg05, ECTOO09].

3.3.6 RDF Frameworks

There exist several software frameworks that support RDF or even OWL.
The Jena framework [Jen, CDD+04] was originally developed by Hewlett Packard, then be-

came an independent Open Source project, and is currently an Apache project. It provides
an API and a data model for RDF data. On top of the RDF data model, there is an OWL
data model, but its implementation is still rather inefficient at the time of this writing. Jena
also provides SPARQL support and an interface for reasoning engines. It even includes several
simple reasoning engines. Jena offers persistent RDF and OWL storage, both file-based and
using relational database systems with a triple-based schema.

The Sesame framework [Ses, BKvH02] is also an Open Source project, primarily developed
by the Aduna software company. It has similar capabilities as Jena, but an early evaluation
showed the handling of persistent data to be more efficient in Jena [SF09].

The OWL API [OWL], another Open Source project, provides an efficient data model for
OWL data, as well as an interface for external reasoning engines. It does not, however, offer
support for SPARQL or for persistent storage other than in RDF files.

There exist many graph databases, but few are both mature and RDF-capable. The well-
known graph database Neo4j [Neo] for example does not support RDF, nor does it provide

50 CHAPTER 3. TECHNOLOGIES

operations that are often needed in an RDF context, such as subgraph pattern matching. Al-
legroGraph [Fra] supports RDF and can even be used in combination with Jena or Sesame,
but it is a commercial product and only a limited version is available for non-commercial use.
Bigdata [Sys] only supports reasoning for RDFS, not OWL, which for example prohibits the
use of transitive properties or complex classes. The Virtuoso Universal Server [Ope] is another
commercial product, which provides only limited OWL reasoning that excludes, among other
things, complex classes. Additional information about using graph databases for RDF can be
found in [AG05].

In this thesis, we will make use of the Jena framework, because at the time of writing it
supports the most relevant features, combined with an adequate performance.

3.4 Rule Languages

There exist several rule languages, with different expressive power and with different intended
application domains. Most rules in these languages consist of a head and a body, usually called
premise and conclusion or antecedent and consequent, where the premise contains a number of
conditions, and the conclusion holds if these conditions hold.

Datalog is a rule language that is based on a subset of the programming language Prolog
[Llo87], with semantics that are based on first order predicate logic [AHV95]. It is often used in
conjunction with databases, where either the database serves as a data source for the Datalog
rules, or where Datalog techniques are used to optimise database systems. There exist multiple
Datalog implementations, both free and commercial.

RuleML, the Rule Markup Language, is a generic rule specification language [BTW]. It can
be interpreted directly, or used as a rule interchange format.

The Semantic Web Rule Language (SWRL) is a combination of OWL DL and the Datalog
sub-language of RuleML [HPSB+04]. It combines an OWL knowledge base with rules. How-
ever, it can be used to model constructs like subsumption of role chains (also called role-value
maps, where one role chain subsumes another), which makes the combination undecidable [SS89].
Nonetheless, there exist several implementations for SWRL.

The JBoss Drools rule language is an object-oriented extension of production rules, using
forward chaining inference [Pro07, PVB09]. It is based on Java, and rules can be compiled to
Java programs by the Drools Expert rule engine. Rule premises consist of a set of conditions
that are matched against a fact base of Java objects. Rule conclusions consist of a set of Java
commands that are executed on objects matching the premise. It is possible to modify the fact
base from the conclusion of a rule. Rule matching is implemented along the lines of the RETE
algorithm [Doo95]. Conflict resolution, i.e., when multiple objects match the premise of a rule,
or when one object matches multiple rules, is done by rule priority and last-in-first-out (LIFO)
ordering [BBP07].

JBoss Drools supports rule specialisation in the following manner: Regard two rules R1 =
(P1, C1) and R2 = (P2, C2) with premises P1 and P2, and conclusions C1 and C2. If P2 is entailed
by P1, then objects that match P1 will also match P2, resulting in the application of both C1

and C2. This can be regarded as a specialisation relationship, where R2 is a specialisation of R1.

Example 3.4.1 (JBoss Drools Rule Specialisation). Let R1 be a rule that matches all Java
objects of type Csup. Let R2 be a rule that matches all Java objects of type Csub, where Csub is
a sub-class of Csup. Then R2 can be seen as a specialisation of R1.

JBoss Drools also allows access to external tools and resources from rule specifications. For
example, this makes it possible to include data from a knowledge base in the premise of a rule,
or to process textual data with external libraries in the conclusion of a rule.

3.5. MODEL CHECKING 51

3.5 Model Checking

The following section is in large parts based on [Eme90, HR04, Wei08, WJF09, SWF11].
Model checking is the process of verifying or falsifying whether or not a given specification

holds against a given model. In this section, we will briefly describe two formalisms for specific-
ations, and how they can be used for model checking.

3.5.1 CTL

CTL (Computation Tree Logic) is a discrete, branching-time temporal logic [Eme90]. This means
that it regards the concept of “time” as a tree of distinct states, starting with a root state that
represents the “present”. The truth-value of a formula in temporal logic depends on the state in
which it is evaluated.

Definition 3.5.1 (Syntax of CTL). For an atomic formula p in propositional logic and CTL
formulae φ1 and φ2, the following constructs are CTL formulae:

false (false),
true (true),
p (atomic formula),
¬φ1 (negation),
φ1 ∧ φ2 (conjunction),
φ1 ∨ φ2 (disjunction),
φ1 → φ2 (implication),
AXφ1 (next state on all paths),
EXφ1 (next state on one path),
A[φ1 U φ2] (φ1 until φ2 on all paths), and
E[φ1 U φ2] (φ1 until φ2 on one path).

Remark 3.5.2. For a CTL formula φ, we use the following abbreviations:
AFφ = A[true U φ] (future state on all paths),
EFφ = E[true U φ] (future state on one path),
AGφ = ¬EF¬φ (all states on all paths), and
EGφ = ¬AF¬φ (all states on one path).

Example 3.5.3 (Syntax of CTL). For atomic formulae DefDS, ExaDS, DefBT, and ExaBT,
the following are syntactically valid CTL formulae:

DefDS→ EFExaDS (3.1)

DefBT→ EFExaBT (3.2)

AG EF(ExaDS ∨ ExaBT) (3.3)

The propositions DefDS, ExaDS, DefBT, and ExaBT, respectively, indicate if a definition (Def)
or an example (Exa) for data structures (DS) or for binary trees (BT) exists in a particular
state.

Formula 3.1 states that if there is a definition of a data structure, then there must also be
an example of a data structure in a future state. Formula 3.2 states the same for binary trees.
Formula 3.3 states that an example for either a data structure or a binary tree must be reachable
from every state.

CTL formulae are evaluated on transition systems called CTL temporal models.

52 CHAPTER 3. TECHNOLOGIES

Definition 3.5.4 (CTL Temporal Model). Let S be a set of states, let R ⊆ S × S be a left-total
binary relation that assigns at least one successor to each state, and let L be a labelling function
that assigns a set of atomic formulae to each state.
Then M = (S,R,L) is a CTL temporal model.

Remark 3.5.5. The semantics of temporal logics requires that ∀s ∈ S : ∃s′ ∈ S : (s, s′) ∈ R,
i.e., that R is left-total. To ensure this, the temporal model may be extended with reflexive edges
in the transition relation R for states with no “natural” successor.

Example 3.5.6 (CTL Temporal Model). Let S = {s1, s2, s3, s4, s5} be a set of states, each one
representing a single chapter in a document.
Let R = {(s1, s2), (s2, s3), (s2, s4), (s4, s5), (s3, s5), (s5, s5)} be a successor relation on S that rep-
resents the links between these chapters.
Let L = {(s1, ∅), (s2, {DefDS}), (s3, {ExaDS}), (s4, {DefBT,ExaBT}), (s5, ∅)} be a labelling func-
tion that assigns the atomic formulae from example 3.5.3 to the states, representing which chapter
contains definitions and examples about which topic.

Then M = (S,R,L) is a CTL temporal model of a document. This is illustrated in fig-
ure 3.2 (a).

R

R

R

R

R

DefDS

ExaDS

DefBT

ExaBT

R

R

R

R

R

Definition
I
 =

{Data Structure}

Example
I
 =

{Data Structure}

Definition
I
 =

{Binary Tree}
Example

I
 =

{Binary Tree}

(a) CTL temporal model (b) ALCCTL temporal model

S1

S2

S3 S5

S4

S1

S2

S3 S5

S4

Figure 3.2: Temporal models

Definition 3.5.7 (CTL Path). Let M = (S,R,L) be a CTL temporal model. A CTL path π on
M is an infinite sequence of states, where each state is in an R-relation with the next state in
the sequence. Formally, π = (s0, s1, s2, . . .) with (si, si+1) ∈ R for i ∈ N.
The set of CTL paths starting in a specific state s ∈ S is denoted by πs.

Example 3.5.8 (CTL Path). Let M = (S,R,L) be the temporal model from example 3.5.6.
Then πs1 = {(s1, s2, s3, s5, s5, . . .), (s1, s2, s4, s5, s5, . . .)} is the set of CTL paths starting in s1.

Definition 3.5.9 (Semantics of CTL). Let M = (S,R,L) be a CTL temporal model, s ∈ S a
state, p an atomic formula, and φ1 and φ2 CTL formulae. Then whether M satisfies a formula
φ in s, formally M, s |= φ, is defined inductively as follows:

3.5. MODEL CHECKING 53

M, s 6|= false
M, s |= true
M, s |= p iff p ∈ L(s)
M, s |= ¬φ1 iff M, s 6|= φ1
M, s |= φ1 ∧ φ2 iff M, s |= φ1 and M, s |= φ2
M, s |= φ1 ∨ φ2 iff M, s |= φ1 or M, s |= φ2
M, s |= φ1 → φ2 iff M, s |= ¬φ1 ∨ φ2
M, s |= AXφ1 iff ∀(s, s1, . . .) ∈ πs : M, s1 |= φ1
M, s |= EXφ1 iff ∃(s, s1, . . .) ∈ πs : M, s1 |= φ1
M, s |= A[φ1 U φ2] iff ∀(s, s1, . . .) ∈ πs : ∃i ∈ N :

(M, si |= φ2 and ∀j ∈ {0, . . . , i− 1} : M, sj |= φ1)
M, s |= E[φ1 U φ2] iff ∃(s, s1, . . .) ∈ πs : ∃i ∈ N :

(M, si |= φ2 and ∀j ∈ {0, . . . , i− 1} : M, sj |= φ1)

Example 3.5.10 (Semantics of CTL). Let M = (S,R,L) be the temporal model from ex-
ample 3.5.6. Recall the formulae from example 3.5.3. Then in s2, M satisfies the first two
formulae (3.1 and 3.2), but not the third (3.3).

For formula 3.1, this can be seen easily, because

M, s2 |= DefDS→ EFExaDS⇔ M, s2 |= ¬DefDS ∨ EFExaDS

⇔ M, s2 |= ¬DefDS or M, s2 |= EFExaDS

⇔ M, s2 6|= DefDS or M, s2 |= E[true U ExaDS]

M, s2 6|= DefDS is obviously false for M . But M, s2 |= E[true U ExaDS] is true because
(s2, s3, . . .) ∈ πs2 is a path that fulfills the requirement with i = 3.

Formula 3.2 can be verified in a similar manner. M does not satisfy formula 3.3 because it
has to hold in every state (AG) but it does not hold in s5.

Specifications represented as CTL formulae can be verified against a CTL temporal model by
model checking.

Definition 3.5.11 (CTL Model Checking Problem). Let M = (S,R, I) be a CTL temporal model
such that S is finite. Let φ be a CTL formula. The CTL model checking problem is to decide for
all s ∈ S if M, s |= φ.

An alternate version of the CTL model checking problem is to restrict it to a (small) set of
starting states S0 ⊆ S and to decide for all s ∈ S0 if M, s |= φ.

There exist sound and complete algorithms for the CTL model checking problem. The com-
plexity of the problem has an upper bound of O(|φ| · (|S| + |R|)), where |φ| is the number of
sub-expressions in φ.

Example 3.5.12 (CTL Model Checking Problem). Let M = (S,R,L) be the temporal model
from example 3.5.6. Recall the formulae from example 3.5.3.

It can be shown that

I ∀s ∈ S : M, s |= DefDS→ EFExaDS

I ∀s ∈ S : M, s |= DefBT→ EFExaBT

I ∀s ∈ S : M, s 6|= AG EF(ExaDS ∨ ExaBT)

54 CHAPTER 3. TECHNOLOGIES

3.5.2 ALCCTL
The temporal description logic ALCCTL was introduced in [Wei08]. It is a combination of the
description logic ALC and the temporal logic CTL.

Definition 3.5.13 (Syntax of ALCCTL). For an atomic concept A (cf. definition 3.2.3), an
atomic role R (cf. definition 3.2.5), and ALCCTL concepts C1 and C2, the following constructs
are ALCCTL concepts:

⊥ (bottom concept),
> (top concept),
A (atomic concept),
¬C1 (complement),
C1 u C2 (intersection),
C1 t C2 (union),
∀R.C1 (universal quantification),
∃R.C1 (existential quantification),
AXC1 (next state on all paths),
EXC1 (next state on one path),
A[C1 U C2] (C1 until C2 on all paths), and
E[C1 U C2] (C1 until C2 on one path).

For ALCCTL concepts C1 and C2, and for ALCCTL formulae φ1 and φ2, the following con-
structs are ALCCTL formulae:

false (false),
true (true),
C1 v C2 (concept subsumption),
C1 ≡ C2 (concept equivalence),
¬φ1 (negation),
φ1 ∧ φ2 (conjunction),
φ1 ∨ φ2 (disjunction),
AXφ1 (next state on all paths),
EXφ1 (next state on one path),
A[φ1 U φ2] (φ1 until φ2 on all paths), and
E[φ1 U φ2] (φ1 until φ2 on one path).

Remark 3.5.14. For an ALCCTL concept C and an ALCCTL formula φ, we use the following
abbreviations:

AFC = A[> U C] (future state on all paths),
EFC = E[> U C] (future state on one path),
AGC = ¬EF¬C (all states on all paths),
EGC = ¬AF¬C (all states on one path),
AFφ = A[> U φ] (future state on all paths),
EFφ = E[> U φ] (future state on one path),
AGφ = ¬EF¬φ (all states on all paths), and
EGφ = ¬AF¬φ (all states on one path).

Example 3.5.15 (Syntax of ALCCTL). Syntactically valid ALCCTL formulae are for example

Definition v EFExample (3.4)

AG¬(EFExample v ⊥) (3.5)

where Definition and Example are atomic concepts that represent all definitions and examples
in a particular state.

3.5. MODEL CHECKING 55

Formula 3.4 states that if there is a definition, then there must also be an example with the
same topic in a future state. Formula 3.5 states that an example must be reachable from every
state.

ALCCTL formulae are evaluated on transition systems called ALCCTL temporal models.

Definition 3.5.16 (ALCCTL Temporal Model). Let S be a set of states, let R ⊆ S × S be a
left-total binary relation that assigns at least one successor to each state, and let LI be the set

of ALC interpretations (cf. definition 3.2.28). Then I is a function S → LI : I(s) = (∆I , ()
I(s)

)

that assigns a description logics interpretation (∆I , ()
I(s)

) to each state.
Then M = (S,R, I) is an ALCCTL temporal model.

Example 3.5.17 (ALCCTL Temporal Model). Let S = {s1, s2, s3, s4, s5} be a set of states, each
one representing a single chapter in a document.
Let R = {(s1, s2), (s2, s3), (s2, s4), (s4, s5), (s3, s5), (s5, s5)} be a successor relation on S that rep-
resents the links between these chapters.
Let ∆I = {Data Structure,Binary Tree} be an interpretation domain.

Let I = {(s1, (∆I , ()
I(s1))), (s2, (∆

I , ()
I(s2))), (s3, (∆

I , ()
I(s3))), (s4, (∆

I , ()
I(s4))), (s5, (∆

I , ()
I(s5)))}

be a function that assigns an ALC model to each state.
Let DefinitionI(s2) = {Data Structure}, ExampleI(s3) = {Data Structure}, DefinitionI(s4) =
{Binary Tree}, and ExampleI(s4) = {Binary Tree}.

Then M = (S,R, I) is an ALCCTL temporal model of a document. This is illustrated in
figure 3.2 (b).

Definition 3.5.18 (ALCCTL Path). An ALCCTL path on an ALCCTL temporal model is defined
analogue to a CTL path on a CTL temporal model.

Example 3.5.19 (ALCCTL Path). Let M = (S,R, I) be the temporal model from example 3.5.17.
Then πs1 = {(s1, s2, s3, s5, s5, . . .), (s1, s2, s4, s5, s5, . . .)} is the set of ALCCTL paths starting in
s1.

Definition 3.5.20 (Semantics of ALCCTL). Let M = (S,R, I) be an ALCCTL temporal model,
s ∈ S a state, A an atomic concept, and C1 and C2 ALCCTL concepts. Then the semantics
of ALCCTL concepts C with respect to M and s, formally (M, s)(C), are defined inductively as
follows:

(M, s)(⊥) = ∅
(M, s)(>) = ∆I

(M, s)(A) = AI(s)

(M, s)(¬C1) = ∆I\(M, s)(C1)
(M, s)(C1 u C2) = (M, s)(C1) ∩ (M, s)(C2)
(M, s)(C1 t C2) = (M, s)(C1) ∪ (M, s)(C2)
(M, s)(∀R.C1) = (M, s)(¬∃R.¬C1)
(M, s)(∃R.C1) = {a ∈ ∆I | ∃b ∈ ∆I : (a, b) ∈ RI(s) ∧ b ∈ (M, s)(C1)}
(M, s)(AXC1) =

⋂
s′∈{s′∈S|(s,s′)∈R}(M, s′)(C1)

(M, s)(EXC1) =
⋃
s′∈{s′∈S|(s,s′)∈R}(M, s′)(C1)

(M, s)(A[C1 U C2]) =
⋂

(s,s1,...)∈πs
{a ∈ ∆I | ∃i ∈ N : a ∈ (M, si)(C2) ∧

∀j ∈ {0, . . . , i− 1} : a ∈ (M, sj)(C1)}
(M, s)(E[C1 U C2]) =

⋃
(s,s1,...)∈πs

{a ∈ ∆I | ∃i ∈ N : a ∈ (M, si)(C2) ∧
∀j ∈ {0, . . . , i− 1} : a ∈ (M, sj)(C1)}

If the model M is clear from the context, we will simply write CI(s) instead of (M, s)(C).

56 CHAPTER 3. TECHNOLOGIES

Let M = (S,R, I) be an ALCCTL temporal model, s ∈ S a state, C1 and C2 ALCCTL
concepts, and φ1 and φ2 ALCCTL formulae. Then whether M satisfies a formula φ in s, formally
M, s |= φ, is defined inductively as follows:

M, s 6|= false
M, s |= true

M, s |= C1 v C2 iff C
I(s)
1 ⊆ CI(s)2

M, s |= C1 ≡ C2 iff C
I(s)
1 ⊆ CI(s)2

M, s |= ¬φ1 iff M, s 6|= φ1
M, s |= φ1 ∧ φ2 iff M, s |= φ1 and M, s |= φ2
M, s |= φ1 ∨ φ2 iff M, s |= φ1 or M, s |= φ2
M, s |= AXφ1 iff ∀(s, s1, . . .) ∈ πs : M, s1 |= φ1
M, s |= EXφ1 iff ∃(s, s1, . . .) ∈ πs : M, s1 |= φ1
M, s |= A[φ1 U φ2] iff ∀(s, s1, . . .) ∈ πs : ∃i ∈ N :

(M, si |= φ2 and ∀j ∈ {0, . . . , i− 1} : M, sj |= φ1)
M, s |= E[φ1 U φ2] iff ∃(s, s1, . . .) ∈ πs : ∃i ∈ N :

(M, si |= φ2 and ∀j ∈ {0, . . . , i− 1} : M, sj |= φ1)

Example 3.5.21 (Semantics of ALCCTL). Let M = (S,R, I) be the temporal model from ex-
ample 3.5.17. Recall the formulae from example 3.5.15. Then in s2, M satisfies the first formula
(3.4), but not the second (3.5).
For formula 3.4, this can be seen easily, because

M, s2 |= Definition v EFExample⇔
M, s2 |= DefinitionI(s2) ⊆ EFExampleI(s2) ⇔

M, s2 |= {Data Structure} ⊆ E[> U Example]I(s2)

This is true, because E[> U Example]I(s2) evaluates to all Example interpretations in all states
that follow s2, resulting in the set {Data Structure,Binary Tree}.

M does not satisfy formula 3.5 because it has to hold in every state (AG) but it does not hold
in s5.

Specifications represented as ALCCTL formulae can be verified against an ALCCTL temporal
model by model checking.

Definition 3.5.22 (ALCCTL Model Checking Problem). Let M = (S,R, I) be an ALCCTL
temporal model such that S and ∆I are finite. Let φ be an ALCCTL formula. The ALCCTL
model checking problem is to decide for all s ∈ S if M, s |= φ.

An alternate version of the ALCCTL model checking problem is to restrict it to a (small) set
of starting states S0 ⊆ S and to decide for all s ∈ S0 if M, s |= φ.

There exists a sound and complete algorithm for the ALCCTL model checking problem. The
complexity of the problem has an upper bound of O(|φ| ·(|S|+ |R|) · |∆I |2), where |φ| is the number
of sub-expressions in φ.

Example 3.5.23 (ALCCTL Model Checking Problem). Let M = (S,R, I) be the temporal model
from example 3.5.17. Recall the formulae from example 3.5.15.
It can be shown that

I ∀s ∈ S : M, s |= Definition v EFExample

I ∀s ∈ S : M, s 6|= AG¬(EFExample v ⊥)

Chapter 4

Modelling Digital Documents

In this chapter, we will examine and define some of the terminology relevant for this thesis
(section 4.1), including the nature of documents. We will then formalise our understanding of
documents and discuss options for modelling digital documents. In section 4.2, we first define a
formal model for documents that includes semantic information. We then transfer this model to
the domain of process descriptions.

We will attempt to give a clear notion of a document instead of relying on an implicit, vague, or
exceedingly narrow definition. Our novel definition will be independent of any specific document
type and format, and it will encompass both complex structural and semantic information.

4.1 Terminology

4.1.1 What is a Document?

In the domain of computer science, the term document is often used but rarely defined. Authors
rely on the intuitive understanding of their readers, and sometimes guide that intuition by listing
a number of technical properties that their understanding of a document requires [SFC98, Jel02,
ESS05]. Outside of the computer science domain, however, the discussion about the nature of a
document has a long tradition and is a controversial issue.

The common ground in this controversy is the symbolic nature of documents – they con-
tain words, thoughts and ideas indicated by symbols. The persistence of these symbols on the
document artefact has been used to store and to distribute information in a consistent, i.e.,
unchanged, way (cf. figure 4.1). Traditionally, a document looked alike for every reader1 – an
important property for disseminating information. However, with the advent of digital docu-
ments and especially hypertexts (cf. definition 4.1.1), this is no longer generally the case. On the
one hand, the presentation of digital documents can change with the circumstances. For example,
a web page might be rendered differently for viewers from different countries. On the other hand,
a hypertext offers the reader the choice of many different “forking paths” (a notion introduced
in [Bor48]), reading paths by which the document can be traversed (cf. definition 4.1.5). Differ-
ent readers – or even a single reader – following different paths through a document will likely
experience a very different presentation of the same hypertext [Joy87, Mou92, Esp97].

Definition 4.1.1 (Hypertext). A hypertext H = (P, p0, l) consists of

1This does not dispute that different readers can interpret the content of the document in fundamentally
different ways.

57

58 CHAPTER 4. MODELLING DIGITAL DOCUMENTS

Figure 4.1: Left: Legal document with seal impression, Babylon, 414 BCE. Right: Seal and seal
impression, Babylon, 5th/6th century BCE. Pergamon Museum, Berlin, Germany.

P a non-empty set of atomic pages,
p0 ∈ P a starting page, and
l ⊆ P × P a binary relation that models links, i.e., references from

one page to another.
From the starting page p0, every page p ∈ P\{p0} must be reachable through l, either directly

or indirectly.

Definition 4.1.1 is a formalisation of the properties and characteristics of a hypertext as it is
informally described or implied in various texts [Bus45, Nel80, Bol01].

Example 4.1.2 (Hypertext). Let
P = {“Introduction”, “Chapter 2”, “Chapter 3”, “Chapter 4”, “Conclusion”},
p0 = “Introduction”, and
l = {(“Introduction”, “Chapter 2”), (“Chapter 2”, “Chapter 3”),

(“Chapter 2”, “Chapter 4”), (“Chapter 3”, “Conclusion”),
(“Chapter 4”, “Conclusion”)}.

Then H = (P, p0, l) is a hypertext.
For reasons of clarity, each element p ∈ P only represents a page in this example, instead

of actually being one. In other words, the elements of P are symbolic representations of en-
tire “pages” or text blocks. For example, “Introduction” represents an actual introduction of a
document, including text fragments or images.

Remark 4.1.3. Note that, in keeping with the usual understanding of hypertexts in the literature,
this definition ignores a possible sub-structuring of pages. It regards each page as an atomic entity,
not as a complex text or even a hypertext in its own right.

Remark 4.1.4. Also note that this definition implies that there must be a page pi ∈ P for every
page pj ∈ P\{p0} such that (pi, pj) ∈ l, i.e., every page that is not the starting page must have
a predecessor. This excludes the possibility of a partitioning of the hypertext, where non-empty
subsets of P are completely separated from the rest of the hypertext. In particular, it excludes
the possibility of “orphaned”, i.e., unreachable, pages.

4.1. TERMINOLOGY 59

Definition 4.1.5 (Reading Path (cf. [Wei08]). A reading path r on a hypertext H = (P, p0, l) is a
non-empty, possibly infinite sequence of pages (p0, p1, p2, . . .), for which holds that (pi, pi+1) ∈ l,
for i ∈ N.

Example 4.1.6 (Reading Path). Let H be the hypertext from example 4.1.2.
Then (“Introduction”, “Chapter 2”, “Chapter 3”, “Conclusion”) is a reading path on H.

Remark 4.1.7. Using definition 4.1.5, we can put the reachability condition from definition 4.1.1
more concisely:

∀p ∈ P\{p0} : ∃r = (p0, . . . , p)

where r is a reading path.

The controversy about documents focusses on whether a document is fixed (unchanging)
or fluid (changing). The notion of fixity or fluidity describes a state of being, not a technical
property. It is not enforced through some technical mechanism, but it is an inherent aspect of a
document [Bol01]. For example, a marble inscription as in figure 4.2 is literally set in stone and
therefore fixed.

Figure 4.2: Fragment of a marble tablet with an Arabic line of text, Egypt, 10th/11th century
CE. Pergamon Museum, Berlin, Germany.

Non-digital writing usually entails putting marks onto or into some material, which gives it
a certain permanence. Based on this, Bolter and others argue that traditional documents are
entirely fixed. Digital documents, in contrast, can not only be changed easily because of their
lack of physical permanence, but their multitude of reading paths constantly change the way in
which they are perceived, making them inherently fluid. Indeed, the reader is given some of the
power – and the burden – that is traditionally reserved for the author: to determine the order
in which a document is being read. [SW88, Bol01]

Bolter further argues that the technological basis for documents directly influences the nature
of these documents: handwriting or print lead to fixed documents, which – because of their

60 CHAPTER 4. MODELLING DIGITAL DOCUMENTS

permanence – in turn promote a rigid canon of documents for each domain that are the most
relevant there and that define the standard for their domain. These definite works are created
by a small number of authors who dominate the domain, such as Augustine of Hippo or Thomas
Aquinas. The dynamic nature of digital documents, says Bolter, also leads to the abolition of
fixed canons and – by diluting the separation between reader and author – leads to curbing the
influence of dominant authors. [Bol01]

The premise that technology shapes society is rejected by the school of social construction
of technology . Its adherents suppose the opposite effect, namely that society shapes technology
[BHP87]. This directly contradicts Bolter’s thesis that the technological basis of documents
promotes a specific way of working with them. It can also be argued that the continued existence
of authors who dominate their field weakens Bolter’s arguments.

Levy challenges Bolter’s assertion that the introduction of digital documents signalises the
transition from fixed to fluid documents. Instead, he argues that all documents are both fixed and
fluid: any document can be changed, independent of its technological basis; and any document
can remain unchanged, even if it is in digital form. [Lev94]

(...) all documents, regardless of technology, are fixed and fluid – fixed at certain times
and fluid at others. Indeed, they exist in perpetual tension between these two poles – fixing
content for periods of time to serve particular human needs, and changing as necessary to
remain in synch with the changing circumstances of the world.” [Lev94]

Thus, following Levy, it is not the property of fixity or fluidity that is changed by the advent
of digital documents, but rather the rhythm of change between the two. He also objects to
Bolter’s argument on the ground that the “need for fixity is a basic human concern”, which
society will not be willing to do without. [Lev94]

However, arguably the crux of the controversy lies only partially in whether or not a document
is fixed. It can also be seen as a fundamental discrepancy in the notion of a document as seen by
Levy and Bolter, as well as their respective adherents. Levy poses that fixity or fluidity is not
invariant: a document can be in a fluid state for some time and then become fixed [LM95]. For
example, a document can be fluid during its creation and editing and become fixed after it has
been published. This clearly indicates that for Levy, the notion of a document encompasses its
entire life cycle, including the process of its creation. Bolter, on the other hand, is much more
concerned with the “finished” document, for example once it is published in some form.

Concerning published physical documents, as shown in figure 4.3, Bolter and Levy actually
agree that they are fixed. However, it is less the physical permanence of the document that
determines its fixity, but rather the constraints imposed by the position in its life cycle: a
document, once published, is usually very hard to retract. The established way to incorporate
redactions, corrections, extensions or other changes into a document is to publish a new version
or edition. This new version would constitute a new and distinct document in Bolter’s sense. It
is unclear how Levy would regard it.

On digital documents however, both authors clearly disagree. One point of contention is that
Bolter denies digital documents any kind of permanence, even temporary permanence in the
sense of non-modifiability. This stance has obviously been overtaken by technological advances
in cryptography and digital signatures, as well as digital media like compact discs that provide
protection against modification. But it has also been proven wrong by societal developments.
Many digital documents, while not technically secured against changes, are inherently fixed either
by law or by convention. For example, the digital document stating the terms and conditions
of using a specific piece of software (licence agreement) cannot be changed without prior no-

4.1. TERMINOLOGY 61

Figure 4.3: Collection of books. Pražský hrad, Prague, Czech Republic.

tice. The digital documents published by the World Wide Web Consortium (W3C) describing
various versions of web standards are widely regarded as immutable: changes to the standard
require a new version of the standard and thus a new document, leaving the previous documents
unchanged.

In part, this disagreement may also be caused by the stages of the life cycle that are not always
clearly distinct for digital documents. For instance, there is not always an explicitly “published”
version – sometimes, the draft version of a document implicitly becomes the final document
when no more changes are made. For other digital documents, especially social collaboration
documents like Wikipedia articles, there never is a finished document, only the current (draft)
version.

Another point of conflict is that Bolter and Levy regard different aspects of digital documents.
While Levy’s focus stays on the document itself, Bolter includes how a document is perceived
by its readers into his analysis.

The points of contention in this controversy show that a clearly defined notion of a document
is not only instrumental but essential for any discourse about documents, and must also be the
first step in describing document processing.

4.1.2 Our Notion of a Document

In this thesis, we will limit our focus on purely digital documents, and we exclude documents
that are only meant for machine consumption, because they follow different rules. For now, we
will also limit our discussion to fixed states of documents, i.e., to snapshots in the life cycle of
documents.

We will first regard the notion of a document on the basis of various examples, before we will
try to identify some common aspects of documents. From an analysis of these common aspects
we will develop a property-based description of a document. This description must obviously be

62 CHAPTER 4. MODELLING DIGITAL DOCUMENTS

limited as it can only cover types of documents that are currently known, i.e., it cannot take new
and emerging types of documents into account.

We will also develop a more formal notion of a document, which will be harmonised with the
property-based description.

Some common types of digital documents are simple text files, office documents (rich text
documents, spreadsheets, presentations), electronic books (e-books), and web pages. It is also
possible to regard images (bitmap and vector graphics), audio files (wave-based and note-based
audio) and video files as documents.

Text files contain lists of words, separated by whitespace. They can cover any topic, but their
lack of sophisticated features like text formatting and visual structuring usually restricts their
use to simple note keeping or as a simple exchange format.

Rich text documents provide the ability to format text, and thus to visually structure a
document. While linear in nature, they often allow the definition of cross-references within the
same text, and of references to external resources. The same is true for presentation documents
like Microsoft Powerpoint documents, yet presentations focus more on the “page” as the primary
structural element. In rich text documents, the page arrangement can easily change with changes
in text content or formatting. In presentations, the page structure remains outwardly constant,
even if the pages’ content changes. Spreadsheets focus less on text flow than on structured
data. While in other documents text directionality (e.g., left-to-right) is well-defined, this is not
necessarily the case in spreadsheets. They may, for example, contain tables that can be read
either line-by-line or column-by-column.

Office documents often contain letters, reports, records or notes in a professional (e.g., busi-
ness) or private context. It is the nature of such documents that they often only cover a small
number of related topics.

Electronic books often mimic some of the attributes of their non-digital archetype, with most
current e-books being electronic adaptations of printed books. They usually have a primarily
linear structure, sometimes broken by textual or even technical cross-references. They often
provide a page-based visualisation, but the actual instances of a “page” may depend on the
visualisation context, for example on the size of the visualisation surface. So in different contexts,
e.g., on different reading devices, the partitioning of an electronic book into pages may change
dynamically.

E-books may cover virtually any topic, ranging from fiction to non-fiction, but a single e-
book usually does not cover a wide range of topics unless these topics are closely related. A
brief survey of 100 randomly selected electronic books sold by various online retailers supports
this observation. The vast majority of non-fiction books either cover a single topic, or a small
number of related topics. Virtually all fiction books either cover a single narrative, or a small
number of narratives that are somehow connected. Notable exceptions are artificial aggregations
like collections of short stories and reference books like dictionaries or codes of law.

Web pages are similar to rich text documents in that they may contain formatted text and
multimedia elements. When regarding collections of web sites instead of single sites, they exhibit
a page-centric structure similar to presentations. However, other than in a presentation, a single
page of a multi-page web document is not constrained in terms of size. For web pages, references
(links) are usually far more important than for other document types. References to other pages
of the same document and references to other sections on the same page can result in a very
complex structure.

Like electronic books, web pages can cover any topic. Most pages, however, are dedicated
to either a single topic, or to a number of topics belonging to a single domain. The latter is
also often true for blogs, which are usually centred around a specific theme – a topic, a domain,
or even a person. The most notable exceptions here are content aggregation sites that collect

4.1. TERMINOLOGY 63

information from various other pages, and news sites. But even these sites have “actuality” as a
common theme.

Most of these document types have a single starting point, from which all parts of the docu-
ment can be reached. For web pages, it is possible to have pages that are completely separated
from the starting page. These separated pages, however, arguably form separate documents of
their own, instead of belonging to the original document. Their “physical” proximity on the
same server or under a similar URL is their only direct and obvious connection.

Images can contain technical drawings like blueprints, diagrams or maps, as well as photos,
paintings, or abstract art. Most of these image documents are focussed on a single topic or
theme, but are structured around multiple objects. Unlike text-based documents, images can
lack a sense of progression, i.e., they are sometimes not meant to be “read” in any particular
order but to be regarded as a whole. Image-based stories and sequential diagrams are notable
exceptions here.

Audio documents usually contain either recorded speech, such as political arguments, audio
books or dictations, or music, either in the form of recordings or as synthesised notes. While
speech is inherently linear, music can have a more complex structure. In sheet music, references
like “da capo” can create a complex order in which a musician is meant to follow the notes. Of
course, any musical recording is an instantiation of such an order as interpreted by musicians,
and is therefore linear again.

Videos can also cover speech (e.g., “talking head” video), but also entire stories or more
complex narrative structures (see below).

On a technical level, documents can be broken into multiple files and these files can be written
in different formats. In the case of multiple documents, each consisting of multiple files, this leads
to some interesting questions: where does one document end, and another begin? Can such a
separation be defined, and how? Must such a separation be a strict partitioning, or can there be
overlap, i.e., can two documents both contain one and the same file?

Any hard separation between sets of files can be identified based on one or more of the
following aspects:

I random chance,

I file format,

I file name,

I file content,

I file metadata, including author and time stamp data, or

I human choice, for example that of the author.

Randomness in documents is primarily in the purview of art and avant-garde literary forms
[Que61], which we will not regard here.

Since file name and format are either chosen by the author, which would fall back on the
aspect of human choice, or can otherwise be influenced by some arbitrary circumstances, they
make poor criteria for separating documents. As our understanding of documents so far requires
them to deal with a number of related topics, the file content seems like a good criterion. However,
while the content can give a good indication of how closely two or more files are related, this
is necessarily a gradual separation and is therefore in most cases still unsuitable for defining a
partitioning. File metadata can help in this regard, by partitioning the file set by author or by
creation date. However, a single author can obviously write multiple documents, and multiple
authors can create a single document.

64 CHAPTER 4. MODELLING DIGITAL DOCUMENTS

So all of these aspects can give indications about the beginning and end of documents across
multiple files, but the final decision must be left to human choice – usually that of the author,
or sometimes that of the reader. An author may also choose to include a single file in multiple
documents, without upsetting the integrity of these documents2.

Yet there are cases of documents where the author is not able or willing to define the borders
of a document. For example, the Wikipedia project consists of scores of articles on a multitude
of topics, grouped by a hierarchy of categories, written by a host of authors. In this context,
what is a document? A single article? A group of articles on closely related topics? All articles
belonging to a certain category? All articles taken together? Clearly, the examples presented
at the beginning of this section allow for all of these interpretations. So which interpretation is
correct?

The answer obviously depends on the context and on the requirements of the person using
the document, in this example Wikipedia: someone only interested in a very specific topic will
likely regard a single article as sufficient and will consider other articles to be too unrelated to
be part of the same “document”. Someone interested in a broader topic will probably regard
a group of closely related articles as her “document” entity, and someone with an even broader
interest might consider all articles on a certain domain to be a single “document”. This means
that each interpretation given above is correct in a particular context.

This conclusion can be transferred to hypertexts in general. A single page p ∈ P in a
hypertext H = (P, p0, l) can be regarded as a self-sufficient document. A partial hypertext Hr

(cf. our definition 4.1.8) can also be considered a document. And finally, an entire hypertext H
can be considered a document as well. Which of these choices is actually made is immaterial in
the context of this thesis, as long as the resulting document is a coherent whole.

Definition 4.1.8 (Partial Hypertext). A hypertext H = (P, p0, l) can be reduced to a partial
hypertext Hr = (Pr, p0r, lr), where Pr ⊆ P , p0r ∈ Pr, and lr : Pr×Pr ⊆ l is a reduction of l onto
Pr:

(pi, pj) ∈ lr iff (pi, pj) ∈ l ∧ pi, pj ∈ Pr

A partial hypertext must also be a hypertext, so the requirements from definition 4.1.1 also
apply to Hr:

∀p ∈ Pr\{p0r} : ∃r = (p0r, . . . , p)

where r is a reading path.

Description 4.1.9 (Document). To summarise our perception of a document up to this point,
we list its relevant properties.

1. A document is in digital form,

2. it can be displayed in a human-readable way, i.e., it has a symbolic representation,

3. its content covers one or more related topics,

4. its content elements are in a (possibly non-linear) order,

5. it has a distinct starting point from which all content elements can be reached, and

2This does, however, necessitate a consistent policy about document management, otherwise an update in one
document could inadvertently lead to changes in other documents.

4.1. TERMINOLOGY 65

6. its content elements can be (formatted) text, image, audio, or video (this list is non-
exhaustive).

In particular, a document can be seen as a hypertext, where the content elements are perceived
as hypertext pages.

4.1.3 Interactivity in Documents

Interactivity is generally defined as the possibility for a user to influence or control a system
[Haa02], resulting in a reciprocal action [Goe04]. This precipitates the need for a two-way
communication: in addition to a communication channel from the system to the user that carries
for example the visualisation of a document’s contents, a further channel is required for carrying
user input back to the system [Pag00].

Interaction requires some action by a user. It is, however, not necessarily the user who
initiates the interaction. The role of initiator can also be filled by the system, making the user’s
action a re-action. In a fully interactive system, every action or reaction by one side (either the
system or the user) can be followed by a new reaction from the other party.

As discussed earlier, hypertext documents can offer a reader multiple different reading paths.
This already is a simple form of interactivity, where the system provides the user with a choice
(namely, a set of options on where to continue reading), the user selects one of these options
(action), and the system responds by visualising the appropriate document part (reaction).

A more powerful way of interactive document navigation exists if the application that provides
the visualisation for the document also provides a search mechanism. The user can at any time
enter one or more search terms (action), the system provides a list of document locations relevant
for these terms (reaction), the user selects one location (reaction), and the system visualises the
selected document part (reaction).

Another form of interactive documents are forms. In their simplest occurrence, forms provide
a means for a user to enter specific information into specific fields. More complex forms – in
conjunction with an application that supports them – provide type checking (e.g., for dates or
numbers), check that required fields are filled in, and offer data-dependent follow-up input fields
(e.g., which input fields are required depends on how other fields have been filled in).

Many forms of interaction can be simplified as a precondition on a successor relationship. For
example, a successor relation with a specific search term as a precondition leads to the page with
the search results for this term, or the data in a form serves as a precondition that leads to a
certain successor page, with different data leading to a different page. This leads to a definition
of interactive hypertext that encompasses many, but not all, forms of interactive documents.

Definition 4.1.10 (Interactive Hypertext). An interactive hypertext Hi = (P, p0, C, l, i) is an
extension of a hypertext H = (P, p0, l), where C is a set of preconditions and i ⊆ l × C is a
relation that assigns to pairs of pages (pi, pj) ∈ l a precondition c ∈ C.

Preconditions can be formalised as formulae, such as step > 3, term = ‘binary tree’,
or fieldSSN 6= ‘’. Preconditions can act as filters that only allow access to some pages when
certain conditions, such as user authentication, are met.

Example 4.1.11 (Interactive Hypertext). Let H = (P, p0, l) be the hyper-
text from example 4.1.2. Let C = {(userlevel = ‘advanced’)} and i =
{(“Chapter 2”, “Chapter 4”, (userlevel = ‘advanced’))}. Then Hi = (P, p0, C, l, i) is
an interactive extension of H that only allows advanced users to navigate to chapter 4.

This extension of regular hypertext can in similar form be transferred to other document
models that will be discussed below.
Many interactive documents are not text-based, as will be discussed in the next section.

66 CHAPTER 4. MODELLING DIGITAL DOCUMENTS

4.1.4 Other Types of Documents

An important type of non-textual documents are videos (cf. section 2.1.2 for an overview of
video formats). A video in its simplest form is a sequence of images, with an optional accompa-
nying audio sequence. More complex digital video documents abandon this linear structure in
favour of a multitude of such sequences that are interconnected by hyperlinks, forming either a
tree or a graph structure [CMLE08]. Such non-linear videos are often called hypervideos. The
definition of hypertext (definition 4.1.1) can be adapted in a natural way to hypervideos, where
instead of atomic pages there are atomic video sequences [AP05]. The definition of reading paths
(definition 4.1.5) can be adapted in a similar way.

The term hypervideo leads to the more general notion of hypermedia that abstracts from the
form of the document content and that encompasses both hypertext and hypervideo [MS04]. In
addition, we extend the notion of a reading path on hypertexts to navigation paths on hypermedia
documents.

Definition 4.1.12 (Hypermedia). A hypermedia document H = (O, o0, l) consists of
O a non-empty set of atomic objects,
o0 ∈ O a starting object, and
l ⊆ O ×O a binary relation that models links, i.e., references from

one object to another.
Atomic objects can be text, image, audio or video objects.
Every hypermedia document must satisfy the condition that

∀ox ∈ O\{o0} : ∃n = (o0, . . . , ox)

where n is a navigation path.

Definition 4.1.13 (Navigation Path). A navigation path n on a hypermedia document H =
(O, o0, l) is a non-empty, possibly infinite sequence of objects (o0, o1, o2, . . .), for which holds that
(oi, oi+1) ∈ l, for i ∈ N.

Digital videos, particularly hypervideos, conform to our notion of a document as established
in description 4.1.9. The same is true for hypermedia documents, as long as they can be visualised
for humans. A single video usually covers only a small range of topics. The same is true for
most other types of hypermedia documents known today, namely for hypermedia documents
containing text, images, audio and/or video. If hypermedia consists of multiple objects, then
there is a distinct starting objects o0 and the different sequences are ordered – either linearly or
as defined by the link structure.

When regarding interactive documents, especially modern hypermedia documents that con-
tain Javascript (cf. section 2.1.2), the distinction between documents and full computer programs
quickly becomes blurred. This begs the question if and under what circumstances programs might
be considered to be documents as well. A program consists of a sequence of commands that were
written to execute a specific function [Knu73]. A program is usually not executed directly, but
first transformed (compiled) into a form that is closer to the physical or logical architecture of
the machine where the program should run. Most programs provide some form of visualisation
(for example, a graphical user interface or a command line interface) that also facilitates user
interaction.

Comparing the properties of computer programs with description 4.1.9, we can conclude that
programs conform to our notion of a document, provided that they are not primarily running
in the background, but offer a visualisation for all of their important aspects. This visualisation
can consist of text, images, audio and even video. Since programs are created for specific tasks,

4.1. TERMINOLOGY 67

they cover only a small number of aspects (“topics”). Note that this does not preclude programs
from providing a large number of functions, but rather that these functions are usually related,
like different functions in an image manipulation program or in a word processor.

A program can be seen as a set of states that each describe the current status of the program.
Transitions between states are triggered in a specific order that is either set by the author or that
is determined through interaction with a user or by some other external input. A program can
run multiple execution paths simultaneously (concurrency), but if it can provide a visualisation
of the primary tasks it can still be regarded as a document. Every program has a distinct starting
point from which all valid program states can be reached.

While interactive documents, videos and programs are not in the focus of this work, the
principles and techniques developed here can be transferred and adapted to them.

4.1.5 Layers of Abstraction on Documents

We will now define different ways of regarding a document that reflect different levels of ab-
straction. This allows us to talk about different aspects of a document more clearly by grouping
similar aspects, and by separating dissimilar aspects.

The files and formats of a document serve to define the visual representation of that document.
However, they need to be interpreted by some appropriate program, which produces (renders)
the visualisation. This visualisation is thus derived from the technical specification, but it is not
directly contained within.

From this follows directly that data for which no visualisation is defined, for example entries
in a database or a binary file with no associated rendering program, cannot be regarded as a
document according to our understanding. It is literally not (human) readable, until visualisation
instructions – even very simple ones – have been defined.

Note that if a document does not contain the definitions for all major parts of its visualisation,
then external rendering instructions must exist in some form, for example as a set of guidelines,
as a reference implementation, or as an external stylesheet for HTML or XML documents. The
possibility of defining such instructions is not sufficient. This is an important distinction between
what we regard as documents, and what we do not. Since the possibility to “read”, i.e., to view
and to interpret, a document has always been a major aspect of its nature, we believe this
distinction to be both meaningful and justified.

Yet the visual representation of the technical document is not the end of the interpretation
process. Based on different visual or content-related clues, for example the formatting of certain
paragraphs, the reader creates a further abstraction of the document in her mind that focusses
on the structure: the text is divided into coherent units, with a superstructure of sections and
chapters. Sometimes, this interpretation is trivial, when a headline explicitly states that it
marks the beginning of a new chapter, as in “Chapter 1: Introduction”. But it still is a new
level of abstraction, because it reduces visual and textual clues to an interpretation that provides
new semantics, namely an aggregation of textual units (into, e.g., chapters or sections) and a
hierarchy of such aggregations. Ideally, the reader’s interpretation mirrors that of the author,
but ultimately – as in any form of communication – the burden of interpretation lies with the
recipient.

Under certain circumstances, this interpretation can also be made by a computer program
(see section 5.1). While the computer program cannot completely dispense with the visual
interpretation, it takes its clues directly from the technical instructions that the visualisation is
based on. It does not need to analyse the rendered document representation, but it still needs
to take the rendering instructions into account.
We therefore define three different layers of abstraction for documents:

68 CHAPTER 4. MODELLING DIGITAL DOCUMENTS

I The technical layer regards the technical representation of a document. It offers a technical
perspective on the document.

I The visual layer regards how a document is visually presented to and seen by a reader.
It offers a visual perspective on the document, which is an abstraction of the technical
perspective.

I The structural layer regards the logical structure of a document. It offers a structural
perspective on the document, which is an abstraction of both the technical and the visual
perspective.

Example 4.1.14 (Document). Let an example document consist of five chapters, starting with
an introduction and ending with a conclusion. Chapter 1 links to chapter 2, which in turn links
to both chapters 3 and 4. Chapters 3 and 4 both link to chapter 5.

Chapter 2 contains a definition of data structures, chapter 3 contains an example for data
structures, and chapter 4 contains both the definition and an illustration for binary trees.

Each chapter is displayed on a different page or screen, chapter headlines are formatted in
bold and italics, paragraph headlines such as for definitions are formatted in italics, and links
are formatted as underlined.

The document is spread over three different files, the first one holding chapters 1 and 5, the
second one holding chapters 2 and 3, and the third one holding chapter 4.

Figure 4.4 shows how the document from example 4.1.14 can be seen on each of the three
layers. On the technical layer (left), the three source files are shown. The actual file format
could be HTML, LATEX, an office document format such as Microsoft Word, or an XML-based
format. Since all of these formats are both verbose and complex, the files are presented here
in an abstract file format for illustration purposes. It consists of structure indicators, rendering
instructions, text fragments written in quotes, and include instructions.

Rendering instructions indicate how some element should be interpreted on the visual layer,
i.e., they define a visualisation. For example, the first rendering instruction in figure 4.4 (top
left) indicates that the following text fragment should be displayed in both bold and italics.
In document file formats, rendering instructions can be commands like \textbf{} and \small{}
(LATEX), or and <small> (HTML). Some rendering instructions only give an abstract de-
scription of the intended visual effect, like the LATEX emphasis (\emph{}) command that produces
cursive output if the surrounding text is straight, and straight output if the surrounding text
is cursive. Thus the precise interpretation of the rendering instructions is sometimes up to the
rendering application.

Structure indicators give an indication of how some element should be interpreted on the
structural layer. For example, the first structure indicator in figure 4.4 (top left) indicates
that the following text fragment should be interpreted as a chapter, namely as chapter C1
as shown on the structural layer (right). Structure indicators in actual file formats are, for
instance, \section{} commands in LATEX, or headline (<h1>, <h2>, ...) commands in HTML.
Usually, they are a combination of rendering instructions and additional structural semantics.
For example, the LATEX \section{} command defines how a section title should be visualised,
and it defines a structural semantics that causes the section title to be included in the table
of contents. References such as \ref{} in LATEX or are also a combination of
structure indicators and rendering instructions. In the visual representation of a document,
these references are usually interpreted as either textual references or hyperlinks.

Text fragments are the verbatim content of a document. Their precise visualisation is influ-
enced by the surrounding rendering instructions.

4.1. TERMINOLOGY 69
Te

ch
n

ic
al

 L
ay

e
r

V
is

u
al

 L
ay

e
r

St
ru

ct
u

ra
l L

ay
e

r

D
o

cu
m

en
t

D
o

cu
m

en
t

D
o

cu
m

en
t

Fi
le

 1

Fi
le

 3

Fi
le

 2

C
o

n
cl

u
si

o
n

Sc
re

en
 5

C
h

a
p

te
r

4

Li
n

k

D
ef

in
it

io
n

 B
in

a
ry

 T
re

e
Ill

u
st

ra
ti

o
n

 B
in

a
ry

 T
re

e

Sc
re

en
 4

C
h

a
p

te
r

3
Ex

a
m

p
le

 D
a

ta
 S

tr
u

ct
u

re
Li

n
k

Sc
re

en
 3

Sc
re

en
 1

In
tr

o
d

u
ct

io
n

Li
n

k

C
h

a
p

te
r

2
D

ef
in

it
io

n
 D

a
ta

 S
tr

u
ct

u
re

Li
n

k

Sc
re

en
 2

Li
n

k

D
o

c

C
1

C
2

C
3

C
4

C
5

D
1

E1

D
2 I1

C
5

C
2

D
1

C
3

E1 C
4

D
2 I1C
1

C
1

C
2

D
1

C
3

E1 C
4

D
2 I1 C
5

h
as

-p
ar

t

su
cc

es
so

r

h
as

-p
ar

t

h
as

-p
ar

t

h
as

-p
ar

t

su
cc

es
so

r

su
cc

es
so

rsu
cc

es
so

r

su
cc

es
so

r

su
cc

es
so

r

Fi
le

 2
Fi

le
 3

Sc
re

en
 2

Sc
re

en
 3

Sc
re

en
 4

Sc
re

en
 5

Sc
re

en
 5

su
cc

(C
2

,C
3

)

su
cc

(C
2

,C
4

)

su
cc

(C
1

,C
2

)

su
cc

(C
3

,C
5

)

su
cc

(C
4

,C
5

)

Le
ge

n
d

: [t
ar

ge
t]

[t
ar

ge
t]

su
cc

(x
, y

)

In
d

ic
at

es
 t

h
e

ta
rg

et
 o

f
a

re
fe

re
n

ce
 o

r
in

cl
u

si
o

n
.

In
d

ic
at

es
 t

h
e

st
ru

ct
u

ra
l

in
te

rp
re

ta
ti

o
n

 o
f

an
 e

le
m

en
t.

In
d

ic
at

es
 t

h
e

st
ru

ct
u

ra
l

in
te

rp
re

ta
ti

o
n

 o
f

a
re

fe
re

n
ce

.
In

d
ic

at
es

 t
h

e
vi

su
al

in

te
rp

re
ta

ti
o

n
 o

f
an

 e
le

m
en

t.

in
te

rp
re

ta
ti

o
n

in
te

rp
re

ta
ti

o
n

<s
tr

u
ct

u
re

 in
d

ic
at

o
r>

<r
en

d
er

in
g

in
st

ru
ct

io
n

s>
"I

n
tr

o
d

u
ct

io
n

"
<s

tr
u

ct
u

re
 in

d
ic

at
o

r>
<i

n
cl

u
d

e>
<i

n
cl

u
d

e>
<s

tr
u

ct
u

re
 in

d
ic

at
o

r>
<r

en
d

er
in

g
in

st
ru

ct
io

n
s>

"C
o

n
cl

u
si

o
n

"

<s
tr

u
ct

u
re

 in
d

ic
at

o
r>

<r
en

d
er

in
g

in
st

ru
ct

io
n

s>
"C

h
ap

te
r

2
"

<s
tr

u
ct

u
re

 in
d

ic
at

o
r>

<r
en

d
er

in
g

in
st

ru
ct

io
n

s>
"D

ef
in

it
io

n
 D

at
a

St
ru

ct
u

re
"

<s
tr

u
ct

u
re

 in
d

ic
at

o
r>

<s
tr

u
ct

u
re

 in
d

ic
at

o
r>

<r
en

d
er

in
g

in
st

ru
ct

io
n

s>
"C

h
ap

te
r

3
"

<s
tr

u
ct

u
re

 in
d

ic
at

o
r>

<r
en

d
er

in
g

in
st

ru
ct

io
n

s>
"E

xa
m

p
le

 D
at

a
St

ru
ct

u
re

"
<s

tr
u

ct
u

re
 in

d
ic

at
o

r>

<s
tr

u
ct

u
re

 in
d

ic
at

o
r>

<r
en

d
er

in
g

in
st

ru
ct

io
n

s>
"C

h
ap

te
r

4
"

<s
tr

u
ct

u
re

 in
d

ic
at

o
r>

<r
en

d
er

in
g

in
st

ru
ct

io
n

s>
"D

ef
in

it
io

n
 B

in
ar

y
Tr

ee
"

<s
tr

u
ct

u
re

 in
d

ic
at

o
r>

<r
en

d
er

in
g

in
st

ru
ct

io
n

s>
"I

llu
st

ra
ti

o
n

 B
in

ar
y

Tr
ee

"
<s

tr
u

ct
u

re
 in

d
ic

at
o

r>

su
cc

(C
1

,C
2

)

su
cc

(C
2

,C
3

)
su

cc
(C

2
,C

4
)

su
cc

(C
3

,C
5

)

su
cc

(C
4

,C
5

)

in
te

rp
re

ta
ti

o
n

Figure 4.4: Document abstraction layers

70 CHAPTER 4. MODELLING DIGITAL DOCUMENTS

Include instructions indicate that another file should be processed, and all commands within
should be treated as if they occurred at the current file location. Include instructions have
no bearing on the visual or structural interpretation of a document. In LATEX, the \input{}
command is an include instruction. In HTML, includes can be accomplished by either a scripting
language such as Server Side Includes (SSI)3, or by using iframes. In most file formats, circular
includes are forbidden, while including the same file multiple times is allowed. In the illustration,
a blue arrow indicates the target of the include.

Definition 4.1.15 (Technical Layer). The technical layer is an abstract perspective on a document
that regards its technical composition:

1. the files it is contained in,

2. the formats it is written in, and

3. the commands used to specify its content and layout.

As shown in figure 4.4, the file contents (technical layer) are interpreted by some appropri-
ate mechanism as a visual representation (visual layer). Chapter and paragraph headings are
rendered as described by the structure indicators and the rendering instructions. The green
arrows point from the elements in the source file to the visual interpretation on the visual layer
(centre). Other structure indicators represent references that are interpreted as hyperlinks and
are rendered accordingly. Include instructions are resolved and the included files rendered as
well. The targets of the include instructions are indicated with blue arrows in the figure.

Definition 4.1.16 (Visual Layer). The visual layer is an abstract perspective on a document that
regards its visual representation:

what the text, images, or other media elements that are shown,
how their formatting,
where their layout and placement, and
in what order the representation of the possible reading paths.

The structural layer can be seen on the right hand side. The five chapters are shown as
part of the document (for reasons of clarity, only two of these part-of arrows are displayed), and
the paragraphs (definitions, examples, and illustrations) are shown as part of the chapters. The
order between the content elements is indicated as a successor relationship, drawn as open-headed
arrows. On the technical and on the visual layer, an indication of their structural representation
is shown in red for elements that are interpreted as structural elements. For example, the first
two instructions in File 1 are interpreted as the structural element C1, as is the “Introduction”
headline on the visual layer.
Details on how these interpretations can be defined will be discussed in section 5.1.

Definition 4.1.17 (Structural Layer). The structural layer is an abstract perspective on a docu-
ment that regards its logical structure, consisting of

atomic content objects e.g., short passages of text or images that have
no internal structure,

low-level content units i.e., aggregations of atomic content objects,
high-level content units i.e., aggregations of atomic content objects and

content units, and
successor relations between different atomic content objects and

content units.

3http://httpd.apache.org/docs/2.2/mod/mod_include.html

http://httpd.apache.org/docs/2.2/mod/mod_include.html

4.1. TERMINOLOGY 71

In section 4.2 we will define restrictions on the possible structures that will be regarded in this
thesis.

We can now combine definitions 4.1.15, 4.1.16 and 4.1.17 to define a three-layered document
perspective.

Definition 4.1.18 (Three-Layered Document Perspective). The three-layered document per-
spective is a perspective on a document that defines three abstract layers on a document: the
technical layer, the visual layer, and the structural layer.

This perspective will serve as a point of reference when modelling different aspects of digital
documents.

4.1.6 Formalised Notion of a Document

The perception gained by the discussion above allows as to further refine our notion of a docu-
ment. As can be seen on the technical layer, a document contains unstructured text and other
media objects interspersed with commands that have an impact on the interpretation (even if only
the visual interpretation) of the text. Such a type of document is usually called semi-structured .

Definition 4.1.19 (Semi-Structured Data). Semi-structured data is data that contains both un-
structured elements and elements that serve to separate, group, or hierarchically organize the
unstructured elements. The structure of semi-structured data is not defined by a fixed schema,
but rather by a flexible schema in the form of a grammar (cf. [Fre09]).

We will call the unstructured elements of a document media objects.

Definition 4.1.20 (Media Object). A media object is a continuous range of text, an image,
some other media element, or a combination of multiple elements that can be part of a digital
document. A media object is considered an atomic entity within a document.

Based on definitions 4.1.15 and 4.1.16, we will define a base document model that incorporates
aspects of the technical specification of a document and of its rendering instructions. It does
not, however, include any interpretation of these instructions; in particular, it does not include
a visualisation. It abstracts from the document’s source files – both from the file formats and
from possible inclusion commands.

Definition 4.1.21 (Base Document Model). Let
M = {m0, . . . ,mn} be a set of media objects, and T ⊆M the subset of

M that contains all text fragments of M ;
F be a set of formatting options such as bold or italic;
c be a function that assigns to each t ∈ T its text content;
s ⊆M ×M be a relation that assigns successors to media objects; and
f ⊆ T × 2F be a relation that assigns formatting options to text fragments.

Then B = (M,F, c, s, f) is a base document model.
A base document model does not have to be complete, i.e., it does not have to incorporate all

elements of the source document. Therefore, there can be various different base document models
for any document.

Remark 4.1.22. Note that, whenever a media object has more than one successor, we will
assume that the base document model holds these successor relationships in the order in which
there were defined in the original document.

72 CHAPTER 4. MODELLING DIGITAL DOCUMENTS

Remark 4.1.23. Also note that, while a technical representation of a document may contain
commands to include other files or parts of files, a base document model is an abstract view of
the entire technical representation, with all includes resolved.

The definition of a base document model does not require any specific directionality in the
document’s text, for example left-to-right or top-to-bottom, or even the restriction to a single
directionality. Without loss of generality, we will assume a left-to-right directionality throughout
this thesis unless indicated otherwise.

Example 4.1.24 (Base Document Model). Let the following XML code, split into three separate
parts, implement the document sketched in example 4.1.14. The specification language is inspired
by HTML and will not be discussed in detail.

1 <!-- index.xml -->

2 <document >

3 <chapter id="chapter1">

4 <div style="bold , italic">Introduction </div>

5

6 </chapter >

7 <include href="c2c3.xml"/>

8 <include href="c4.xml"/>

9 <chapter id="chapter5">

10 <div style="bold , italic">Conclusion </div>

11 </chapter >

12 </document >

1 <!-- c2c3.xml -->

2 <document >

3 <chapter id="chapter2">

4 <div style="bold , italic">Chapter 2</div>

5 <div style="italic">Definition Data Structure </div>

6

7

8 </chapter >

9 <chapter id="chapter3">

10 <div style="bold , italic">Chapter 3</div>

11 <div style="italic">Example Data Structure </div>

12

13 </chapter >

14 </document >

1 <!-- c4.xml -->

2 <document >

3 <chapter id="chapter4">

4 <div style="bold , italic">Chapter 4</div>

5 <div style="italic">Definition Binary Tree</div>

6 <div style="italic">Illustration Binary Tree</div>

7

8 </chapter >

9 </document >

Then B = (M,F, c, s, f) is a base document model for the XML implementation of the docu-
ment, with

4.1. TERMINOLOGY 73

M = {t1, t2, . . . , t9, l1, . . . , l5} = T,
F = {bold, italic,underlined},
c = {(t1, “Introduction”), (t2, “Chapter 2”),

(t3, “Definition Data Structure”), . . . , (l1, “Link”), . . .}
s = {(t1, l1), (l1, t2), (t2, t3), (t3, l2), (l2, t7), (l2, l3), . . .}, and
f = {(t1, {bold, italic}), (l1, {underlined}), . . .}.

This example is illustrated in figure 4.5.

t1

t2

t3

t4

t5

t6

t7

t8

t9

l1

l2

l3

l4l5

s

s

s

s

s

s

s

s

s

s

s

s

s

s

f c{bold, italic}

{bold, italic}

{bold, italic}

{bold, italic}

{underlined}

{underlined}

{underlined}

{underlined}{underlined}

{italic}

{italic}

{italic}

{italic}

f

f

f

f

f

f

f

f

f

f

f

f

f

Introduction

Chapter 2

Definition Data Structure

Chapter 4

Definition Binary Tree

Illustration Binary Tree

Chapter 3

Example Data Structure

Conclusion

Link

Link

Link

LinkLink

c

c

c

c

c

c

c

c

c

c

c

c

c

{bold, italic}

Figure 4.5: Illustration of the base document model from example 4.1.24

Remark 4.1.25. Note that example 4.1.24 contains text and formatting information for the
references (the links in figure 4.4). A base document model may include any visual interpretation
of these elements, such as underlined text for the references, whether the rendering is explicitly
specified in the source document or only implicitly as a default rendering convention.

74 CHAPTER 4. MODELLING DIGITAL DOCUMENTS

A base document model is an abstract view of a technical representation of a document. It
can be used for any document representation that is based on a graph structure. Some simple
document formats consist of a linear list of data representation commands, for example plain
text files that consist of a sequence of strings, or text files with simple formatting commands to
indicate bold or italic text.

Most document formats, however, are a bit more structured, often in the form of command-
trees. XML-based formats are an obvious example, but other formats like LATEX or Rich Text
also use trees of opening and closing commands. Even binary formats such as EDIFACT4 use
a tree-shaped hierarchy to structure their data representation commands. For these formats,
a base document model may simply consist of a sequence of nodes representing the various
command elements in document order, with their visualisation and formatting instructions and
their textual content attached. The model may also contain nodes representing the closing tags
for each command in the appropriate locations.

Cross-reference commands like hyperlinks expand the linear structure and lead to a more
complex graph structure in the base document model.

Data that describes a document or that provides additional information about a document –
metadata – can be associated with a base document model.

Definition 4.1.26 (Base Document Model with Associated Metadata). Let B = (M,F, c, s, f)
be a base document model. Then AB = (L, V, d) is the metadata associated with B, where

L is a set of labels such as ‘author’ or ‘creation date’,
V is a set of literal metadata values such as “Johann Wolfgang von

Goethe” or “1808”, and
d ⊆ (M ∪ {B})× L× V is a ternary relation that assigns labels and

literal metadata values to media objects or to the base document model
itself.

Example 4.1.27 (Base Document Model with Associated Metadata). Let B be the base docu-
ment model from example 4.1.24.
AB = (L, V, d) is a set of metadata associated with B, with

L = {author,publisher},
V = {“D. Knuth”, “Aaron M. Tenenbaum”, “University Press”}, and
d = {(B, author, “D. Knuth”), (B, publisher, “University Press”),

(t6, author, “Aaron M. Tenenbaum”)}.

Real-world examples for sources of metadata in base document models are office documents
such as Microsoft Word or PDF documents that contains author or keyword data.

In contrast to hypertext documents, the definition of a base document model does not require
a document to have a single starting point, or even to be connected. For example,

Babc = ({a, b, c} , ∅, {(a, “A”) , (b, “B”) , (c, “C”)} , ∅, ∅)

is a valid base document model with three unconnected text fragments “A”, “B” and “C”. It
is, however, hard to imagine a sensible visualisation for Babc, and there is nothing to base an
interpretation for a document structure on, so the structural layer remains empty. For the
purposes of this thesis, documents with more structural coherence are required. We therefore
define the notion of a connected base document model . To this end, we first transfer the notion
of reading paths (cf. definition 4.1.5) from hypertexts to base document models.

4While not a “document” in the sense of this theses because it lacks visualisation instructions, EDIFACT is a
standard format for electronic data in commercial environments.

4.2. MODELLING SEMANTIC DATA 75

Definition 4.1.28 (Reading Path on a Base Document Model). A reading path r on a base
document model B = (M,F, c, s, f) is a non-empty, possibly infinite sequence of media objects
(m0,m1,m2, . . .), for which holds that (mi,mi+1) ∈ s, for i ∈ N.

Definition 4.1.29 (Connected Base Document Model). A base document model B =
(M,F, c, s, f) is connected iff

∃m0 ∈M : ∀m ∈M\{m0} : ∃r = (m0, . . . ,m) (existence of a starting object)

where r is a reading path. If B is connected, then B′ = (M,F,m0, c, s, f), where m0 ∈ M is a
starting object, is the connected base document model for B.

Example 4.1.30 (Connected Base Document Model). Let B = (M,F, c, s, f) be the base docu-
ment model from examples 4.1.24 and 4.1.27.
B is connected and B′ = (M,F, t1, c, s, f) is the connected base document model for B.

Remark 4.1.31. Note that a base document model that is connected can have multiple potential
starting objects. For example, for the base document model

Bab = ({a, b} , ∅, {(a, “A”) , (b, “B”)} , {(a, b) , (b, a)} , ∅)

both B′ab = (. . . , a, . . .) and B′′ab = (. . . , b, . . .) are valid connected base document models.

Not surprisingly, hypertexts can be seen as connected base document models. Vice versa, for
every connected base document model there exists exactly one hypertext.

Definition 4.1.32 (Hypertexts as Connected Base Document Models). Let H = (P, p0, l) be a
hypertext. Then B′H = (P, F, p0, cP , l, f) is a connected base document model for H, where cP is
a function assigning to each page p ∈ P its textual content, F is a set of formatting options, and
f is a relation assigning to pages p ∈ P a subset of F .

Definition 4.1.33 (Connected Base Document Models as Hypertexts). Let B′ = (M,F,m0, c, s, f)
be a connected base document model. Then HB′ = (M,m0, s) is the hypertext for B′.

Thus, connected base document models are an extension of hypertexts that allow for a finer
sub-structuring of atomic hypertext pages and that explicitly include visual information like text
formatting. A page-centric document model is insufficient for the purposes of this thesis, as we
will explore in more detail in section 4.2.1.

Example 4.1.34 (Hypertexts as Connected Base Document Models). Let

H = (P, p0, l)

with P = {p0, p1, p2} and l = {(p0, p1), (p0, p2), (p1, p2)} be a hypertext. Then

B′H = (P, ∅, p0, cP , l, {(p0, ∅), (p1, ∅), (p2, ∅)})

and
B′′H = (P, {plain}, p0, cP , l, {(p0, {plain}), (p1, {plain}), (p2, {plain})})

are both connected base document models for H, where cP is a function assigning to each page
p ∈ P its textual content.

Example 4.1.35 (Connected Base Document Models as Hypertexts). Let B′ = (M,F, t1, c, s, f)
be the connected base document model from example 4.1.30. Then HB′ = (M, t1, s) is the hyper-
text for B′, where every media object from B′ is represented as a single page.

76 CHAPTER 4. MODELLING DIGITAL DOCUMENTS

Digital
Document

Connected
Base Document

Model

Semantic
Document

Model

Document
Ontology

Background
Knowledge

technical
abstraction

semantic
abstraction

implementation

deduction
of new facts

introduction
of new facts

Structure

Termi-
nology

Figure 4.6: Document models

4.2 Modelling Semantic Data

Figure 4.6 shows how the document models that we will discuss in this section fit together.
The connected base document model is a technical abstraction of the original document that
ignores implementation specific details of the document format. This abstraction is usually very
straightforward. The semantic document model is a semantic abstraction of the base document
that explicitly models the structure and semantic relations. New domain-dependent background
knowledge about a document’s structure and about the terminology can be added to the semantic
model. It must be added to this model, because the base document model lacks the necessary
structure and semantic “anchors”, i.e., entities that can be source or target of semantic relations.
The semantic model can be implemented in description logics or in a compatible language, and
its semantics are compatible with description logics. From the document structure, the semantic
relations, the background knowledge, and their combination new facts about the document can
be deduced. This deduction is generally not possible on the original document or on the base
document model alone. Details on the technical and the semantic abstraction can be found in
section 5.1, methods of obtaining background knowledge are described in chapter 6, and the
semantic processing is discussed in chapter 9.

4.2.1 Modelling Documents

Having defined our notion of a document and having defined a low-level document model, the
following section will describe a more abstract model for documents conforming to this under-
standing. This model will extend the formalisations of section 4.1 to include structural and
semantic data that is not commonly contained explicitly in a document.

The structure of a document, i.e., the hierarchy of chapters, sub-chapters, paragraphs and
so forth as evident on the structural layer (cf. definition 4.1.17), generally exists only implicitly
in documents. Some document formats like LATEX allow for indications of some structuring,
for example via the \section{} command. However, use of these structural indicators is not
enforced; an author can easily disregard them in favour of simple formatting instructions like
\large{} or \textbf{}, or even redefine them to mean something entirely different. Moreover,
not all document formats provide such commands; many formats solely offer formatting com-
mands. Other formats, such as office formats, offer templates that assign names to specific

4.2. MODELLING SEMANTIC DATA 77

formatting options. Through a consistent naming scheme, some semantics for these templates
can be implied; however, as with LATEX, the semantic cannot be enforced.

Yet to be able to establish reliable semantic connections between different parts of a document,
the structural relationship of these parts is sometimes pivotal, for example when aggregating the
semantics of sub-structures at a higher structural level. Therefore knowledge about the structure
needs to be represented in the document model. To this end, we will define a structural document
model, before defining a semantic document model. How this knowledge about the structure can
be obtained will be discussed in section 5.1.

For a structural view on a document as shown in figure 4.4, two primary types of relation on
document fragments are required. The first type of relation are “horizontal” successor or refer-
ence relations that define the possible reading paths through the document. Such relationships
are usually limited to document fragments on the same hierarchical level within the document
structure. The second type are “vertical” has-part relations that define the hierarchical struc-
ture between the document fragments. A structural document model needs to have at least one
successor relation and one has-part relation.

A document model focussed on the structure of a document needs to model the different
document fragments on different hierarchical levels, for example a fragment that represents a
section, and multiple fragments that represent paragraphs within that section. These fragments
are a logical subdivision of a document, with the bottom fragments (leaves) in the has-part
hierarchy representing media objects. While the actual media objects do not need to be part of
the model, in order to keep information relevant for a semantic model, relevant terms or topics
covered by the media objects must be represented in the structural model.

With this understanding, we define a structural document model.

Definition 4.2.1 (Structural Document Model). Let

F = {f0, . . . , fn} be a set of document fragments;
f0 ∈ F be a starting fragment from F with respect to both p and s;
s be a relation s ⊆ F × F between document fragments that defines

successors for fragments;
p be a relation p ⊆ F × F between document fragments that defines

a hierarchy on fragments;
T be a set of terms; and
c be a relation c ⊆ F × T that specifies which document fragments cover

or deal with which terms.

The relation p must satisfy the following constraints, with F> = F\{f0}:

∀fn+1 ∈ F> : ∃Fn = {f1, . . . , fn} ⊆ F> : {(f0, f1), . . . , (fn, fn+1)} ⊆ p (4.1)

∀fn+1 ∈ F> : (∃Fn = {f1, . . . , fn}, Fm = {f ′1, . . . , f ′m} ⊆ F> :

{(f0, f1), . . . , (fn, fn+1)} ∪ {(f0, f ′1), . . . , (f ′m, fn+1)} ⊆ p)⇒ Fn = Fm (4.2)

Then S = (F, f0, s, p, T, c) is a structural document model.

Remark 4.2.2. Constraints 4.1 and 4.2 from definition 4.2.1 state that from the starting ob-
ject f0, every fragment f ∈ F must be reachable through p in exactly one unique sequence of
applications of p, either directly or indirectly.

78 CHAPTER 4. MODELLING DIGITAL DOCUMENTS

Proposition 4.2.3 (Constraints on p). Constraints 4.1 and 4.2 from definition 4.2.1 are equi-
valent to stating that the transitive closure p+ of p must be both right-total and left-unique:

∀fj ∈ F> : ∃fi ∈ F : (fi, fj) ∈ p+ (4.3)

∀fk ∈ F> : (∃fi, fj ∈ F : (fi, fk) ∈ p+ ∧ (fj , fk) ∈ p+)⇒ fi = fj (4.4)

where F> = F\{f0}.

Proof of Proposition 4.2.3.

1. constraints 4.1 and 4.2 ⇒ constraint 4.3 (proof by contradiction):

Assume ∃fj ∈ F> :6 ∃fi ∈ F : (fi, fj) ∈ p+.

Then ∃Fj−1 = {f1, . . . , fj−1} ⊆ F> : {(f0, f1), . . . , (fj−1, fj)} ⊆ p
(constraint 4.1).

Let fi = fj−1.

2. constraints 4.1 and 4.2 ⇒ constraint 4.4 (proof by contradiction):

Assume ∃fk ∈ F>, fi, fj ∈ F : (fi, fk) ∈ p+ ∧ (fj , fk) ∈ p+ ∧ fi 6= fj .

Then ∃Fi = {f1, . . . , fi} ⊆ F> : {(f0, f1), . . . , (fi, fk)} ⊆ p
(constraint 4.1)

and ∀Fj = {f ′1, . . . , fj} ⊆ F> : {(f0, f ′1), . . . , (fj , fk)} ⊆ p⇒ Fj = Fi
(constraint 4.2).

Let Fj = Fi. Then Fj = Fi ⇒ fj = fi.

3. constraints 4.1 and 4.2 ⇐ constraints 4.3 and 4.4 (proof by induction over n):

Hypothesis (n = 0): ∀f1 ∈ F> : ∃F0 = ∅ : {(f0, f1)} ∈ p, F0 is unique.

Step (n→ n+ 1):
Assume ∀fn+1 ∈ F> : ∃Fn = {f1, . . . , fn} ⊆ F> :
{(f0, f1), . . . , (fn, fn+1)} ∈ p
and ∀Fm = {f ′1, . . . , f ′m} ⊆ F> :
{f0, f ′1), . . . , (f ′m, fn+1)} ∈ p⇒ Fn = Fm
Show ∀fn+2 ∈ F> : ∃Fn+1 = {f1, . . . , fn+1} ⊆ F> :
{(f0, f1), . . . , (fn+1, fn+2)} ∈ p
Let Fn+1 = Fn ∪ {fn+1}, with (fn+1, fn+2) ∈ p.
Then Fn exists (assumption), fn+1 exists (constraint 4.3), and fn+1 is unique (constraint 4.4).

Ideally, the terms T used in a structural document model are grammatically normalised, i.e.,
nouns are all in nominative singular, adjectives are all in nominative singular for a fixed gender
(if the language differentiates adjective forms for different genders), and verbs are all in infinitive
form. As a technical alternative, we can abstract from the grammatical form of the terms by
reducing them to their word stems, using well-established stemming algorithms [FBY92]. For
the remainder of this thesis, we will assume that all terms are in some way normalised, either
as a grammatical base form, or through some technical means. This allows us to abstract from
different forms of a single word.

4.2. MODELLING SEMANTIC DATA 79

The successor relation s defines a graph structure, which is the common structure of hyper-
media documents. However, the constraints on the has-part relation p have to be more strict:
every fragment of a document can be regarded in its own local context, which among other
things depends on its precise position on the structural hierarchy, i.e., on its partners regarding
the has-part relations. This leads to a tree-structure for the has-part relation, which is also the
commonly established form of document hierarchies. It is, for example, generally expected that
a subsection has a unique parent section. An illustration of possible s- and p-relationships in
different models can be seen in figure 4.7.

This restriction also implies that the has-part relation must not be transitive: regard a simple
hierarchy of document fragments A, B and C, with has-part(A,B) and has-part(B,C). For a
transitive has-part , this hierarchy would entail the additional relationship has-part(A,C), which
violates constraint 4.2.

(b) s between different
hierarchical layers

(c) empty relation s (d) cycle in s (e) s continued on diff-
erent hierarchical layer

(a) s restricted to seperate
hierarchical layers

Figure 4.7: Illustration of the relations s (red) and p (blue) in various structural document
models (directionality omitted for clarity)

Example 4.2.4 (Structural Document Model). Let
F = {f0, f1, f2, f3, f4, f5, f21, f31, f41, f42};
s = {(f1, f2), (f2, f3), (f2, f4), (f3, f5), (f4, f5), (f41, f42)};
p = {(f0, fi) | for 1 ≤ i ≤ 5} ∪ {(f2, f21), (f3, f31), (f4, f41), (f4, f42)};
T = {Data Structure,Binary Tree}; and
c = {(f21,Data Structure), (f31,Data Structure)} ∪

{(f41,Binary Tree), (f42,Binary Tree)}.
Then S = (F, f0, s, p, T, c) is a structural document model. S is based on the document

illustrated in figure 4.4.

Note that the successor relation in a base document model represents a technical relationship,
such as a natural successor by file order, a link, or an include command. The successor relation
in a structural document model represents a logical relationship, such as a natural successor by
document order, a link, or a cross reference.
We will now introduce a convenient notation for structural document models.

Definition 4.2.5 (Notation for Structural Document Model). The basic syntax for structural
document models is shown as an EBNF grammar:

model = fragment | "[]" ;

fragment = id | id, "[", { sub-fragments }, { "|", sub-fragments }, "]" ;

sub-fragments = fragment, { ",", sub-fragments } ;

id represents a unique identifier for a fragment, such as 1 or ID0001. A structural document
model is thus written as the identifier of its root fragment, followed by an ordered list of sub-
fragments of the root in square brackets. Each sub-fragment is recursively followed by a list of

80 CHAPTER 4. MODELLING DIGITAL DOCUMENTS

its sub-fragments, and so forth. [] represents an empty document model. If a fragment does not
have sub-fragments, the empty list [] can be omitted. If the order of sub-fragments is not unique,
then alternate orderings can be written after a | symbol.

Example 4.2.6 (Notation for Structural Document Model). Let 1, . . . , 4 be fragment identifiers.
Then

I [],

I 1,

I 1[],

I 1[2],

I 1[2, 3], and

I 1[2[3, 4|4, 3]]

are notations of structural document models.
The structural document model from example 4.2.4 can be written as
0[1, 2[21], 3[31], 5 | 1, 2[21], 4[41, 42], 5].

In addition to the notation of the basic structure of a document model, we define five opera-
tions on structural document models: +, ∗, !, −, and ±.

Definition 4.2.7 (Operations on Structural Document Models). Let S be the set of structural
document models, with s, s1, s2 ∈ S, and let F be the set of document fragments, with f, f1, f2 ∈
F .

+ : S × S → S is a graft operator that combines two structural document models. If the root
fragment of the second model is contained (without its sub-fragments) within the first, then the
root of the second model replaces its counterpart in the first model, and all its sub-fragments are
transferred to the first model. If the root fragment already has sub-fragments in the first model,
the sub-fragments from the first model are appended after them. If the root fragment of the second
model is not contained within the first, then the operation simply returns the first model.
As a convenience, we will also allow + : S × F to be used as a shorthand: +(s, f) := +(s, f []).
∗ : S × F × S → S is an auxiliary operator that serves as another shorthand: ∗(s1, f, s2) :=

+(s1, f [s2]). It can be used in situations where + cannot be applied because the root fragment of
the second model s2 is not contained within the first model s1. A fragment f ∈ s1 is then selected
and ∗(s1, f, s2) applies the + operator the the first model and to the second model extended by f ,
namely f [s2].

! : S × F × F → S is an augment operator that adds a reference relationship between two
fragments if both fragments are part of the model. If the fragments are contained within the
model, the model augmented with the new relationship is returned, otherwise the original model
is returned.
− : S×F → S is a prune operator that removes a fragment and all its sub-fragments and their

relationships from a model if the fragment is part of the model. If the fragment is not contained
within the model, the operation returns the original model. This operator is currently not used or
required, but it becomes useful when changes to a document model are regarded, for example when
tracking multiple versions of a document, where parts can not only be added but also removed.
± : S × S × F → S is a move operator that moves a fragment and all its sub-fragments from

one point in a model to another. It is defined as ±(s1, f2[s2], f1) := +(−(s1, f2), f1[f2[s2]]), i.e.,
first the second model is removed from the first, and then added to it at a specified fragment.
For convenience, we will also allow the + and − operators to be used in infix notation.

4.2. MODELLING SEMANTIC DATA 81

Example 4.2.8 (Operations on Structural Document Models). Let 1, . . . , 4 be fragment identi-
fiers. Then

I 1 + 1[2] = 1[2],

I 1[2] + 1[3[4]] = 1[2, 3[4]],

I 1[2] + 1[3] = 1[2, 3],

I 1 + 1[2[3]] = 1[2[3]],

I 1[2, 4|3, 4]] + 4[5] = 1[2, 4[5]|3, 4[5]]],

I 1 + 1 = 1,

I ∗(1, 1, 2) = 1 + 1[2] = 1[2],

I ∗(1[2[3], 4], 2, 5) = 1[2[3], 4] + 2[5] = 1[2[3, 5], 4],

I !(1[2, 3], 2, 3) = 1[2, 3] augmented with a reference relationship between 2 and 3,

I 1− 1 = [],

I 1[2]− 2 = 1,

I 1[2]− 1 = [],

I 1[2, 3]− 2 = 1[3],

I 1[2, 3]− 3 = 1[2],

I 1[2[3]]− 2 = 1,

I 1[2, 4|3, 4]]− 4 = 1[2, 3], and

I ±(1[2[3], 4], 4[], 2) = (1[2[3], 4]− 4) + 2[4[]] = 1[2[3, 4]].

Proposition 4.2.9 (Properties of Operations on Structural Document Models). The + operator
is associative but not commutative. Any structural document model s serves as its own neutral
element w.r.t. +.
Therefore, (S,+) is a semigroup.

Proof Sketch of Proposition 4.2.9.
+ is not commutative because for example 1[2] + 2 = 1[2] 6= 2 = 2 + 1[2].

Let s1, s2, s3 ∈ S be three structural document models. To show associativity of +, namely
that (s1 + s2) + s3 = s1 + (s2 + s3), there are three relevant cases to be regarded.

First, let the root fragment of s2 not be contained in s1. Then s1 + s2 = s1, regardless of
what has been added to s2 because the root fragment cannot change. Therefore (s1 + s2) + s3 =
s1 + (s2 + s3) holds in this case.

Second, let the root fragment of s3 not be contained in s2. Then s2 + s3 = s2, regardless
of whether or not s2 has already been integrated into s1 or not. Therefore (s1 + s2) + s3 =
s1 + (s2 + s3) holds in this case as well.

Finally, let the root fragment of s2 be contained in s1 and let the root fragment of s3 be
contained in s2. W.l.o.g., let s1 = 1[. . . , 2[. . .], . . .], s2 = 2[. . . , 3[. . .], . . .], and s3 = 3[. . .]. Then
(s1 + s2) + s3 = 1[. . . , 2[. . . , 3[. . .], . . .], . . .] = s1 + (s2 + s3).

82 CHAPTER 4. MODELLING DIGITAL DOCUMENTS

In order to extend structural document models to encompass semantics, we recall defini-
tion 3.2.23 (ontology), which we will use to represent knowledge.

As a bridge between the mathematical document models and ontologies based on description
logics, we introduce the functions name() and assertions().

Definition 4.2.10 (Function name()). name() returns a unique description logics atomic role
name for a relation.

Example 4.2.11 (Function name()). For example, name(s) = s for a relation s, or
name(hasPart) = has-part for a relation hasPart.

Definition 4.2.12 (Function assertions()). assertions() returns a set of individual assertions
that are compatible with a given relation: assertions(s) := {name(s)(d, r) | ∀d ∈ D : ∀r ∈ R :
(d, r) ∈ s} for a relation s ⊆ D×R. The elements of D and R are implicitly used as description
logic individuals.

Example 4.2.13 (Function assertions()). For example, assertions(s) = {s(x1, x2)} for a rela-
tion s = {(x1, x2)}.

Definition 4.2.14 (Semantic Document Model). Let S = (F, f0, s, p, T, c) be a structural doc-
ument model. Let OS = (CS , RS , F,XS) and OT = (CT , RT , T,XT) be two ontologies. Then
D = (F, f0, s, p, T, c,OS ,OT) is a semantic document model.

OS is a structural ontology that provides the terminology for modelling the structure of the
document. It makes use of the document fragments F of S as individuals, and defines

CS a set of concepts that describe structural elements of the document,
such as Chapter or Definition;

RS a set of roles that define relations between fragments, with
name(s) ∈ RS and name(p) ∈ RS, and with a special role
hasNarrower; and

XS a set of axioms and assertions that define relationships between
concepts, between roles, and between individuals and concepts or roles,
with assertions(s) ∪ assertions(p) ⊆ XS.

The hasNarrower role is used to describe relationships between structural types, namely
if one type is on a lower structural level than another. For example, a relationship
hasNarrower(Chapter, Paragraph) indicates that chapters occur higher up in a document’s
structure than paragraphs. However, this modelling approach poses a conundrum for the se-
mantics of the ontology, because semantics based on description logics do not allow for role-
relationships between concepts.

Since the intended semantics are clear, we leave the formal semantics deliberately open at
this point. Possible solutions include punning as introduced in OWL 2, which basically lifts
the unique name assumption far enough to allow for the introduction of individuals as place
holders for existing concepts, so that a role-relationship between concepts is “simulated” as a
relationship between individuals of the same names as the concepts in question. Another possible
solution is shown in section 5.3. Using concept equivalence or concept subsumption to model these
relationships is not applicable because of the set semantics of concept subsumption: a paragraph
can be narrower than a chapter (i.e., be on a lower structural level), but instances of Paragraph
are usually not instances of Chapter.

OT is a terminological ontology that provides the terminology for modelling the content of the
document. It makes use of the terms T of S as individuals, and defines

4.2. MODELLING SEMANTIC DATA 83

CT a set of concepts that classify terms, such as Abbreviation or
Person;

RT a set of roles that define relations between terms, such as synonym

or broaderThan; and
XT a set of axioms and assertions that define relationships between

concepts, between roles, and between individuals and concepts or roles,
such as Person(Alan Turing) or synonym(happy, joyful).

Both ontologies are domain dependent, but they do not depend on the same domain: OT
depends on the domain of discourse, the content domain. OS, on the other hand, depends on
the form of the document (such as “book”, “article”, or “e-learning document”), the presentation
domain. For example, a book has a different structure and uses different structural elements than
an e-learning document.

Example 4.2.15 (Semantic Document Model). Let S be the structural document model from
example 4.2.4. Let OS = (CS , RS , F,XS) be an ontology with

CS = {Document, Chapter, Paragraph, Definition, Example,
Illustration},

RS = {name(s),name(p), hasNarrower}, and
XS = {Definition v Paragraph,

Example v Paragraph,
Illustration v Example} ∪
{hasNarrower(Document, Chapter),
hasNarrower(Chapter, Paragraph)} ∪
{Document(f0), Definition(f21), Example(f31),
Definition(f41), Paragraph(f42), Illustration(f42)} ∪
{Chapter(fi) | for 1 ≤ i ≤ 5} ∪
{Paragraph(fi1) | for 1 ≤ i ≤ 5} ∪
assertions(s) ∪ assertions(p).

Let OT = (CT , RT , T,XT) be an ontology with
CT = {Term},
RT = {broaderThan}, and
XT = {Term(Data Structure), Term(Binary Tree),

broaderThan(Data Structure,Binary Tree)}.
Then D = (F, f0, s, p, T, c,OS ,OT) is a semantic document model.

The structure of D is illustrated in figure 4.8. The structural classification is shown in blue,
and the terminology is shown in green.

We will now extend the notation for structural document models to semantic document models.

Definition 4.2.16 (Notation for Semantic Document Model). The basic syntax for semantic
document models is shown as an EBNF grammar:

model = fragment | "[]" ;

fragment = id |

id, "{", { annotations }, "}" |

id, "[", { sub-fragments }, { "|", sub-fragments }, "]" |

id, "{", { annotations }, "}",

"[", { sub-fragments }, { "|", sub-fragments }, "]" ;

sub-fragments = fragment, { ",", sub-fragments } ;

annotations = name, ":", "’", value, "’", { annotations } ;

84 CHAPTER 4. MODELLING DIGITAL DOCUMENTS

Chapter

ParagraphParagraph

Definition

Example

Illustration

Definition

Document

f0 f1

f2

f3

f4

f5

f41

f42

f21

f31

p s

s

s

s

s

s

p

p

p

p

p

D
at

a
St

ru
ct

u
re

B
in

ary Tree

Figure 4.8: Partial illustration of a semantic document model

Fragments may now also contain annotations, a list of name-value pairs enclosed in “{}”.
Role assertions can be annotated by using the role name as the name, and the role value as
the value. Concept assertions can be annotated by using the string “type” as the name and the
concept name as the value.

Example 4.2.17 (Notation for Semantic Document Model). Let 1, 2, 3 be fragment identifiers.
Then

I 1{type : ‘Document’}, and

I 1{type : ‘Document’}[2{type : ‘Chapter’, title : ‘Trees’}, 3].

are notations of semantic document models.

The operations defined on structural document models can be transferred directly to semantic
document models. We will now define three additional operations for inserting, deleting, and
changing annotations.

Definition 4.2.18 (Operations on Semantic Document Models). Let F be the set of document
fragments, let N be the set of annotation names, and let V be the set of annotations values.

+a : F × N × V → F is an operation that adds an annotation consisting of a name and
a value to a fragment. If the annotation already exists in the fragment, the fragment remains
unchanged.
−a : F ×N × V → F is an operation that removes an annotation consisting of a name and

a value from a fragment. If the annotation does not exist in the fragment, the fragment remains
unchanged.

4.2. MODELLING SEMANTIC DATA 85

#a : F ×N ×V ×V → F is an operations that changes the value of an annotation consisting
of a name and a value in a fragment by replacing the existing value with a new one. If the
annotation does not exist in the fragment, the fragment remains unchanged.

Example 4.2.19 (Operations on Semantic Document Models). Let 1 be a fragment identifier,
let type and title be annotation names, and let ‘Document’, ‘Chapter’, ‘Trees’, and ‘Binary Trees’
be annotation values. Then

I +a(1, type, ‘Document’) = 1{type : ‘Document′},

I −a(1{type : ‘Chapter’, title : ‘Trees’}, title, ‘Trees’) = 1{type : ‘Chapter’}, and

I #a(1{title : ‘Trees’}, title, ‘Trees’, ‘Binary Trees’) = 1{title : ‘Binary Trees’}.

We will now define what it means that a structural ontology is compatible with a semantic
document model.

Definition 4.2.20 (Compatibility of a Structural Ontology with a Semantic Document Model).
Let O′S = (C ′S , R

′
S , I
′
S , X

′
S) be a structural ontology. Let D = (F, f0, s, p, T, c,OS ,OT) be a

semantic document model. Then O′S is compatible with D iff

1. (∃t1, t2 ∈ C ′S : hasNarrower(t1, t2) ∈ X ′S ∨ (t1 ≡ t2) ∈ X ′S)
⇒6 ∃f1, f2 ∈ F : t1(f1), t2(f2) ∈ XS ∧ (f2, f1) ∈ p, i.e., no fragment is a sub-fragment of
another fragment with a narrower or equivalent type (the document hierarchy respects the
type hierarchy), and

2. the combined ontology O′′S = OS ∪ O′S = (CS ∪ C ′S , RS ∪ R′S , IS ∪ I ′S , XS ∪ X ′S) does not
contain a logical contradiction, i.e., O′′S 6|= ⊥.

Let D = (F, f0, s, p, T, c,OS ,OT) be a semantic document model and let O′S = (C ′S , R
′
S , I
′
S , X

′
S)

be a structure ontology that is compatible with D. Then both D′ = (F, f0, s, p, T, c,O′S ,OT) and
D′′ = (F, f0, s, p, T, c,OS ∪ O′S ,OT) are semantic document models.

Example 4.2.21 (Compatibility of a Structure Ontology with a Semantic Document Model).
The empty ontology is compatible with any semantic document model. The structure ontology
from example 4.2.15 is compatible with the semantic document model from the same example.

Let O′S be an ontology that contains the axiom Definition v ⊥. Then O′S is not compatible
with the semantic document model from example 4.2.15, because OS∪O′S contain a contradiction.
Let O′′S be an ontology with

CS = {Table, Cell},
RS = {name(s),name(p), hasNarrower}, and
XS = {hasNarrower(Table, Cell)} ∪

{Table(f21), Cell(f2)} ∪
assertions(s) ∪ assertions(p).

Then O′′S is not compatible with the semantic document model from example 4.2.15, because
f21 is a sub-fragment of f2, but its type is broader than that of f2.

It is possible that new structural knowledge arises after a semantic document model has been
created. In such a case it can be advantageous to combine the new knowledge with the existing
knowledge. This is only useful and permissible if the new knowledge, in the form of a structure
ontology, is compatible with the existing semantic document model. It can also be useful to check
the reciprocal compatibility of the structure of two different semantic document models to see

86 CHAPTER 4. MODELLING DIGITAL DOCUMENTS

if the models are structurally similar. If the structure ontology of the first model is compatible
with the second model, and if the structure ontology of the second model is compatible with the
first model, then it stands to reason that the models have a very similar structure.

We will now start to regard ways of formally representing and of implementing semantic
document models.

Lemma 4.2.22 (Semantic Document Models in Description Logics). For every semantic docu-
ment model D = (F, f0, s, p, T, c,OS ,OT) there exists a document ontology OD.

As a convenience, we extend the name() function (cf. definition 4.2.10) from relations to
objects, individuals, concepts and roles in an ontology O: for every relation, object, individual,
and atomic or symbolic concept or role name, name() returns a new atomic role name, individual,
or atomic or symbolic concept or role name, respectively, that is not contained in O. For example,
name(chapter2) = chapter2’ and name(hasPart) = hasPart’.
We also introduce the function names() that applies name() to assertions.

Definition 4.2.23 (Function names()). names() replaces every occurrence of individuals, and
of atomic or symbolic concept or role names n with name(n) in assertions and axioms.

Example 4.2.24 (Function names()). For example,
names(x) = hasPart’(chapter2’,paragraph2.1’) for an assertion
x = hasPart(chapter2,paragraph2.1).

With these preliminaries, we can now prove lemma 4.2.22.

Proof of Lemma 4.2.22. Let D = (F, f0, s, p, T, c,OS ,OT) be a semantic document model, with
OS = (CS , RS , F,XS) and OT = (CT , RT , T,XT).
Then an ontology OD = (CD, RD, ID, XD) can be constructed as follows:

CD := {name(cS) | cS ∈ CS} ∪ {name(cT) | cT ∈ CT }
RD := {name(rS) | rS ∈ RS\{hasNarrower}} ∪

{name(rT) | rT ∈ RT } ∪ {name(c)}
ID := {name(iF) | iF ∈ F} ∪ {name(iT) | iT ∈ T}
XD := {names(xS) | xS ∈ XS} ∪ {names(xT) | xT ∈ XT }

∪ assertions(c)
Intuitively, we construct an ontology from individuals, types, and relationships in D by

creating new symbols, concepts, and roles in OD.

Proposition 4.2.25 (Interpretation of OD). For every semantic document model D =
(F, f0, s, p, T, c,OS ,OT) and document ontology OD = (CD, RD, ID, XD) constructed from D,

there exists an interpretation I(D) = (∆I , ()
I
), such that I(D) is a model of OD in the sense of

definition 3.2.31: I(D) |= OD. In other words, D can be seen as a model of OD.

Proof of Proposition 4.2.25. The interpretation I(D) = (∆I , ()
I
) can be defined in a natural way

as follows:
∆I := F ∪ T

∀c′ ∈ CD : c′I :=

{f ∈ F | c′(f ′) ∈ XD ∧ name(f) = f ′}
iff c ∈ CS and name(c) = c′

{t ∈ T | c′(t′) ∈ XD ∧ name(t) = t′}
iff c ∈ CT and name(c) = c′

∅ otherwise

4.2. MODELLING SEMANTIC DATA 87

∀r′ ∈ RD : r′I :=

{(f1, f2) ∈ F × F |
r′(f ′1, f

′
2) ∈ XD ∧ name(f1) = f ′1 ∧ name(f2) = f ′2}

iff r ∈ RS and name(r) = r′

{(t1, t2) ∈ T × T |
r′(t′1, t

′
2) ∈ XD ∧ name(t1) = t′1 ∧ name(t2) = t′2}

iff r ∈ RT and name(r) = r′

{(f, t) ∈ F × T | (f, t) ∈ c}
iff name(c) = r′

∅ otherwise

∀i′ ∈ ID : i′I :=

f ∈ F iff name(f) = i′

t ∈ T iff name(t) = i′

undefined otherwise

I(D) |= OD follows directly from the semantics of I(D) and from the construction of OD in
Lemma 4.2.22.

Example 4.2.26 (Interpretation of OD). Let D = (F, f0, s, p, T, c,OS ,OT) be the semantic doc-
ument model from example 4.2.15. OD = (CD, RD, ID, XD) is a document ontology constructed
from D with

CD = {Document’, Chapter’, Paragraph’, Definition’, Example’,
Illustration’, Term’},

RD = {s’, p’, broaderThan’, c},
ID = {f ′0, f ′1, f ′2, f ′3, f ′4, f ′5, f ′21, f ′31, f ′41, f ′42} ∪

{Data Structure’,Binary Tree’}, and
XD = {Definition’ v Paragraph’,

Example’ v Paragraph’,
Illustration’ v Example’} ∪
{Document’(f ′0), Definition’(f ′21), Example’(f ′31),
Definition’(f ′41), Paragraph’(f ′42), Illustration’(f ′42)} ∪
{Chapter’(f ′i) | for 1 ≤ i ≤ 5} ∪
{Paragraph’(f ′i1) | for 1 ≤ i ≤ 5} ∪
{Term’(Data Structure’), Term’(Binary Tree’),
broaderThan(Data Structure’,Binary Tree’)} ∪
{s’(f ′1, f

′
2), s’(f ′2, f

′
3), s’(f ′2, s’f

′
4), s’(f ′3, f

′
5), s’(f ′4, f

′
5),

s’(f ′41, f
′
42)} ∪

{p’(f ′0, f
′
i) | for 1 ≤ i ≤ 5} ∪

{p’(f ′2, f
′
21), p’(f ′3, f

′
31), p’(f ′4, f

′
41), p’(f ′4, f

′
42)} ∪

{c(f ′21,Data Structure’), c(f ′31,Data Structure’),
c(f ′41,Binary Tree’), c(f ′42,Binary Tree’)}.

Then I(D) = (∆I , ()
I
) is a model of D, where

88 CHAPTER 4. MODELLING DIGITAL DOCUMENTS

∆I = {f0, f1, f2, f3, f4, f5, f21, f31, f41, f42} ∪
{Data Structure,Binary Tree};

f ′I0 = f0, f
′I
1 = f1, f

′I
2 = f2, f

′I
3 = f3, f

′I
4 = f4, f

′I
5 = f5,

f ′I21 = f21, f
′I
31 = f31, f

′I
41 = f41, f

′I
42 = f42,

(Data Structure’)I = Data Structure,
(Binary Tree’)I = Binary Tree;
(Document’)I = {f0},
(Chapter’)I = {f1, f2, f3, f4, f5},
(Paragraph’)I = {f21, f31, f41, f42},
(Definition’)I = {f21, f41},
(Example’)I = {f31},
(Illustration’)I = {f42},
(Term’)I = {Data Structure,Binary Tree}; and
(s’)I = {(f1, f2), (f2, f3), (f2, f4), (f3, f5), (f4, f5), (f41, f42)},
(p’)I = {(f0, f1), (f0, f2), (f0, f3), (f0, f4), (f0, f5),

(f2, f21), (f3, f31), (f4, f41), (f4, f42)},
cI = {(f21,Data Structure), (f31,Data Structure),

(f41,Binary Tree), (f42,Binary Tree)}.

A consequence of proposition 4.2.25 is that an ontology OD can be used as an abstract im-
plementation of a semantic document model D, with a concrete implementation in a description
logic compatible language such as OWL.
Note that the two ontologies contained in D (OS and OT) serve as part of the model of the
document ontology OD, and are thus part of an abstraction of OD.

Another direct consequence of proposition 4.2.25 is that OD provides a formal semantics
based on description logics for the semantic document model D.

In practical applications, the strict separation between model and instance can be relaxed,
so that both OS and OT can serve as their own interpretation. Assuming that the sets of
individuals, concepts and roles are pairwise disjoint between OS and OT , this allows us to use
them directly in OD without any cumbersome renaming.
Recall figure 4.6 for an overview of how the different models and ontologies fit together.

Note that the semantic abstraction from the base document model to the semantic document
model is not always possible: while a connected base document model is required to have a
starting object, this root is not necessarily unique (cf. remark 4.1.31). However, multiple roots
violate the tree structure of the semantic document model. Yet it is possible to split a base
document model with multiple (potential) starting objects into multiple models, each with only
one of the starting objects and duplicates of all other objects reachable from that root. This
modelling approach also appears to be closer to the actual semantics of a document with multiple
entry points than a combined model would be.

It is also possible that a document simply does not adhere to the structural conventions
defined in definition 4.2.1. For example, a document might contain a chapter, which contains a
paragraph that in turn contains the chapter itself (cyclic structure). Such documents cannot be
analysed with the methods developed in this thesis.

Adequacy and Relation to Other Document Models

As already seen in definition 4.1.32, hypertexts can be represented as connected base document
models. With this alone, many current document formats can be modelled on a technical level.
Documents with hypertext characteristics like HTML, e-books, Microsoft Word, DocBook, DITA,
and even PDF and LATEX, can be represented directly. For documents with no apparent reading

4.2. MODELLING SEMANTIC DATA 89

order like some kinds of diagrams or spreadsheets that can be read in any order, a starting point
has to be defined before they can be modelled. If the document has an inherent tree structure,
its model can then be transformed into a semantic document model as described in section 5.1.

Other document models also start with hypertexts. For example, [Gar87, HS94, SFC98] model
hypertexts as automata, i.e., as transition systems. This model is compatible with connected
base document models.

Other models map the hypertext structure onto Petri Nets [SF89, vdA03, OVvdA+07]. A
Petri Net N is a tuple (S, T, F) with S = {s1, . . . , sn} a set of states, T = {t1, . . . , tm} a set of
transitions, and F ⊆ (S × T) ∪ (T × S) the control flow. [SF89] also include the document’s
content, which is mapped onto S, and its visualisation. Such a Petri Net can be represented as a
base document model or as a structural document model, with two structure classes to represent
states and transitions. Verifying control flow properties on the document model is not in the
scope of this work, so the Petri Net semantics cannot be represented in either a base document
model or a structural document model. It is, however, possible to generate suitable models from
a semantic document model, as will be discussed in section 5.2.

[Jel02, NCEF02] represent documents in XML, in order to run XPath-based verification
techniques on them. [ABF04] maps XML documents onto a term algebra, with elements and
attributes as functions, and values as constants. These XML-based documents can be modelled
as base document models like any other XML format, with the XML structure as a good starting
point for more structured models.

The Text Encoding Initiative allows for document models that resemble instances of simplified
semantic document models. They provide a large number of structural classes, but no semantic
relations between them. Their goal is to represent documents, but not to process them further.
[TEI07]

In [ESS05], document models based on description logics are introduced. While they model
terminological relations, the document structure is disregarded entirely. As a semantic document
model, this would result in a model with a single document fragment and no structural ontology,
with all terms attached to the single document fragment.

[Wei08] partly addresses this problem by introducing a temporal description logic that allows
the modelling of a simple hypertext-like structure for documents. We will revisit this formalism
later to see how it can be combined with our approach for mutual benefit.

[PBB11] is mostly concerned with the visualisation aspects of documents, trying to model
them in a way that a visualisation can be derived from the model that is either very close to
the original document, or that is best suited for a specific context like an e-book reader. The
document model consists of a tree structure of renderings down to small atomic entities. While
this model could be represented as a semantic document model, with the renderings as atomic
document fragments, there is little inherent value in doing so, because this model would not
contain any semantic relations.

Other document models are based on a “bag of words” [BNJ03] or are token-based [Cow06].
Pure information retrieval models like the Standard Boolean Model [LF73] or the Vector Space
Model [SWY75] indicate the existence or frequency, respectively, of terms in documents. Such
information can be modelled as attached metadata in base document models.

An important limitation of semantic document models is that they allow for only a single
dominant structuring of a document. If a document has two possible structures, either one of
them must be chosen, or two document models must be created. Regard, as an example, a set
of musical notes as shown in figure 4.9. Here, a piece of sheet music (a) is shown that can be
structured in at least two sensible ways. It consists of eight notes in two bars (indicated by the
vertical lines). The first six notes are played in low volume (piano), while the final two notes
are played loudly (forte). These notes can either be structured by bar (b), with two bars of four

90 CHAPTER 4. MODELLING DIGITAL DOCUMENTS

notes each as is briefly illustrated in example 4.2.27. Or it can be structured by volume, with six
notes in the piano section and two notes in the forte section, as illustrated in example 4.2.28. It
is, however, not possible to integrate both structurings into a single semantic document model.

This allows us to focus on a single dominant structure and keeps the model complexity
manageable. Multiple structural hierarchies in a single model would require multiple sets Fi and
multiple relations si and pi. The same effect can be achieved more easily by defining multiple
models and re-using one or both ontologies OS and OT , as shown below.

(b) Structuring by bar

piano forte

(c) Structuring by volume

(a) Sheet music

piano forte

Figure 4.9: Structure of musical notes

Example 4.2.27 (Musical Notes by Bar). Let DB = (F, f0, s, p, T, c,OS ,OT) be a semantic
document model with

F = {f0, f1, f2, f11, f12, f13, f14, f21, f22, f23, f24};
s = {(f1, f2), (f11, f12), (f12, f13), (f13, f14), (f21, f22), (f22, f23), (f23, f24)};
p = {(f0, f1), (f0, f2), (f1, f11), (f1, f12), (f1, f13), (f1, f14),

(f2, f21), (f2, f22), (f2, f23), (f2, f24)};
T = {G,A,B,piano, forte}; and
c = {(f11,G), (f12,A), (f13,A), (f14,B), (f21,G), (f22,A), (f23,A), (f24,B),

(f11,piano), (f12,piano), (f13,piano), (f14,piano),
(f21,piano), (f22,piano), (f23, forte), (f24, forte)}.

Let OS = (CS , RS , F,XS) be an ontology with

CS = {Document, Bar, Note},
RS = {name(s),name(p), hasNarrower}, and
XS = {hasNarrower(Document, Bar), hasNarrower(Bar, Note)} ∪

{Document(f0), Bar(f1), Bar(f2),
Note(f11), Note(f12), Note(f13), Note(f14),
Note(f21), Note(f22), Note(f23), Note(f24)} ∪

assertions(s) ∪ assertions(p).

Let OT = (CT , RT , T,XT) be an ontology with

4.2. MODELLING SEMANTIC DATA 91

CT = {NoteName, Volume},
RT = {lowerThan}, and
XT = {NoteName(G), NoteName(A), NoteName(B),

lowerThan(G,A), lowerThan(A,B),
Volume(piano), Volume(forte)}.

DB is a model after figure 4.9 (a), modelling the structure by bar:

0[1[11, 12, 13, 14], 2[21, 22, 23, 24]]

Example 4.2.28 (Musical Notes by Volume). Let DV = (F, f0, s, p, T, c,OS ,OT) be a semantic
document model with OT from example 4.2.27, and

F = {f0, f1, f2, f11, f12, f13, f14, f15, f16, f21, f22};
s = {(f1, f2), (f11, f12), (f12, f13), (f13, f14), (f14, f15), (f15, f16), (f21, f22)};
p = {(f0, f1), (f0, f2), (f1, f11), (f1, f12), (f1, f13), (f1, f14),

(f1, f15), (f1, f16), (f2, f21), (f2, f22)};
T = {G,A,B,piano, forte}; and
c = {(f11,G), (f12,A), (f13,A), (f14,B), (f21,G), (f22,A), (f23,A), (f24,B),

(f1,piano), (f2, forte)}.
Let OS = (CS , RS , F,XS) be an ontology with

CS = {Document, Section, Note},
RS = {name(s),name(p), hasNarrower}, and
XS = {hasNarrower(Document, Section), hasNarrower(Section, Note)} ∪

{Document(f0), Section(f1), Section(f2),
Note(f11), Note(f12), Note(f13), Note(f14),
Note(f21), Note(f22), Note(f23), Note(f24)} ∪

assertions(s) ∪ assertions(p).
DV is a model after figure 4.9 (b), modelling the structure by volume:

0[1[11, 12, 13, 14, 15, 16], 2[21, 22]]

Outlook

One other thing that we cannot grasp with a semantic document model are different layers of
truth, fact, supposition, and fiction. Imagine, for example, a novel. It will likely start with
a page listing in terse language all pertinent information about copyright, date and place of
publication, previous editions, and other things. This information can be regarded as fact (for
now). Then might follow a preface by the author, making assertions about the progression of her
work and offering thanks to her supporters. These statements can be regarded as supposition.
After that begins the main event, the actual novel that consists of some fictitious account. And
within this account, a character might relate a tale, or might recount the contents of a (fictitious)
book. This could be called “second order fiction”, as it is fiction within fiction. We do not even
touch upon mixed forms like allegories, parodies, or simple references to factual occurrences from
within fictional context. Nor do we differentiate between “realistic” fiction, nonsensical fiction,
and everything in between. We also ignore whether or not we can actually decide (and agree
with others) if something is fact or fiction, including the entire realm of religious faith.

The reason why we cannot properly represent these layers of reality in semantic document
models is simply because the underlying logic is not adequate for the task. In formal logics,
an assertion is usually either true or false, even if we do not know which. Probabilistic logics
extend this with a probabilistic or statistical component, stating that under given preconditions,
an assertion has a certain probability of being true, or that in general a certain percentage of

92 CHAPTER 4. MODELLING DIGITAL DOCUMENTS

assertions is true. However, the truth value itself is still binary – only the degree of uncertainty
which of the two values is the correct one is stated explicitly.

Fuzzy logics take a different approach: here, the actual degree of truth is modelled. For an
assertion like “Sherlock Holmes is a detective” to have a fuzzy logic value of 0.5 means that it
is only half right, i.e., Sherlock Holmes is only half a detective and half something else. Yet
this is clearly also not sufficient for modelling layers of reality, because Mr. Holmes is a fictional
detective, not half a detective.

While it is possible to regard different layers of reality in separate models, it is hard to allow
them to interact: to have explicit or implicit references from a fictional context to reality or
vice versa. Modal logics can be used to model multiple states of knowledge, for example an
agent who has a certain model of the state of the world can also know the (different) models as
“known” by other agents. This leads to statements like “She knows that he knows that she knows
[something]”. However, these logics are based on properties that are generally not realistic in a
real-world setting, such as knowing that one does not know a specific thing. [HR04]
More work is needed here to fully understand and deal with these complexities.

4.2.2 Modelling Processes

While at first glance, processes and documents have little in common, a closer examination yields
remarkable similarities as will be shown below.

We will use the term process to mean an ordered, but not necessarily totally ordered, collection
of process steps. Each process step can be either a process itself (namely, a sub-process), or an
atomic action such as a service call. A definition of various types of process steps can be found
in [All10].

Figure 4.10 shows an example process for processing an application for vacation. It starts
with filling in the application form. Then, if the applicant requires a substitute to fill in for
them, a suitable substitute is chosen who must be available during the relevant time. With the
substitute’s signature, the application is now checked by the direct superior of the applicant. If
the superior rejects the application, the applicant is informed and the process ends. Otherwise,
the superior adds their signature to the application, and it moves on to the human resource
department. If they reject the application, both the superior and the applicant are informed and
the process ends. If they approve, the application is stamped, the vacation time is entered into a
database, the applicant is informed, and the process ends. The checking by the human resource
department is modelled as a sub-process, which is not specified further in this example.

Both documents and processes are structured in that they consist of an ordering of elements:
the reading paths for documents, the control flow in processes. This order can also be hierarchical:
sub-chapters in documents, or sub-processes in processes. In addition, both deal with data: the
document content, topics and relevant terms for documents, the data flow in processes. And both
deal with data coherence, like sections that are semantically related to each other for documents,
or consistent data usage in processes. We will therefore attempt to model (and later: process)
processes in a similar way to documents. This shows that our approach for documents can be
transferred to other domains as well.

As with documents, we will first define a low-level process model, the connected base process
model .

Definition 4.2.29 (Connected Base Process Model). Let
S = {sα, . . . , sω} be a set of process steps,
sα ∈ S be the starting step,
sω ∈ S be the final step, and
s ⊆ S × S be a relation that assigns successors to process steps.

4.2. MODELLING SEMANTIC DATA 93

Then B = (S, sα, sω, s) is a base process model.
A base process model B = (S, sα, sω, s) is connected, i.e., is a connected base process model, iff

∀sx ∈ S\{sα} : ∃c = (sα, . . . , sx) (all steps are reachable from sα), and

∀sx ∈ S\{sω} : ∃c = (sx, . . . , sω) (all steps can reach sω),

where c is a control path in B (see below).

Note that definition 4.2.29 introduces a final step sω that was not used in definition 4.1.29.

Definition 4.2.30 (Control Path). A control path c on a connected base process model B =
(S, sα, sω, s) is a non-empty, possibly infinite sequence of process steps (s0, s1, s2, . . .), for which
holds that s(si, si+1), for i ∈ N.
A finite control path cf = (s0, . . . , sn) is called closed iff s0 = sα and sn = sω.

The set of all closed control paths on a connected base process model B is called the control
flow of B.

Example 4.2.31 (Connected Base Process Model). Let
S = {sα, sfill in application, srequires substitute?, schoose substitute, ssubstitute available?,

scheck by direct superior, sdirect superior approved?, scheck by HR department,
sHR approved?, sinform direct superior of rejection, sinform applicant of rejection,
senter data into database, sinform applicant of approval, sω}, and

s = {(sα, sfill in application), (sfill in application, srequires substitute?),
(srequires substitute?, schoose substitute),
(srequires substitute?, scheck by direct superior), . . .}.

Then B = (S, sα, sω, s) is a connected base process model.

Example 4.2.32 (Control Path). Let B = (S, sα, sω, s) be the connected base process model
from example 4.2.31. Then

c1 = (srequires substitute?, schoose substitute, ssubstitute available?),
c2 = (schoose substitute, ssubstitute available?, schoose substitute, . . .), and
c3 = (sα, sfill in application, srequires substitute?, scheck by direct superior,

sdirect superior approved?, sinform applicant of rejection, sω)
are control paths on B. c2 is infinite, and c3 is closed.

We will now define more abstract process models, namely the structural process model and
the semantic process model .

Definition 4.2.33 (Structural Process Model). Let
F = {f0, . . . , fn} be a set of process fragments, i.e., atomic and

non-atomic process steps;
f0 ∈ F be a starting fragment from F with respect to both p and s;
s ∈ R be a relation s ⊆ F × F between process fragments that defines

successors for fragments;
p ∈ R be a relation p ⊆ F × F between process fragments that defines

a hierarchy on fragments;
D be a set of data objects; and
c be a relation c ⊆ F ×D that specifies which process fragments deal

with which data objects.
From the starting object f0, every fragment f ∈ F must be reachable through p in exactly one

unique sequence of applications of p, either directly or indirectly.
Then S = (F, f0, s, p,D, c) is a structural process model.

94 CHAPTER 4. MODELLING DIGITAL DOCUMENTS

S
ta

rt
E

n
d

C
h

o
o

s
e

 s
u

b
s
ti
tu

te

S
ig

n
a

tu
re

o
f
s
u

b
s
t.

F
ill

 i
n

 a
p

p
lic

a
ti
o

n

E
n

te
r

d
a

ta

in
to

 d
a

ta
b

a
s
e

In
fo

rm
 d

ir
e

c
t

s
u

p
e

ri
o

r
o

f

re
je

c
ti
o

n

In
fo

rm
 a

p
p

lic
a

n
t

o
f
a

p
p

ro
v
a

l

In
fo

rm
 a

p
p

lic
a

n
t

o
f
re

je
c
ti
o

n

S
u

b
p

ro
c
e

s
s
:

C
h

e
c
k
 b

y

H
R

 d
e

p
a

rt
m

e
n

t

C
h

e
c
k
 b

y

d
ir
e

c
t
s
u

p
e

ri
o

r

d
o

e
s

n
o

t

re
q

u
ir
e

s
u

b
s
ti
tu

te

s
u

b
s
ti
tu

te

n
o

t

a
v
a

ila
b

le s
u

b
s
ti
tu

te

a
v
a

ila
b

le

a
p

p
ro

v
e

d

re
je

c
te

d

re
je

c
te

d

a
p

p
ro

v
e

d

S
ig

n
a

tu
re

o
f
d

.s
.

S
ta

m
p

o
f
H

R

re
q

u
ir
e

s

s
u

b
s
ti
tu

te

Figure 4.10: Example process: application for leave

4.2. MODELLING SEMANTIC DATA 95

Example 4.2.34 (Structural Process Model). Let

F = {f0, fstart, ffill in application, frequires substitute?, fchoose substitute,
fsubstitute available?, fcheck by direct superior, fdirect superior approved?,
fcheck by HR department, fHR approved?, finform direct superior of rejection,
finform applicant of rejection, fenter data into database,
finform applicant of approval, fend};

s = {(fstart, ffill in application), (ffill in application, frequires substitute?), . . .};
p = {(f0, fi) | ∀fi ∈ F\{f0}};
T = {Signature of substitute,Signature of direct superior,Stamp of HR};

and
c = {(fchoose substitute,Signature of substitute),

(fcheck by direct superior,Signature of substitute),
(fcheck by direct superior,Signature of direct superior),
(fcheck by HR department,Signature of direct superior),
(fcheck by HR department,Stamp of HR),
(fenter data into database,Stamp of HR)}.

Then S = (F, f0, s, p, T, c) is a structural process model based on the process shown in fig-
ure 4.10.

Definition 4.2.35 (Semantic Process Model). Let S = (F, f0, s, p,D, c) be a structural process
model. Let OS = (CS , RS , F,XS) and OD = (CD, RD, D,XD) be two ontologies. Then P =
(F, f0, s, p,D, c,OS ,OD) is a semantic process model.

OS is a structural ontology that provides the terminology for modelling the structure of the
process. It makes use of the process fragments F of P as individuals, and defines

CS a set of concepts that describe structural elements of the process, such
as Subprocess or ServiceCall;

RS a set of roles that define relations between fragments, with
name(s) ∈ RS and name(p) ∈ RS and with a special role
hasNarrower that defines relationships between structural concepts; and

XS a set of axioms and assertions that define relationships between
concepts, between roles, and between individuals and concepts or roles,
with assertions(s) ∪ assertions(p) ⊆ XS.

OD is a data ontology that provides information about the data that is used in the process. It
makes use of the data objects D of P as individuals, and defines

CD a set of concepts that classify data objects, such as
ManufacturedObject or PermissionForm;

RD a set of roles that define relations between data objects, such as
dependsOn or broaderThan; and

XD a set of axioms and assertions that define relationships between
concepts, between roles, and between individuals and concepts or roles,
such as ManufacturedObject(Nail).

Example 4.2.36 (Semantic Process Model). Let S be the structural process model from ex-
ample 4.2.34. Let OS = (CS , RS , F ∪ T,XS) be an ontology with

96 CHAPTER 4. MODELLING DIGITAL DOCUMENTS

CS = {Process, Step, Gateway, Subprocess},
RS = {produces, consumes, hasNarrower,name(s),name(p)}, and
XS = {Gateway v Step,

Subprocess v Step,
Subprocess v Process} ∪
{Process(f0), Step(fstart), Step(ffill in application),
Gateway(frequires substitute?), . . .
Subprocess(fcheck by HR department, . . .)} ∪
{produces(fchoose substitute,Signature of substitute),
consumes(fcheck by direct superior,Signature of substitute),
produces(fcheck by direct superior,Signature of direct superior),
consumes(fcheck by HR department,Signature of direct superior),
produces(fcheck by HR department,Stamp of HR),
consumes(fenter data into database,Stamp of HR)} ∪

assertions(s) ∪ assertions(p).
Let OT = (CT , RT , T,XT) be an ontology with

CT = {Signature},
RT = ∅, and
XT = {Signature(Signature of substitute),

Signature(Signature of direct superior),
Signature(Stamp of HR)}.

Then P = (F, f0, s, p, T, c,OS ,OT) is a semantic process model.
Note how OS also makes use of T , which represents the data objects. This allows us to also

model the data flow, i.e., where which data objects are produced and where they are required or
consumed.

Lemma 4.2.37 (Semantic Process Models in Description Logics). For every semantic process
model P = (F, f0, s, p,D, c,OS ,OD) there exists a process ontology OP .

Proof of Lemma 4.2.37. The proof is analogue to the proof of lemma 4.2.22.

Proposition 4.2.38 (Interpretation of OP). For every semantic process model
P = (F, f0, s, p,D, c,OS ,OD) and process ontology OP = (CP , RP , IP , XP) constructed from P ,

there exists an interpretation I(P) = (∆I , ()
I
), such that I(P) is a model of OP in the sense of

definition 3.2.31: I(P) |= OP . In other words, P can be seen as a model of OP .

Proof of Proposition 4.2.38. The proof is analogue to the proof of proposition 4.2.25.

Conclusion

In this chapter, we have explored the nature of documents. We have seen how they are perceived
both in the computer science community and beyond, and how they can be characterised. We
have then formalised these perceptions, creating metamodels for documents on different layers
of abstraction that culminate in a semantic document model, which includes complex structural
information as well as content-related semantic data and relationships. We have given a se-
mantics and implementation of semantic models. Finally, we have shown how this model can be
transferred to a new domain.

Chapter 5

Processing Digital Documents

Chapter 5 starts with a discussion on how to extract document models from source documents
(section 5.1). Afterwards, various inference tasks on document models will be regarded in sec-
tion 5.2. In section 5.3 we will discuss how to deal with multiple layers of metadata in knowledge
modelling.

5.1 Extracting Data Models

In this section, we will outline how to extract a semantic document model (cf. definition 4.2.14
on page 82) from a digital document. We will provide a mapping from a document, represented
as a base document model (cf. definition 4.1.21 on page 4.1.21), onto a semantic document
model, with a technical representation in description logics (cf. proposition 4.2.25 on page 86).
In section 4.1, we have seen that a document can be represented as a connected base document
model. Implementation details can be found in chapter 8.

Recall that a base document model B is a tuple (M,F, c, s, f), where M is a set of media
objects (with a subset T of text fragments), F is a set of formatting options, c is a function
that assigns to every text fragment its actual content, s is a successor relation on M , and f is a
relation that assigns formatting options to text fragments. A base document model is connected,
if there is a starting object from which every other object can be reached.
Also recall that a semantic document model D is a tuple (F, f0, s, p, T, c,OS ,OT), where F is
a set of document fragments, f0 is a starting fragment, s is a successor relation on F , p is a
has-part relation on F , T is a set of terms, c is a relation that assigns terms to fragments,
OS = (CS , RS , F,XS) is a structural ontology that provides the terminology for modelling the
structure of the document, and OT = (CT , RT , T,XT) is a terminological ontology that provides
the terminology for modelling the content of the document.

For the remainder of this chapter, we will equate a semantic document model D with its
instantiation OD as derived by lemma 4.2.22. In particular, we will not differentiate between the
description logic representation of D and the interpretation of this representation. As shown in
proposition 4.2.25, D can always be regarded as a model of OD. Therefore, this simplification
does not detract from the validity of the methods described here, but it will significantly enhance
readability. As a further simplification, we will use the hasNarrower role on CS as if it were part
of any OD.

For example, for the role p and two document fragments f0 and f1 from D, we write a role
assertion as p(f0, f1) instead of name(p)(name(f0),name(f1)). Vice versa, we write (f0, f1) ∈ p

instead of (name(f0)I ,name(f1)I) ∈ name(p)I as the semantics of this role assertion.

97

98 CHAPTER 5. PROCESSING DIGITAL DOCUMENTS

For the mapping of a base document model onto a semantic document model, we will use
background knowledge. Part of this knowledge are the structural and terminological ontologies
OS and OT that belong to the semantic model. Other background knowledge is needed for
identifying relevant content and properties of the source document, and how to transfer them to
the target model.

This knowledge includes domain and language dependent keywords, such as “definition” or
“example”, and what they imply, such as document fragments that are definitions or examples.
It also includes document specific knowledge about formatting options, such as “italic” or “un-
derlined”, and what they imply, such as document fragments that are paragraph headlines or
hyperlinks. For example, a line of text starting with the keyword “definition” and formatted in
“italics” could be the title of a paragraph that contains a definition.

The term “keyword” is not strictly accurate, because a single keyword can consist of multiple
words, such as “for example”, or might even encompass place holders, such as “figure (number)”.

Different keywords can be semantically related to each other. In particular, different keywords
can imply the same structure or semantics in the document model. These keywords are equivalent
in the sense that they have the same meaning with regard to the document structure. This does not
necessarily imply that they are synonyms. For example, the keywords “figure” and “illustration”
can be equivalent, as can be “definition” and the abbreviation “def.”.

Another, albeit more rare form of semantic relation between keywords is specialisation. One
keyword may imply a broader set of semantics than another. For example, the keyword “type
signature” may imply the description of the input or the output of a method in a programming
language, while the more specialised keywords “input” and “output” only imply one of them.

Given the properties of keywords discussed above, we will represent keywords and their
relationships as a taxonomy (cf. definition 3.2.25) that contains the role hasNarrower to model
specialisation, its inverse hasBroader

.
= hasNarrower− to model generalisation, their reflexive

versions hasNarrowerSelf and hasBroaderSelf, and the role hasEquivalent to model keyword
equivalence. hasEquivalent is reflexive and symmetric. We will call a taxonomy of this form
and purpose a keyword taxonomy .

Example 5.1.1 (Keyword Taxonomy). Let
CK = ∅,
RK = {hasNarrower, hasBroader, hasNarrowerSelf, hasBroaderSelf,

hasEquivalent},
IK = {“chapter”, “introduction”, “conclusion”, “definition”, “example”,

“illustration”}, and
XK = {hasNarrower(“chapter”, “introduction”),

hasNarrower(“chapter”, “conclusion”)}.
Then XK = (CK , RK , IK , XK) is a keyword taxonomy.

The background knowledge also contains information about formatting options and their
intended meaning. Formatting options can be grouped together to form styles. For example, the
options “bold” and “italic” can be combined to form a style. Other styles can include font size or
colour, indentation, or spacing. Giving a style a name allows for easier referencing. A collection
of named styles is often called a template.

Definition 5.1.2 (Named Style). A named style, or sometimes simply style, is a named set of
formatting options.

Let F be a set of formatting options, and n be a literal name. Then s = (n, F) is a named
style.

For reasons of simplicity, named styles will often only be referred to by their name, so that n
can be substituted for s whenever convenient. No ambiguity arises from doing so.

5.1. EXTRACTING DATA MODELS 99

Example 5.1.3 (Named Style). Let
F = {“italic”, “bold”} and
n = bold+italic.

Then s = (n, F) is a named style, referred to by bold+italic.

Similar to keywords, styles can be semantically related to each other. Two or more styles
can be equivalent, i.e., they have the same semantic implications. This does not necessarily
mean that their formatting is similar. For example, blue coloured text and underlined text may
both signify a reference. One style can also be a specialisation of another. For example, the
style ‘italic’ may be used to represent headlines, while the style ‘bold+italic’ is used to represent
more specific fist-level headlines. Often, these semantics are indicated by the styles’ names, e.g.,
‘Headline’ or ‘Headline 1’.
We will model styles in a taxonomy similar to the keyword taxonomy, which we call style tax-
onomy .

Example 5.1.4 (Style Taxonomy). Let
CS = {Headline, Reference},
RS = {hasNarrower, hasBroader, hasNarrowerSelf, hasBroaderSelf,

hasEquivalent},
IS = {italic,bold+italic,underlined}, and
XS = {Headline u Reference v ⊥,

Headline(italic), Headline(bold+italic), Reference(underlined),
hasNarrower(italic,bold+italic)},

where ‘italic’ is a name that refers to text in italics, ‘bold+italic’ is a name that refers to text in
bold and italics, and ‘underlined’ is a name that refers to underlined text.
Then XS = (CS , RS , IS , XS) is a style taxonomy.

Note that instead of the role assertion hasNarrower(italic,bold+italic), the same thing could
be modelled by introducing a concept Headline 1, an assertion Headline 1(bold+italic), and an
axiom Headline 1 v Headline. While this uses the well-defined semantics of concept special-
isation instead of relying on the interpretation of the hasNarrower role, experience has shown
that using the role is preferable. This is because of the greater flexibility afforded by the role
instantiation on individuals as opposed to rigid concept specialisation. It is, for example, pos-
sible to introduce new roles that define other relationships between individuals. However, if used
consistently, it is also possible to combine both modelling approaches.

Some document formats, such as office formats or HTML with CSS, already allow for the
definition of named styles, which can be used directly in the formatting taxonomy.

Mappings are another form of background knowledge that consists of a named set of two-
tuples (see below for additional details). The first component of each tuple, called the source,
specifies the source for some data, while the second component, called target, specifies where
that data belongs. A mapping may, for example, contain an entry that specifies that the text
content of a specific media object from a base document model should be represented as the
role-value of the title role, annotated to a specific fragment in a semantic document model.

Definition 5.1.5 (Semantic Document Model Induced by a Connected Base Document Model
and Background Knowledge). Let B = (M,F, c, s, f) be a connected base document model, let
XK = (CK , RK , IK , XK) be a keyword taxonomy, let XS = (CS , RS , IS , XS) be a style tax-
onomy, let OS = (CS , RS , F,XS) be a structure ontology, and let OT = (CT , RT , T,XT) be
a terminological ontology. Let the set of concepts CK from the keyword taxonomy contain at

100 CHAPTER 5. PROCESSING DIGITAL DOCUMENTS

least the concepts DataKeyword, ReferenceKeyword, and FragmentKeyword (or some equival-
ent concepts). Let the set of concepts CS from the style taxonomy contain at least the concepts
DataStyle, ReferenceStyle, and FragmentStyle (or some equivalent concepts). Let M be
a set of mappings that contains at least four mappings called “DataMapping”, “ReferenceMap-
ping”, “KeywordFragmentMapping”, and “StyleFragmentMapping”, respectively (or some equi-
valent mappings). Let K be a set of background knowledge containing OS, OT , XK , XS, and
M.

Then D = (F, f0, s, p, T, c,OS ,OT) is the semantic document model induced by B and K,
written as B,K⇒ D, iff

1. for every media object in B that induces the existence of a document fragment of some
particular types, a corresponding fragment exists in D and this fragment has the appropriate
types;

2. for every media object in B that induces a particular data point for a document fragment,
there is an appropriate data annotation at the corresponding fragment in D;

3. for every media object in B that induces a reference from the current document fragment
to another, there is a reference between the two appropriate fragments in D;

4. for every two media objects in B that both induce the existence of a document fragment
each, that are in a (possibly indirect) successor relationship s, and that have no other media
object that induces the existence of another fragment between them:
iff no type of the fragment induced by the first object is narrower than or is equal to any type
of the fragment induced by the second object, then the second fragment is a sub-fragment
of the first; and

5. for every two media objects in B that are in a direct successor relationship s: the closest
fragments induced by them (see below) are either the same, or they are in a successor
relationship, or they are in a has-part relationship.

The first three points simply define the existence of all required fragments, data points, and
relationships. The fourth point defines the order of these fragments w.r.t. the has-part relation.
The fifth point stipulates that successor relationships in the base document model are not lost in
the semantic document model.

A fragment f induced by a media object m is written as m⇒ f . The closest fragment induced
by m, m ∈M , is the fragment f ∈ F : ∃m1 ∈M : m1 ⇒ f ∧ (m1 = m ∨ ((m1,m) ∈ s+∧ 6 ∃m2 ∈
M : m1 6= m2 6= m ∧ (m1,m2), (m2,m) ∈ s+ ∧ ∃f2 ∈ F : m2 ⇒ f2)). If neither m nor any of its
predecessors (if they exist) induces a fragment, then the closest fragment induced by m is defined
to be the root fragment of D, f0. The closest fragment f induced by m is written as m⇒0 f .
Formally, B,K⇒ D ⇔

1. ∀m ∈M : f(m) ∈ FragmentStyle ∨ c(m) ∈ FragmentKeyword

⇒
∃f ∈ F : ∀(s, t) ∈ (“KeywordFragmentMapping” ∪
“StyleFragmentMapping”) : (s applies to m⇒ t(f) ∈ XS),

2. ∀m ∈M : f(m) ∈ DataStyle ∨ c(m) ∈ DataKeyword

⇒
∃f ∈ F : (m⇒0 f) ∧ ∀(s, t) ∈ “DataMapping” :
s applied to m results in d⇒ t(f, d) ∈ XT ,

5.1. EXTRACTING DATA MODELS 101

3. ∀m ∈M : f(m) ∈ ReferenceStyle ∨ c(m) ∈ ReferenceKeyword

⇒
∃f ∈ F : (m⇒0 f) ∧ ∀(s, t) ∈ “ReferenceMapping” :
(s applied to m results in mT ∈M
⇒
∃fT ∈ F : (mT ⇒0 fT) ∧ t(f, fT) ∈ XS),

4. ∀m1,m2 ∈M,f1, f2 ∈ F :
(m1 6= m2) ∧ (m1,m2) ∈ s+ ∧ (m1 ⇒ f1) ∧ (m2 ⇒ f2) ∧
6 ∃m3 ∈M,f3 ∈ F : (m1,m3), (m3,m2) ∈ s+ ∧m3 ⇒ f3
⇒
6 ∃t1, t2 ∈ CS : t1(f1), t2(f2) ∈ XS ∧
(hasNarrower+(t2, t1) ∈ XS ∨ (t1 ≡ t2) ∈ XS)
⇔
(f1, f2) ∈ p, and

5. ∀m1,m2 ∈M,f1, f2 ∈ F : (m1,m2) ∈ s ∧m1 ⇒0 f1 ∧m2 ⇒0 f2
⇒
(f1 = f2)⊕ ((f1, f2) ∈ s+ ⊕ (f1, f2) ∈ p).

⊕ denotes the XOR operator.

Remark 5.1.6. Note that this definition expects a semantic document model to have the same
basic order of elements as the underlying base document model. While this is the case for most
document types, there are exceptions like the Microsoft Visio format. We will discuss options for
dealing with such a situation in chapter 9 and in section 10.2.

Example 5.1.7 (Semantic Document Model Induced by a Connected Base Document Model
and Background Knowledge). Let B be the connected base document model from example 4.1.24.
Let XS be the style taxonomy from example 5.1.4. Let D be the semantic document model from
example 4.2.15. Let K be a set of background knowledge containing XS and the ontologies from
D.

Then D is the semantic document model induced by B and K.

A set of transformation rules can be used for mapping a connected base document model onto
a semantic model. Using an appropriate set of transformation rules, it is possible to obtain the
semantic document model induced by a base document model and a set of background knowledge.

Definition 5.1.8 (Transformation Rule). A transformation rule from a base document model
B = (MB , FB , cB , sB , fB) onto a semantic document model D = (FD, f0, sD, pD, TD, cD,OS ,OT)
consists of a premise P and a conclusion C, written as

P ↪→ C.

The base document model B may also have associated metadata AB = (LA, VA, dA) (cf. defini-
tion 4.1.26) that can be used in the transformation rule.

A transformation rule may also make use of a set of background knowledge K, which may
for example contain a keyword taxonomy XK = (CK , RK , IK , XK) and a style taxonomy XS =
(CS , RS , IS , XS).

102 CHAPTER 5. PROCESSING DIGITAL DOCUMENTS

Definition 5.1.9 (Premise of a Transformation Rule). The premise of a transformation rule
consists of one or more logically connected conditions, using the usual logical operators such as
‘¬’, ‘∧’, or ‘∨’ with their usual semantics. Each condition tests for a relationship between pairs
of entities from the following base sets and elements, for all models ID of D:

C the set of constants,
V the set of variables,
f : MB → IS, a function returning the formatting style of a media

object m ∈MB from the base document model,
c : MB → text, a function returning the text content of a media

object m ∈MB as a list of literals,
md : MB × LA → 2VD , a function returning for pairs of media objects

and labels the set of associated metadata values as a list of literals,
and

mdB : LA → 2VD , a function returning for a label the set of metadata
values associated with the base document model as a list of literals.

Additionally, all individuals, concepts, roles, axioms and assertions from the background
knowledge or from the ontologies associated with the semantic document model may be used. In
particular, the function hn serves as an abbreviation for the interpretation of the hasNarrower

role, and hn+ serves as an abbreviation for the transitive closure of hn. Analogously,
there exist abbreviations for the roles hasBroader, hasNarrowerSelf, hasBroaderSelf, and
hasEquivalent: hb, hb+, hns, hns+,

On these entities, several relations can be used. Based on their respective value ranges, we
divide these relations into five groups, with r> ∈ {‘<’, ‘≤’, ‘≥’, ‘>’}, r= ∈ {‘=’}, r∈ ∈ {‘∈’},
r⊆ ∈ {‘⊆’}, and r⊆1

∈ {‘⊆1’}, where
r> is restricted to constants and variables of numerical type,
r= is restricted to pairs of equal type,
r∈ is restricted to pairs of elements and sets or lists of the same type,
r⊆ is restricted to pairs of sets or lists of the same type, and
r⊆1 is restricted to pairs of power sets and sets or lists of the same type.

All relations are written in infix notation for simplicity, e.g., with m a media object from the
base document model, we write

f(m) ‘ ∈’ Reference.

The relations ‘<’, ‘≤’, ‘≥’, ‘>’, ‘=’, ‘∈’ and ‘⊆’ can be interpreted with their usual semantics.
In addition, ‘∈’ can be used to test for membership in a list and to test for a substring relationship,
and ‘⊆’ can be used to test if all elements of one set or list are contained in another set or list.
‘⊆1’ can be used as an infix operator for testing if the intersection of two sets or list is not empty,
i.e., if at least one element of one set is a contained in another set:

S ‘ ⊆1’ T ⇔ S ∩ T 6= ∅.

The usual operations on Boolean, numerical, literal, list and set values are also allowed, such
as negation, addition, concatenation, and insertion.

Intuitively, a premise allows for the specification of properties that objects from a base docu-
ment model must match. These specifications may make use of variables, constants, the contents
of the base document model, and the available knowledge bases. Several functions and relations
are defined that allow for aggregation and comparison of values.

Example 5.1.10 (Premise of a Transformation Rule). Let

f(m) ‘ ∈’ Headline

5.1. EXTRACTING DATA MODELS 103

hns+(“chapter”) ‘ ⊆1’ c(m)

be two conditions. Then

(f (m) ‘ ∈’ Headline) ∧
(
hns+ (“chapter”) ‘ ⊆1’ c (m)

)
is the premise of a transformation rule.

Definition 5.1.11 (Conclusion of a Transformation Rule). The conclusion of a transformation
rule consists of a list of operations. Each operation can either

1. assign to or modify the value of a variable,

2. create a new document fragment in the semantic document model,

3. define a relationship s or p between two document fragments,

4. add a new term to the semantic document model,

5. define a relationship c between a document fragment and a term,

6. add a new concept or role assertion to the structural ontology OS,

7. add a new concept or role assertion to the terminological ontology OT , or

8. evaluate a condition or some other Boolean expression to a truth value and

(a) call a list of operations based on whether the value is true or false (if-then-else),
or

(b) repeatedly call a list of operations as long as the value is true (while-do). This
includes equivalent concepts like do-while and for loops.

Example 5.1.12 (Conclusion of a Transformation Rule). Let

DocumentFragment EL.f = new DocumentFragment () and

assert: Chapter(EL.f)

be two operations specified in pseudo-code. Then

(

DocumentFragment EL.f = new DocumentFragment (),

assert: Chapter(EL.f)
)

is the conclusion of a transformation rule.

As example 5.1.12 shows, conclusions may make use of variables. The values held by such
variables are determined by their environment.

Definition 5.1.13 (Environment). The environment E of a variable maps the name of the vari-
able onto the variable’s value. Each environment may contain a finite number of variables. No
two environments may contain the same variable.

A variable v contained in an environment E will be written as E.v.

104 CHAPTER 5. PROCESSING DIGITAL DOCUMENTS

A1

(a) Hierarchical structure

Ɛ.topic
= "A"

t1 c A

t2

t3

t4

s

s

s

s

cB

c C

Chapter

Section

Section

Ɛ.topic
= "B"

Ɛ.topic
= "A"

Ɛ.topic
= "A1/2"

Ɛ.topic
= "C"

t1 c A2

t2

t3

t4

s

s

s

s

cB

c C

Chapter

Ɛ.topic
= "B"

Ɛ.topic
= "C"

Ɛ.topic
= ?

(b) Overlapping chapters

Section

Section

t0c
Chapter

Figure 5.1: Values for a variable topic in an environment E at different positions in a document

For use in transformation rules, we define two environments that satisfy different require-
ments. Some variables change their value based on the location in the document of the current
media object. If the situation allows for it, they may even revert back to earlier values, where
“earlier” refers to the order in which an algorithm processes the media objects.

For example, consider a variable topic that holds the topic of the current document position.
As illustrated in figure 5.1 (a), it is assigned a value for a media object t1 that indicates a chapter.
For other media objects t2, t3 that indicate sections, the variable is assigned new values, namely
the topic of the respective sections. Finally, when a media object t4 indicates the end of the
sections, the variable reverts to its earlier value.

For variables that change their value depending on the position in the document structure,
i.e., chapter or section, it is always possible to uniquely determine to which value it should revert,
provided that the structure is strictly hierarchical. This is possible because in a strict hierarchy,
there is always at most a single parent element. The variable can revert to the value it held
at this parent element. Figure 5.1 (b) shows how a non-hierarchical structure with overlapping
chapters makes it impossible to uniquely identify a value for the topic variable in t4, at least
without resorting to some arbiter function that picks one of the possible values “A1” or “A2”.

Other variables change their value irrespectively of the location in the document, such as the
list of parsed files, or which media objects have already been processed by an algorithm. These
variables also do not revert to former values.

Definition 5.1.14 (Local Environment). A local environment EL(m) for a media object m con-
tains variables whose value depends on the current position in the document, represented by m.
A variable v contained in the local environment will be written as EL.v.

Example 5.1.15 (Local Environment). In figure 5.1 (a), for all media objects that belong directly
to the chapter, the value of EL.topic is “A”. Conversely, for all media objects that belong directly
to one of the sections, the value is either “B” or “C”.

Definition 5.1.16 (Global Environment). A global environment EG contains variables whose
value is independent of the current position in the document.
A variable v contained in the global environment will be written as EG.v.

Example 5.1.17 (Global Environment). In figure 5.1 (a), if an algorithm processes t4 for the
first time, as the successor of t2, the value of EG.processed is {t1, t2}. If an algorithm processes
t4 for the second time, as the successor of t3, the value of EG.processed is {t1, t2, t3, t4}.

5.1. EXTRACTING DATA MODELS 105

Example 5.1.18 (Transformation Rule). For the base document model from example 4.1.24 and
the semantic document model from example 4.2.15, the following listing contains a transformation
rule in pseudo code that creates a new document fragment for each chapter and lists the relevant
terminology for the fragment.

1 (

2 f(m) ‘∈’ Headline ∧
3 hns+(“chapter”) ‘⊆1’ c(m)
4)

5 ↪→
6 (

7 DocumentFragment EL.f = new DocumentFragment (),

8 assert: Chapter(EL.f),
9 for each (term ‘∈’ c(m))

10 if (term ‘∈’ TD)

11 assert: c(EL.f, term)

12)

Lines 2 and 3 contain the premise of the rule, stating that the conclusion should only be applied
to media objects that have a formatting style that is part of the Headline concept (line 2) and that
contain a keyword or one of its specialisations which indicate a headline (line 3). In particular,
line 3 checks if one of the sets of chapter-keywords is contained in the text of the media object
(different word forms are disregarded in this example). hns+(“chapter”) contains the keyword
“chapter” and all its specialisations, namely {“chapter”, “introduction”, “conclusion”}.

In line 7, a new document fragment is created and assigned to a variable f. Then this fragment
is asserted to belong to the concept Chapter in line 8.

Finally, lines 9 through 11 check for each term in the text content of m if this term is a
relevant domain term from the terminological ontology OT . If the term is a domain term, then
it is asserted to be in a c-relationship with the new fragment. Recall that the role c models which
document fragments deal with which terms (cf. definition 4.2.1).

Definition 5.1.19 (Application of a Transformation Rule). A transformation rule t = P ↪→ C
can be applied to a media object m ∈ MB from a connected base document model B =
(MB , FB , cB , sB , fB) and to a semantic document model D to return a new semantic document
model D′, written as

m,D
t
↪→ D′.

It returns an altered version D′ of D that is usually used to replace D in further processing steps.
A condition e1 r e2 of the premise is fulfilled for m, iff the entities e1 and e2 are in an

r-relationship.
The premise P is fulfilled for m, iff the evaluation of the Boolean combination of its conditions

yields true.
The operations of the conclusion C are applied to D, resulting in an altered version D′, if the

premise P is fulfilled for m. If the premise is not fulfilled, then D = D′.

Example 5.1.20 (Application of a Transformation Rule). Let B = (MB , FB , cB , sB , fB) be the
connected base document model from example 4.1.30 (with the tuple-entries renamed for clarity).
Let D = (FD, f0, sD, pD, TD, cD,OS ,OT) be the semantic document model from example 4.2.15
(again with the tuple-entries renamed for clarity), with FD = {f0} and sD = pD = cD = ∅. Let
t be the transformation rule from example 5.1.18.

Then the application t1, D
t
↪→ D′ of t to the media object t1 ∈ MB from B and to D results

in a new semantic document model D′ = (FD ∪ {f1}, f0, sD, pD, TD, cD,OS ,OT), with a newly
created document fragment f1.

106 CHAPTER 5. PROCESSING DIGITAL DOCUMENTS

The media object t1 has a formatting style {bold, italic} that corresponds to the named style
‘bold+italic’. Since ‘bold+italic’ ∈ Headline, the first operand of the conjunction that forms t’s
premise yields true.

The function hns+ applied to the keyword “chapter”) returns the set N =
{“chapter”, “introduction”, “conclusion”}. The function c(t1) returns the list L =
(“introduction”). Since one element of N , namely “introduction”, is equivalent to an element
in L, the second operand of t’s premise also yields true: N ‘ ⊆1’ L.

With the premise of t fulfilled for t1, the conclusion is applied to D, creating a new document
fragment. Since the text of t1 does not contain any known domain terms, no additional data is
added for the new fragment.

Definition 5.1.21 (Mapping of a Base Document Model onto a Semantic Document Model). A
connected base document model B = (MB , FB , cB , sB , fB) is mapped onto a semantic document
model D = (FD, f0, sD, pD, TD, cD,OS ,OT) using a set of background knowledge K and a finite
list of transformation rules T = (t1, t2, . . . , tn) by applying every t ∈ T to every m ∈ MB and
D0, each time replacing D0 with the resulting D. D0 = ({f0}, f0, ∅, ∅, TD, ∅,OS ,OT) is an empty
semantic document model with the same ontologies as D. Both the transformation rules and the
media objects must be selected in a well-defined order. This mapping is written as

B,D0
T,K
↪→ D.

K may, for example, contain a keyword taxonomy XK = (CK , RK , IK , XK) and a style
taxonomy XS = (CS , RS , IS , XS).

Example 5.1.22 (Mapping of Base Document Model onto Semantic Document Model). Let
B be the connected base document model and D be the semantic document model from ex-
ample 5.1.20. Let XK be the keyword taxonomy from example 5.1.1, and let XS be the
style taxonomy from example 5.1.4. Let T = {t}, with t the transformation rule from ex-

ample 5.1.18. Then B,D0

T,{XK ,XS}
↪→ D results in D = (FD, f0, sD, pD, TD, cD,OS ,OT), with

FD = {f0, f1, f2, f3, f4, f5, f21, f31, f41, f42}.

More complex real-world examples will be discussed in chapter 10.

Application

For actual, real-world documents that are represented as base document models, sets of extraction
rules can be defined. However, when specifying rules, the manner of conflict resolution must be
defined beforehand. In particular, it must be clear in which order rules are processed that all
match the same media object m. It must also be well-defined in which order media objects are
checked for any matching rules.

In this section, we will assume that media objects are checked in the order defined by the
successor relation s. If a media object has more than one successor, then these successors are
processed in their correct order: the successor path started by the first successor is followed until
all media objects on this path have been checked. Then, backtracking to the media object with
multiple successors, the next successor is picked, and so forth, until all media objects in the base
document model have been checked. A successor path ends if it re-visits a media object that is
already on the path or that has already been processed, to prevent infinite loops.

The rules make use of a stack in the global environment that holds the current document
fragment and all its parent fragments (see below). Whenever backtracking to a forking media
object occurs, this stack is reset to the state it was in before the first path was chosen. If a media

5.1. EXTRACTING DATA MODELS 107

object occurs on multiple reading paths, it is also processed multiple times. Since asserting facts
that are already known does not change the fact base, and since creating new fragments for the
same media objects leads to the creating of the same fragment over and over again, processing
media objects multiple times has no ill side effects.

m1

s

m2 m6

m3 m5

m4

s

s s

ss

Figure 5.2: Simple base document model to illustrate the processing order of media objects

This management of the control flow is illustrated in figure 5.2. It shows a base document
model of six media objects that are processed in the order m1,m2,m3,m4,m5,m6. If each of
these objects induces a fragment of the same type, e.g., “chapter”, then this model induces the
semantic document model 0[1, 2, 3, 4, 5, 6]. If, however, m3 induces a fragment of type “section”
and both m4 and m5 induce fragments of type “paragraph” (with the intuitive hierarchy that
a section is narrower than a chapter and that a paragraph is narrower than a section), then
the model induces the semantic document model 0[1, 2[3[4], 5], 6]. In particular, the paragraph
induced by m4 is a sub-fragment of the section induced by m3, and the paragraph induced by
m5 is a sub-fragment of the chapter induced by m2.

This not only shows that backtracking to a branching media object is necessary, as seen when
backtracking from m4 to m2 to process m5 and when backtracking from m5 to m1 to process
m6. It also shows that resetting the stack when backtracking is necessary (see below). Had the
stack not been reset after backtracking from m4 to m2, then it would have held the paragraph
fragment induced by m4 and the section fragment induced by m3. When processing m5 next, the
paragraph fragment would have been removed from the stack, but the section fragment would
have been used as the parent fragment for the new paragraph induced by m5, resulting in the
semantic document model 0[1, 2[3[4, 5]], 6]. If the stack is properly reset, it holds the chapter
fragment induced by m2, and the new paragraph is inserted in its correct place.

We will also assume that rules will be processed in reverse specification order, i.e., the rule
that was specified last will be matched first against a media object. This behaviour is compatible
with that of common rule engines like JBoss Drools.

For the initialisation, we will assume that an almost empty semantic document model exists
that only contains a single root fragment. A stack data structure is used in some of the rules
in the sequel, which initially contains only this root fragment. The root fragment has a type
for which there is no broader type in the background knowledge. This type is usually called
“Document” or something similar, and there is no role assertion hasNarrower(t, “Document”)
for any type t.

108 CHAPTER 5. PROCESSING DIGITAL DOCUMENTS

First, we will regard a set of rules defined for a specific document. Then, we will attempt
to derive more generic rules from them. A thorough discussion of a concrete implementation of
several sets of rules can be found in section 9.1.

Example 5.1.23 (Transformation Rules for Specific Document). The following seven rules T can
be used to extract a semantic document model from a document represented as a base document
model.

The first rule, starting in line 1, matches media objects whose formatting is contained in the
style concept TitleStyle from XS. It then creates a role assertion that puts the current document
fragment from the semantic document model, taken from the stack in the global context EG, in a
title-relationship with the text content of the media object. For a more detailed discussion on
how the document model is created, and why a stack is used to manage the order of fragments,
we refer the reader to section 9.1.
The second rule (line 5ff.) is similar to the first, except that it processes terms, not titles.

The third rule that starts in line 9 creates reference assertions between the current fragment
and another fragment pointed to by a reference in the source document. The EG.getFragment()
function backtracks from the current media objects until a preceding media object is found that
induces a fragment, i.e., the function finds the closest fragment induced by the media object.

The final four rules, starting in line 13, each match a particular kind of fragment type. The
first one, for example, matches fragments that are identified by their formatting or keywords as
chapters. The second clause of the rule’s premise checks if one of the terms in a media object
is contained in the reflexive and transitive closure of the hasNarrower-role on “chapter”. A
new document fragment is created in the conclusion of the rule, which is then asserted to be a
Chapter instance and finally inserted into the document model in its proper place. This place is
determined by the relative “narrowness” of the fragment’s type versus the type of the fragments
on the stack. While the intersection of the reflexive and transitive closure of the hasNarrower-
role on the types of the new fragments (hns+(EL.f.types)) with the types of the fragment on top
of the stack (EG.stack.top.types) is not empty, the top stack element is removed. Since the
stack is initialised with a fragment of the broadest type, this process stops at the root fragment at
the latest. After the new fragment has been put into a p-relationship with the top stack fragment,
it is itself pushed onto the stack.

The next three rules have a similar behaviour for definitions, examples and illustrations that
are recognised by a combination of their formatting style and keywords.

1 (f(m) ‘∈’ TitleStyle)

2 ↪→
3 (assert: title(EG.stack.top , c(m)))

4

5 (f(m) ‘∈’ TermStyle)

6 ↪→
7 (assert: term(EG.stack.top , c(m)))

8

9 (f(m) ‘∈’ ReferenceStyle)

10 ↪→
11 (assert: reference(EG.stack.top , EG.getFragment(c(m))))

12

13 ((f(m) ‘∈’ ChapterStyle) ∨ (c(m) ‘⊆1’ hns+(“chapter”)))

14 ↪→
15 (

16 DocumentFragment EL.f = new DocumentFragment(m),

17 assert: Chapter(EL.f),
18 while (hns+(EL.f.types) ‘⊆1’ EG.stack.top.types)

19 EG.stack.pop(),

20 assert: hasPart(EG.stack.top , EL.f),

5.1. EXTRACTING DATA MODELS 109

21 EG.stack.push(EL.f)
22)

23

24 ((f(m) ‘∈’ ParagraphStyle) ∨ (c(m) ‘⊆1’ hns+(“definition”)))

25 ↪→
26 (

27 DocumentFragment EL.f = new DocumentFragment(m),

28 assert: Paragraph(EL.f),
29 assert: Definition(EL.f),
30 while (hns+(EL.f.types) ‘⊆1’ EG.stack.top.types)

31 EG.stack.pop(),

32 assert: hasPart(EG.stack.top , EL.f),
33 EG.stack.push(EL.f)
34)

35

36 ((f(m) ‘∈’ ParagraphStyle) ∨ (c(m) ‘⊆1’ hns+(“example”)))

37 ↪→
38 (

39 DocumentFragment EL.f = new DocumentFragment(m),

40 assert: Paragraph(EL.f),
41 assert: Example(EL.f),
42 while (hns+(EL.f.types) ‘⊆1’ EG.stack.top.types)

43 EG.stack.pop(),

44 assert: hasPart(EG.stack.top , EL.f),
45 EG.stack.push(EL.f)
46)

47

48 ((f(m) ‘∈’ ParagraphStyle) ∨ (c(m) ‘⊆1’ hns+(“illustration”)))

49 ↪→
50 (

51 DocumentFragment EL.f = new DocumentFragment(m),

52 assert: Paragraph(EL.f),
53 assert: Illustration(EL.f),
54 while (hns+(EL.f.types) ‘⊆1’ EG.stack.top.types)

55 EG.stack.pop(),

56 assert: hasPart(EG.stack.top , EL.f),
57 EG.stack.push(EL.f)
58)

Let XK = (CK , RK , IK , XK) be the keyword taxonomy from example 5.1.1.
Let XS = (CS , RS , IS , XS) be a style taxonomy, with

CS = {TitleStyle, TermStyle, ReferenceStyle,
ChapterStyle, ParagraphStyle},

RS = {hasNarrower, hasBroader, hasNarrowerSelf, hasBroaderSelf,
hasEquivalent},

IS = {italic,bold+italic,underlined}, and
XS = {TitleStyle(bold+italic), TermStyle(italic),

ReferenceStyle(underlined),
ChapterStyle(bold+italic), ParagraphStyle(italic)}.

Then the base document model B from example 4.1.24 is mapped onto the semantic document
model D from example 4.2.15 using the rules T and the taxonomies XK and XS

B,D
T,{XK ,XS}

↪→ D′.

If we push more information from the rules into the background knowledge to separate it
from the extraction logic, we can specify more generic rules.

110 CHAPTER 5. PROCESSING DIGITAL DOCUMENTS

These rules use a special syntax for referring to arbitrary individual, concept, or role names:
{name} refers to the individual, concept, or role indicated by the place holder name. This allows
for parameterised assertions. For example,

1 String name = "Chapter",

2 assert: {name}(fragment)

is equivalent to

1 assert: Chapter(fragment)

Description 5.1.24 (Transformation Rules for Generic Documents). The following transform-
ation rules TG can be applied to generic base document models. The specifics of what media
objects to map onto what document fragments are moved into the background knowledge.

The first rule in line 1ff. covers the first two rules from example 5.1.23. It matches media
objects of a specific style or containing specific keywords, and annotates their content to the
current document fragment. The role used for this annotation is determined by the target specified
in the “DataMapping” background knowledge (map.target), and what part of the content is
used is determined by the source specified in the mapping (map.source). The eval() function
evaluates this source specification in the context of the current media object. For example, for
XML-based file formats, the source can be specified in XPath, and the eval() function evaluates
the XPath expression against the current XML DOM node.

Line 8ff. contains a rule that processes references, similar to the one from example 5.1.23, but
using background knowledge in the same manner as the previous rule. The EG.getFragment()
function remains the same as above.

The third rule (line 16ff.) covers the final four rules from example 5.1.23. It determines the
types of a new document fragment dynamically from the background knowledge by checking if a
mapping can be applied to a media object (line 21), and then asserting the type indicated by this
mapping for the fragment (line 22). The fragment is then inserted into the document model as
before.

1 ((f(m) ‘∈’ DataStyle) ∨ (c(m) ‘⊆1’ hns+(DataKeyword)))

2 ↪→
3 (

4 for each (map ‘∈’ DataMapping)

5 assert: {map.target }(EG.stack.top , eval(map.source , m))

6)

7

8 ((f(m) ‘∈’ ReferenceStyle) ∨ (c(m) ‘⊆1’ hns+(ReferenceKeyword)))

9 ↪→
10 (

11 for each (map ‘∈’ ReferenceMapping)

12 assert: {map.target }(EG.stack.top ,

13 EG.getFragment(eval(map.source , m)))

14)

15

16 ((f(m) ‘∈’ FragmentStyle) ∨ (c(m) ‘⊆1’ hns+(FragmentKeyword)))

17 ↪→
18 (

19 DocumentFragment EL.f = new DocumentFragment(m),

20 for each (map ‘∈’ StyleFragmentMapping ∪ KeywordFragmentMapping)

21 if (hns+({map.source}) ‘=’ f(m) ∨ hns+({map.source}) ‘⊆1’ c(m))
22 assert: {map.target }(EL.f),

5.1. EXTRACTING DATA MODELS 111

23 while (hbs+(EG.stack.top.types) ‘⊆1’ EL.f.types)
24 EG.stack.pop(),

25 assert: hasPart(EG.stack.top , EL.f),
26 EG.stack.push(EL.f)
27)

We refer the reader to section 9.1 for a detailed account of a concrete implementation of these
rules, as well as a walkthrough application of the rules to an example document.

This approach is based on the assumption that there exists a well-defined order between
structural types, i.e., there exists a relation hasNarrower on types that is

1. total,

2. transitive,

3. irreflexive,

4. asymmetric,

5. antisymmetric, and

6. a strict total ordering relation.

Totality is required so that the order of any two types can be determined, i.e., so that it can
be decided for any pair of fragments if one is a sub-fragment of the other. Transitivity is required
so that the order remains consistent even if a level is skipped, i.e., a chapter should always be
broader than a paragraph, whether or not there is a section fragment in between. Irreflexivity is
required to ensure that the relation remains acyclic.

Asymmetry follows from transitivity and irreflexivity, and antisymmetry follows from asym-
metry. Thus, hasNarrower is a strict and total ordering relation.

In practise, however, none of these requirements must be met if it can be otherwise ensured
that this does not lead to any of the problems mentioned. For instance, if it is “known” that
specific types will never be in conflict then they do not have to be in an ordering relationship,
thus violating the totality requirement. As an example, table cells, which must always be part
of a table, will usually not come into conflict with non-table elements like sections.

If the source base document model is implemented in a language that has both opening
and closing tags like XML, the requirements on the hasNarrower relation can also be relaxed,
provided that an appropriate rule that matches the closing tags is added to the rule set. In
this case, responsibility for keeping track of the structural hierarchy rests not solely with the
hasNarrower relation, but also with this new rule. Imagine, for example, two successive media
objects that each induce a new fragment. Yet there is no information about the relative order
of the two fragments’ types, i.e., it cannot be determined if the second fragment should be a
sub-fragment of the first or not using only the hasNarrower relation. However, the new rule for
closing tags can help determine if the opening tag of the second media object is located within
the tags of the first media object, indicating that the second fragment should be a sub-fragment
of the first. If the opening tag of the second media object only occurs after the closing tag of the
first media object, then the second fragment is not a sub-fragment of the first.

Special cases, for example if an order relationship between two particular types changes in
specific contexts, must be handled by defining new rules for these cases.

The knowledge about a document’s structural hierarchy is also part of a formal semantic
document model in the form of the hasNarrower role.

112 CHAPTER 5. PROCESSING DIGITAL DOCUMENTS

Example 5.1.25 (Transformation Rules for Generic Documents). The transformation rules TG
from description 5.1.24 can also be applied to the base document model from example 4.1.24.
Let M be a set containing the following mappings, i.e., named sets of tuples:

I “DataMapping”:
{(if f(m) ∈ {bold+italic} then c(m), title), (if f(m) ∈ {italic} then c(m), term)},

I “ReferenceMapping”: {(c(m), reference)}, and

I “StyleFragmentMapping”: {(“Chapter”, Chapter), (“Definition”, Paragraph), (“Defin-
ition”, Definition), (“Example”, Paragraph), (“Example”, Example), (“Illustration”,
Paragraph), (“Illustration”, Illustration)}

I “KeywordFragmentMapping”: {(“chapter”, Chapter), (“definition”, Definition), (“ex-
ample”, Example), (“illustration”, Illustration)}

Let XK = (CK , RK , IK , XK) be a keyword taxonomy, with
CK = {DataKeyword, ReferenceKeyword, FragmentKeyword},
RK = {hasNarrower, hasBroader, hasNarrowerSelf, hasBroaderSelf,

hasEquivalent},
IK = {“chapter”, “introduction”, “conclusion”, “definition”, “example”,

“illustration”}, and
XK = {FragmentKeyword(“chapter”), FragmentKeyword(“introduction”),

FragmentKeyword(“conclusion”), FragmentKeyword(“definition”),
FragmentKeyword(“example”), FragmentKeyword(“illustration”),
hasNarrower(“chapter”, “introduction”),
hasNarrower(“chapter”, “conclusion”)}.

Let XS = (CS , RS , IS , XS) be a style taxonomy, with
CS = {DataStyle, ReferenceStyle, FragmentStyle},
RS = {hasNarrower, hasBroader, hasNarrowerSelf, hasBroaderSelf,

hasEquivalent},
IS = {italic,bold+italic,underlined}, and
XS = {DataStyle(bold+italic), DataStyle(italic),

ReferenceStyle(underlined),
FragmentStyle(bold+italic), FragmentStyle(italic)}.

Let D0 be an empty semantic document model with the ontologies shown in example 4.2.15.
Then the base document model B from example 4.1.24 is mapped onto the semantic document

model D from example 4.2.15 using the rules TG, the taxonomies XK and XS, and the set of
mappings M

B,D0

TG,{XK ,XS ,M}
↪→ D.

Adequacy and Other Approaches

We have shown a way to obtain complex semantic document models from a basic representation
that is close to the technical representation of documents. This approach is powerful because
it can incorporate domain knowledge, and it is flexible because it can be applied with little ad-
aptation to most document formats. The approach is also well-structured in the sense that it
separates the extraction logic from the background knowledge. This makes concrete implement-
ations easier to understand, to maintain, and to transfer to other document formats or domains.

5.1. EXTRACTING DATA MODELS 113

In chapter 12, we will show that the approach is indeed transferable with very few changes to
the transformation rules.

We will now examine some properties of the rule-based approach.
A transition system (S,→) is confluent iff ∀s1 ∈ S : (∀sa, sb ∈ S : (s1 →+ sa) ∧ (s1 →+

sb))⇒ (∃s2 ∈ S : (sa →+ s2) ∧ (sb →+ s2)), where →+ is the transitive closure of →.
A rule system applied to a fact base can be interpreted as a transition system by interpreting

the state of the fact base before and after the application of a rule as states in the transition
system, and by interpreting the application of a rule as the transition between the two before
and after states.

Proposition 5.1.26 (Confluence of the Rule System). The rule system defined descrip-
tion 5.1.24, with the conflict resolution techniques described above, is confluent.

This can be easily seen because the conflict resolution techniques are defined in such a way
(and for the sole purpose) that they ensure that in any state at most one rule can be applied. If
more than one candidate rule exists for an object from the fact base, or if more than one object
from the fact base has at least one candidate rule, then the order of application for these rules
is well-defined. And since each rule application leads to a new state, it holds that ∀s1 ∈ S :
(∀sa, sb ∈ S : (s1 →+ sa) ∧ (s1 →+ sb))⇒ (sa = sb), i.e., the transition relation is right-unique.

Proposition 5.1.27 (Soundness and Completeness of the Transformation Rules). Let B be a
connected base document model. Let TG be the set of transformation rules defined in descrip-
tion 5.1.24. Let K be a set of appropriate background knowledge. Let D0 be an empty semantic
document model with appropriate ontologies OS and OT . Let D be semantic document obtained
by applying TG and K to B and D0:

B,D0
TG,K
↪→ D.

Then D is the semantic document model induced by B and K according to definition 5.1.5.
In other words, applying TG in the order and using the conflict resolution techniques outlined

above, is a sound and complete algorithm for obtaining the semantic document model induced by
a connected base document model and a set of background knowledge.

Lemma 5.1.28 (EG.stack.top is the Closest Fragment Induced by the Predecessor of a Media
Object). Whenever a transformation rule matches a media object m and is applied to it, the
fragment on top of the stack (EG.stack.top) is the closest fragment induced by the media object
processed before m. If m is the first media object to be processed, EG.stack.top holds the root
fragment of the semantic document model.

Proof of Lemma 5.1.28. Proof by induction over the sequence of processed media objects. Let
(m0, . . . ,mn) be the sequence of media objects as applied to the transformation rules.
Base: If the processed media object is the first to be processed, then by definition the stack
holds only the root fragment of the semantic document model.
Step: To show: mi ⇒0 EG.stack.top.
If exists mj , j < i : mj ⇒ fj∧ 6 ∃mk, j < k < i : mk ⇒ fk, for fj , fk ∈ F , then fj was created
by the third rule and pushed on top of the stack as its final operation. No other rule pushes
anything on top of the stack, so the premise holds.
If no such mj exists, then nothing has been pushed onto the stack by any rule, so the premise
holds because of the induction base case.

Proof of Proposition 5.1.27. By definition of the algorithm, point 1 of definition 5.1.5 is satisfied:
the existence of fragments with appropriate type information follows directly from the definition
of the third rule in description 5.1.24.

114 CHAPTER 5. PROCESSING DIGITAL DOCUMENTS

Similarly, the existence of appropriate data annotations (point 2) follows directly from the
definition of the algorithm. The fragment on top of the stack EG.stack.top is the closest
fragment induced by the current media object according to lemma 5.1.28.

The existence of appropriate reference relationships (point 3) also follows directly from the
definition of the algorithm and the definition of the EG.getFragment() function.

Let mi,mj ∈ M, i < j : (mi 6= mj) ∧mi ⇒ fi ∧mj ⇒ fj∧ 6 ∃mk ∈ M, i < k < j : mk ⇒ fk,
for fk, fj , fk ∈ F and i, j, k ∈ N. If no such mi,mj exist, then at most one fragment is induced in
the semantic document model, which therefore consists of only one or two fragments (including
the root fragment). In this case, point 4 is trivially satisfied.

If they exist, however, then mi has been processed by the third rule before mj (because of the
processing order as defined above and because of the rule’s premise). Therefore, fi is currently
on top of the EG.stack.

If none of the types of fi is narrower than or equal to any of the types of fj , i.e., if none are in
a direct or indirect hasNarrower or equivalence relationship, then the stack remains unchanged.
The algorithm then puts fi and fj in a p relationship, thus satisfying point 4.

If, on the other hand, one of the types of fi is indeed equal to or narrower than one of the
types of fj , then fj is removed from the stack, thus preventing a p relationship between fi and
fj , and thereby also satisfying point 4.

Let mi,mi+1 ∈M : mi ⇒0 fi ∧mi+1 ⇒0 fi+1, for fi, fi+1 ∈ F and i ∈ N.
If mi,mi+1 exist, then mi has been processed before mi+1 (see above), and one of these cases

is true:

1. ∃f ′i , f ′i+1 ∈ F : mi ⇒ f ′i ∧mi+1 ⇒ f ′i+1 (both media objects directly induce a fragment,
where f ′i = fi and f ′i+1 = fi+1),

2. ∃f ′i ∈ F : mi ⇒ f ′i∧ 6 ∃f ′i+1 ∈ F : mi+1 ⇒ f ′i+1 (only the first media object directly induces
a fragment, where f ′i = fi),

3. 6 ∃f ′i ∈ F : mi ⇒ f ′i ∧ ∃f ′i+1 ∈ F : mi+1 ⇒ f ′i+1 (only the second media object directly
induces a fragment, where f ′i+1 = fi+1), or

4. 6 ∃f ′i , f ′i+1 ∈ F : mi ⇒ f ′i ∨mi+1 ⇒ f ′i+1 (neither media object directly induces a fragment).

In the first case, f ′i+1 is either inserted as a sub-fragment of f ′i : (f ′i , f
′
i+1) ∈ p, which satisfies

point 5. Or f ′i+1 is inserted as a sub-fragment of a parent fragment of f ′i , which puts them in a
(possibly indirect) successor relationship, also satisfying point 5.

In the second case, the closest fragment induced by mi+1 is the fragment f ′i induced by mi,
thus fi = f ′i = fi+1, which satisfies point 5.

In the third case, f ′i+1 is either inserted as a sub-fragment of fi: (fi, f
′
i+1) ∈ p, which satisfies

point 5. Or f ′i+1 is inserted as a sub-fragment of a parent fragment of fi, which puts them in a
(possibly indirect) successor relationship, also satisfying point 5.

Finally, in the fourth case, the closest fragment induced by both mi and mi+1 is the same by
definition, thus fi = fi+1, which satisfies point 5.

In principle, transformation rules can, given appropriate background knowledge, obtain se-
mantic document models from any base document model. There are, however, some exceptions
and restrictions for the rules given in description 5.1.24. Some special cases cannot be encoded
in the background knowledge and require the creation of new rules or the adaptation of existing
rules. This includes fragment or data indicators that span multiple media objects, for example
a keyword occurring in one media object and a specific formatting option occurring in the next.

5.1. EXTRACTING DATA MODELS 115

One caveat are indicators that can indicate two different things, with no way to differentiate
between the two. For example, in a document where definitions and examples are both formatted
in the same way and are not indicated by keywords, it is not possible to accurately classify the
appropriate fragments in the semantic document model. Further analysis of the content of
the paragraph in question may lead to a better classification. But unless this analysis is done
beforehand and the results are included in the background knowledge, it is not used in the given
rule set.

An alternative to transformation rules are graph selectors. Such a graph selector, for example
an XPath expression, identifies and retrieves a media object of the base document model for
further processing. However, using background knowledge in a language like XPath is technically
cumbersome and inefficient: it requires that all background knowledge is represented in XML.
Since XML data has a tree structure, where ontologies have a more complex graph structure, the
background knowledge has to be represented in a more complex manner than necessary, in turn
leading to complex XPath expressions. Additionally, there are no inference services for XML
that would allow for automatically expanding transitivity or symmetry.

Imagine, for example, a keyword taxonomy containing the keywords “chapter”, “introduc-
tion”, and “intro”, with hasNarrower(“chapter”, “introduction”), hasNarrower(“chapter”, “in-
tro”), and hasEquivalent(“introduction”, “intro”). In XML, this has to be represented in a way
similar to the one shown in listing 5.1. Note how the equivalence between “introduction” and
“intro” is represented twice, because there is no formalism for specifying the symmetry of the
<hasEquivalent> tag. While it is possible to use an XML representation of an OWL ontology
and to use the inference services for OWL, the prohibitively complex OWL XML syntax makes
this approach infeasible in general.

1 <knowledge >

2 <keyword term="chapter">

3 <hasNarrower ref=" introduction "/>

4 <hasNarrower ref="intro"/>

5 </keyword >

6 <keyword term=" introduction ">

7 <hasEquivalent ref="intro"/>

8 </keyword >

9 <keyword term="intro">

10 <hasEquivalent ref=" introduction "/>

11 </keyword >

12 </knowledge >

Listing 5.1: Background Knowledge represented in XML

In order to obtain a similar effect to line 3 in example 5.1.18, i.e. selecting XML elements
that contain one of the chapter keywords, a combination of two XPath expressions is required.
This is shown in the simplified XSL program fragment in listing 5.2. The program iterates over
every element of the XML document (line 1), saving the current element in a variable $node

(line 2). Then it iterates over every relevant chapter keyword in the ‘keywords.xml’ file (line 3),
namely the keyword ‘chapter’ itself (line 4) and every keyword that is narrower (line 6). After
saving the current keyword in a variable $keyword (line 8), the program checks if the node saved
above contains the keyword (line 9).

1 <xsl:for -each select="//*">

2 <xsl:variable name="node" select="."/>

3 <xsl:for -each select="

4 document(’keywords.xml ’)

5 // keyword[@term=’chapter ’]/ @term |

6 document(’keywords.xml ’)

116 CHAPTER 5. PROCESSING DIGITAL DOCUMENTS

7 // keyword[@term=’chapter ’]/ hasNarrower /@ref">

8 <xsl:variable name="keyword" select="."/>

9 <xsl:if test="contains ($node , $keyword)">

10 ...

11 </xsl:if >

12 </xsl:for -each>

13 </xsl:for -each>

Listing 5.2: Selecting XML elements for keywords with external background knowledge

The background knowledge could also be integrated directly into the graph selectors, i.e.,
into the XPath expressions. This removes the separation between domain knowledge and the
extraction logic, so every time either the document format or the domain knowledge changes the
expressions need to be adapted – usually at high expense, because they are far more complex
than either transformation rules or ontologies with background knowledge. This is illustrated in
listing 5.3. Line 3 contains the background knowledge and checks if the node contains one of the
keywords.

In this short example, the XSL program version without external background knowledge is
not only shorter, but appears easier to understand as well. This effect is quickly offset, however,
if the amount of background knowledge becomes sufficiently large and complex.

1 <xsl:for -each select="//*">

2 <xsl:variable name="node" select="."/>

3 <xsl:if test="contains ($node , ’chapter ’) or

4 contains ($node , ’intro ’) or

5 contains ($node , ’introduction ’)">

6 ...

7 </xsl:if >

8 </xsl:for -each>

Listing 5.3: Selecting XML elements for keywords with internal background knowledge

It is possible to define constants for each keyword, so that simple changes to keywords do
not necessitate extensive updates in the XSL program. However, when new keywords are added,
old keywords are removed, or relationships between existing keywords are added or removed,
considerable effort is still required.

In general, graph selectors on their own are not sufficient for extracting semantic document
models: often, several selectors need to be combined, and the resulting XML nodes need to be
processed to obtain a semantic document model. Languages like XSL or XQuery can be used
for this purpose. We will evaluate the use of XQuery as an alternative to rule languages in
section 11.3.

Another alternative is to write the entire transformation in a programming language such as
Java. While this is a valid approach, it is difficult to write such a program as clearly structured
as a set of transformation rules. It takes much discipline to keep such a program as readable as
the equivalent rules. This increases the cost of either the program creation or of the maintenance
afterwards, in particular if the program is later adapted to a new domain.

Conclusion

In this section, we have defined a mapping from connected base document models onto semantic
document models. Transformation rules, using a formalism based on description logics, were
shown to be well suited for the task and alternatives were discussed. The employment of back-
ground knowledge was shown to be very beneficial. We have also provided a sound and complete
algorithm for obtaining a semantic document model from a connected base document model.

5.2. INFERENCE ON DOCUMENT MODELS 117

5.2 Inference on Document Models

Having, finally, extracted a semantic document model from a digital document is certainly a
worthy accomplishment. It is, however, not an end in itself: there is something that we want
to do, that we want to have, or that we want to know that we need this document model for.
To this end, we need to process the semantic document model further. Several utilisations for
document models and the processing steps that lead to the desired results will be discussed in
this section.

One important processing step is to extend and improve the document model itself. Clearly,
this is not an end in itself, but rather serves to make the model better suited for whatever the
final goal may be.

As we have already seen, a semantic document model D can be represented as an ontology
OD. Based on this ontology, we can now use inference services for description logics to infer
new facts and relations. Generalisations and equivalences can be used to derive new concept
and role assertions, and role properties like transitivity, symmetry, or reflexivity can be used to
derive new role assertions. In short, from the ontology OD a new ontology OD′ is inferred, which
represents an extended semantic document model D′.

Example 5.2.1 (Extending Semantic Document Models). Let D = (F, f0, s, p, T, c,OS ,OT) be
the semantic document model from example 4.2.15. Let D be represented by the ontology OD.
Then, using inference rules, the following assertions (among others) can be inferred from OD:

I c(f42,Datastructure)
from broaderThan(Datastructure,Binary Tree) and
c(f41,Binary Tree),

I Example(f42)
from Illustration(f42) and Illustration v Example.

These assertions are integrated into a new document ontology OD′ that represents an improved
semantic document model D′.

The additional information greatly increases the coherence of the document model. Not only
does it make explicit that there is an example for every definition in the document (even if the
second example is in the form of an illustration), but it also makes the semantic relation between
the two different topics within the document explicit. Now, there is a fitting example for every
definition on every reading path through the document. While this fact was obvious to a human
reader from the beginning, it has only now become possible for a computer program to recognise
it as well.

Another important processing step is the transformation of a semantic document model into
another type of model. This model can then for example be used for verification purposes. In
chapter 10 we will show how a semantic document model is transformed into a temporal model
used for model checking.

For the transformation into another type of model, usually little or no background knowledge
is necessary. Most relevant background knowledge has already been integrated into the document
model in previous steps. For this reason, and since there is only a single source “format” (namely
a semantic document model), the arguments against using graph selectors do not apply here.
While it is possible to use transformation rules similar to those described in section 5.1, we will
now discuss the use of selectors as a viable alternative.

118 CHAPTER 5. PROCESSING DIGITAL DOCUMENTS

Definition 5.2.2 (Graph Selector). For a path expression p, graph selectors s1 and s2, and a
condition c, the generic syntax of a graph selector is inductively defined as follows:

p (path selector),
s1[c] (condition),
(s1|s2) (disjunction), and
(s1&s2) (conjunction).

Path expressions describe a path in a tree or in a directed graph. Conditions are Boolean-
valued expressions like (in-)equality assertions between path expressions and/or constant values,
and Boolean combinations of other conditions.

Common graph selector languages are XPath (cf. section 3.1.2) and SPARQL (cf. sec-
tion 3.3.5). In chapter 9, we will show how SPARQL can be used to transform semantic document
models represented in OWL into other models.

Example 5.2.3 (Graph Selector). The following expressions are XPath selectors:

1. knowledge/keyword

2. //*[@term=‘intro’]

3. //*[@term=‘intro’] | //*[@term=‘introduction’]

4. //keyword[@term=//hasNarrower/@ref]

The following expressions are SPARQL selectors:

5. SELECT ?s WHERE { ?s rdf:type vdk:Example }

6. SELECT ?s WHERE {
?x rdf:type vdk:Example .

?x vdk:hasTopic ?s }

7. SELECT ?s WHERE {
{ ?s rdf:type vdk:Definition } UNION

{ ?s rdf:type vdk:Example } }

Definition 5.2.4 (Evaluating Graph Selectors against Models). Let M be a model with a directed
graph structure. W.l.o.g., we assume M = (N,E), with a set of nodes N and a set of ordered
pairs of nodes E.

The evaluation context is a set CN ⊆ N that is used in the evaluation. All components of a
selector are evaluated sequentially, and the evaluation context is updated with the result of the
evaluation after every step. When all components of a graph selector have been evaluated, the
result of the evaluation is the current evaluation context.

The initial evaluation context is CN = N for graph selectors like SPARQL. For selectors on
tree structures like XPath, the initial evaluation context only contains the root node.

The evaluation of a graph selector against a model, written s(M), is inductively defined as
follows:

p(M) is the set of nodes from N that are reachable from CN
using the path described by the path expression p,

s[c](M) is the set of nodes resulting from the evaluation of the graph
selector s that satisfy the condition c,

(s1|s2)(M) is the union of the nodes resulting from the evaluation of
the graph selectors s1 and s2, and

(s1&s2)(M) is the intersection of the nodes resulting from the evaluation
of the graph selectors s1 and s2.

5.3. MODELLING TOWERS OF META 119

Example 5.2.5 (Evaluating Graph Selectors against Models). Evaluated against the XML doc-
ument from listing 5.1, the four XPath selectors from example 5.2.3 return the following values:

1. all keyword elements within the knowledge element, namely the elements from lines 2, 6,
and 9,

2. all elements that have a term attribute with the value ‘intro’, namely the element from
line 9,

3. all elements that have a term attribute with either the value ‘intro’ or the value ‘introduc-
tion’, namely the elements from lines 6 and 9, and

4. all keyword elements that have a term attribute with a value that is the ref attribute of
some hasNarrower element, namely the elements from lines 6 and 9.

Evaluated against an OWL implementation of the semantic document model from ex-
ample 5.2.1, the three SPARQL selectors from example 5.2.3 return the following values:

5. all elements of type Example, namely f31 and f42,

6. the topics of all examples, namely “Datastructure” and “Binary Tree”, and

7. all elements of type Definition or Example, namely f21, f41, f31, and f42.

In general, a graph selector is used to obtain specific elements from a model. These elements
are then put into new relationships, and combined with other elements that were previously
selected. The resulting graph of elements from the existing model forms the new model. How
exactly the selected elements are put into relationships must be specified in another language,
for example XQuery or Java.

Yet another different processing step is the extraction of individual data points. Such data can
be useful for answering questions about a document, or it can be used as background knowledge,
for example in the form of statistical information about certain types of documents that helps
designing more efficient transformation rules.

Single data points can be obtained from a semantic document model by means of selectors,
as discussed before. Only now, these data elements are the desired result, not an intermediate
result to be assembled into a larger structure.

Conclusion

In this section, we have discussed how a single document model can serve as a source for different
tasks. We have seen how models for document verification can be obtained from many differ-
ent sources through a single semantic metamodel, and that these models are of higher quality
than verification models extracted directly from the source documents. We have also discussed
different methods for obtaining these models.

5.3 Modelling Towers of Meta

After making extensive use of domain knowledge in the form of ontologies, we will now regard
some questions about how such domain knowledge can be modelled. Specifically, we will examine
how to treat knowledge that spans several metalayers.

120 CHAPTER 5. PROCESSING DIGITAL DOCUMENTS

Definition 5.3.1 (Layer). A metalayer in a knowledge base is a set of classes. A knowledge base
may contain a sequence of several metalayers.

The data layer in a knowledge base is the set of individuals. None of these individuals may be
instantiated by another individual.

Example 5.3.2 (Layer). As a simple example, imagine a book, for example “The name of the
rose” by Umberto Eco. This specific book (or rather, an individual that represents the book)
is located on the data layer. It is an instance of the general concept “book”, which is located
on the first metalayer. “Book”, in turn, is an instance of a “concept” (in description logics
terminology), or a “class” (in semantic web terminology, which we will use in this instance).
“Class” is located on the second metalayer.
Omitting namespaces, the two instance assertions can be modelled in OWL as follows:

TheNameOfTheRose type Book .

Book type Class .

Definition 5.3.3 (Metaconflict). A metalayer contains a metaconflict iff it contains two classes
c1 and c2, where c1 is an instance of c2.
The only exception to this rule is the OWL class Class, which is also an instance of itself.
A knowledge base contains a metaconflict iff any of its metalayers contain a metaconflict.

Definition 5.3.4 (Maximal Metalayer). A metalayer mi is maximal iff the addition of any new
class c1 from the knowledge base to mi would either introduce a metaconflict in mi, or c1 is not
in a relationship with any class c2 from mi or mi−1, where mi−1 is the layer below mi.
A knowledge base is maximal iff all its metalayers are maximal.

Example 5.3.5 (Multiple Metalayers). Continuing example 5.3.2, the book “The name of the
rose”, represented by the individual TheNameOfTheRose, is an abstraction as well: it abstracts
from the concrete instances of this book, for example from the specific printed version in Umberto
Eco’s library (again, represented by an individual). In OWL, this reads as:

UmbertoEcosExemplar type TheNameOfTheRose .

TheNameOfTheRose type Book .

Book type Class .

Now, in addition the the data layer that contains UmbertoEcosExemplar, we have three
metalayers: one containing TheNameOfTheRose, one containing Book, and one containing Class.
All of these metalayers are maximal, and do not contain metaconflicts.

Definition 5.3.6 (Tower of Meta). A finite stack of knowledge bases tm = (kb0, . . . , kbn), where
no object from a knowledge base kbi instantiates a class from a knowledge base kbj with j < i, is
called a tower of meta. In other words, in a tower of meta, instantiation relationships are never
defined “downwards”.

A single knowledge base kb that can be split into a finite stack of knowledge bases tmkb =
(kb0, . . . , kbn) is also called a tower of meta, iff all instantiation relationships from kb are also
represented in tmkb and tmkb is a tower of meta.

Example 5.3.7 (Tower of Meta). All knowledge bases in this section are towers of meta.

We will disregard the top metalayer containing the notions of “class” or “concept”, as they are
a fixed part of the OWL or description logics formalisms, respectively. Description logics can only
deal with a single data layer and a single metalayer, as there is no mechanism to treat concepts as
instances of what could be called “second order concepts”. OWL does allow the specification of

5.3. MODELLING TOWERS OF META 121

multiple metalayers in OWL Full, but at a steep price: the semantics of OWL Full are not based
on description logics but on first order predicate logics, which makes the language undecidable.

OWL 2 introduces the concept of punning , which is basically a retraction of the unique name
assumption (cf. description 3.2.30) for individuals, classes, and properties. It does not, however,
have any impact on the semantics of a knowledge base: it is merely a modelling convenience
without logical consequences. Punning allows for the creation of an individual and a class with
the same name, but both are still treated as separate entities by inference services, leaving towers
of meta still without sufficient inference support.

A solution for this problem is to split a knowledge base with multiple metalayers into a stack
of multiple knowledge bases, each containing only one data layer and a single metalayer. The
first knowledge base in this stack contains the original data layer and the first metalayer. The
second knowledge base contains the first metalayer as its data layer, and the original second
metalayer as its only metalayer. This continues until all metalayers are contained in at least one
knowledge base.

Since each knowledge base in this stack only has a single metalayer, their semantics are
compatible with description logics. Inference services can now exploit this fact and can be
employed on each knowledge base separately. Finally, the knowledge bases can be merged again
to obtain the full range of modelled knowledge, including the newly inferred knowledge.

Example 5.3.8 (Splitting Ontologies). The second knowledge base from example 5.3.5 can be
split into two knowledge bases, the first

UmbertoEcosExemplar type TheNameOfTheRose .

contains the individual UmbertoEcosExemplar on the data layer, and the class
TheNameOfTheRose on the metalayer. The second knowledge base

TheNameOfTheRose type Book .

contains the individual TheNameOfTheRose on the data layer, and the class Book on the
metalayer.

Listing 5.4 shows an algorithm in Java-pseudo code for splitting a knowledge base. It is
defined on a Model data structure, named in reference to the data structure of the same name
in the Jena-framework (cf. section 3.3.6), that basically represents a list of OWL statements
consisting of subject, predicate and object (cf. section 3.3.3).

The algorithm consists of one primary and four auxiliary methods with the following signa-
tures:

I splitKnowledgeBase(Model) → List<Model>,

I getClasses(Set<Resource>, Model) → Set<Resource>,

I getIndividuals(Set<Resource>, Model) → Set<Resource>,

I getModel(Set<Resource>, Set<Resource>, Model) → Model, and

I containsOnlyTopElements(Set<Resource>, Model) → boolean.

The splitKnowledgeBase method (lines 1 through 21) collects the individuals of the original
data layer in line 2. These are the individuals that are not instantiated by anything and that
are in no class-specific relationships like specialisations. In line 6, it collects the classes that are
directly instantiated by any of these individuals, or that are equivalent to or are specialisations of
one of these classes. Line 7 initialises the result list of split knowledge bases. The first knowledge

122 CHAPTER 5. PROCESSING DIGITAL DOCUMENTS

base containing the original data layer and the first metalayer is added to the result in line 8.
The loop from line 9 to line 14 creates the additional knowledge bases. First, the old individuals
are replaced by the classes of the previous knowledge base (line 10) as a starting point for the
new data layer. Then, the classes that are directly instantiated by the new individuals are found
(line 11). Next, in line 12, the list of individuals is updated with all individuals that instantiate
any of the classes, no matter on which layer the individual originally appeared. Finally, a new
knowledge base is created and added to the result (line 13). This is repeated until no higher
metalayers are found, i.e., until the classes do not instantiate anything other than Class itself.
Now, the final for-loop in line 15 finds any “orphaned” classes, i.e., classes that are in a relation-
ship that defines them as classes instead of individuals, but that are not instantiated anywhere.
These classes are then added to the metalayer of the first (lowest) knowledge base (line 19).

The getClasses method (lines 23 through 29) returns all classes that are directly instantiated
by a given set of individuals. It then adds any classes that are equivalent to or a specialisation
of one of the classes already found, until no new classes are found.

The getIndividuals method (lines 31 through 35) returns all individuals that directly in-
stantiate any class from a a given set of classes.

The getModel method (lines 37 through 58) creates a new knowledge base with the given
individuals on the data layer and the given classes on the metalayer. It adds the statements from
the original knowledge base that involve any of the individuals, but it filters out all statements
indicating that an individual is also a class (lines 39 through 48). It also adds the statements
from the original knowledge base that involve any of the classes, but it filters out all statements
indicating that a class is also an individual (lines 50 through 56).

The containsOnlyTopElements method (lines 60 through 67) checks if a given set of classes
contains no classes that are also individuals. It specifically disregards the OWL class Class.

The algorithm relies on two sets of properties, namely the set transMeta = {type,
domain, range} that contains all OWL properties that cross the border between individu-
als and classes, and the set intraMeta = {subClassOf, equivalentClass, subPropertyOf,
equivalentProperty} that contains all OWL properties that remain within a metalayer.

1 public List splitKnowledgeBase(Model model) {

2 Set individuals = /*

3 get all objects from model that are

4 - not subject of a statement (s, p, o) where p ∈ intraMeta, and

5 - not object of a statement (s, p, o) where p ∈ intraMeta ∪ transMeta */

6 Set classes = getClasses(individuals , model);

7 List result = new List();

8 result.add(getModel(individuals , classes , model));

9 do {

10 individuals = classes;

11 classes = getClasses(individuals , model);

12 individuals = getIndividuals(classes , model);

13 result.add(getModel(individuals , classes , model));

14 } while (! containsOnlyTopElements(classes , model));

15 for (Object c1: model)

16 if (/* none of the models in result contains c1 */)

17 if (/* model contains a statement (c1, p, c2) or (c2, p, c1),
18 with p ∈ intraMeta */)

19 /* then add (c1, p, c2) or (c2, p, c1) to the metalayer of the first model

from line 8 */

20 return result;

21 }

22

23 private Set getClasses(Set individuals , Model model) {

24 Set result = /*

25 get all objects from model that an individual from individuals is an

5.3. MODELLING TOWERS OF META 123

instance of,

26 then add all objects that are in a intraMeta relationship with one of the

objects that have already been found

27 repeat until no new objects are found */

28 return result;

29 }

30

31 private Set getIndividuals(Set classes , Model model) {

32 Set result = /*

33 get all objects from model that instantiate a class from classes */

34 return result;

35 }

36

37 private Model getModel(Set individuals , Set classes , Model model) {

38 Set result = new Set();

39 for (Object i: individuals) {

40 Set statements = /*

41 get all statements (i, p, o) from model

42 - where p 6∈ intraMeta and

43 - where either p 6= type and o 6∈ classes or

44 p = type and o 6∈ individuals and o ∈ classes, and

45 get all statements (s, p, i) from model

46 - where p 6∈ intraMeta ∪ transMeta and

47 - where s 6∈ classes */

48 result.add(statements);

49 }

50 for (Object c: classes) {

51 Set statements = /*

52 get all statements (s, p, o) from model

53 - where c is either the subject or the object , and

54 - where p ∈ intraMeta */

55 result.add(statements);

56 }

57 return new Model(result);

58 }

59

60 private boolean containsOnlyTopElements(Set classes , Model model) {

61 if (/* classes contains an object o1,

62 where o1 is an instance of another object o2

63 and o2 is not the class Class */)

64 return false;

65 else

66 return true;

67 }

Listing 5.4: Algorithm for separating multiple metalayers

This algorithm, however, can only be employed if a clean separation of the metalayers is
possible on the knowledge base. In particular, it must be possible to separate the knowledge
base into one data layer and one or more metalayers that are maximal and do not contain any
metaconflicts. In addition, there must be a hierarchy between these layers that is defined by
instantiations: no individual may instantiate a class that is on a lower layer. In other words,
the original knowledge base must be a tower of meta. In particular, this precludes instantiation
cycles like

a type b .

b type a .

We believe this to be a reasonable restriction, since the semantics of such circular instanti-
ations are unclear and should therefore be avoided in modelling anyway.

Statements with arbitrary properties that cross layer boundaries other than those properties

124 CHAPTER 5. PROCESSING DIGITAL DOCUMENTS

in transMeta are disregarded by the algorithm. They do not prevent a clean separation of layers,
so they do not foil the algorithm. However, they have no clear place in the hierarchy of layers,
so they are omitted in the separated knowledge bases.

Paperback

UmbertoEcosExemplar1

Hardcover

Book

TheNameOfTheRose

UmbertoEcosExemplar2UmbertoEcosExemplar

Book

TheNameOfTheRose

data layer

meta-layer 1

meta-layer 2

(a) Strict separation of meta-

layers

(b) Instantiation across meta-layers

Figure 5.3: Metalayers of examples 5.3.5 and 5.3.9 (black arrowheads represent instantiation
relationships, empty arrowheads represent generalisation relationships)

Example 5.3.9 (Multiple Metalayers (2)). Let us extend example 5.3.5 so that the separation of
metalayers is more complex. Umberto Eco now owns two exemplars of his book, one in hardcover
and one in paperback format.

UmbertoEcosExemplar1 type TheNameOfTheRose .

UmbertoEcosExemplar1 type Hardcover .

UmbertoEcosExemplar2 type TheNameOfTheRose .

UmbertoEcosExemplar2 type Paperback .

TheNameOfTheRose type Book .

Hardcover subClassOf Book .

Paperback subClassOf Book .

Both Hardcover and Paperback are modelled as specialisations of Book.

How this affects the metalayers is illustrated in figure 5.3. Note, however, that this illustration
is not a normative partitioning of the knowledge base into metalayers but rather a simplified
illustration. When instantiating the actual tower of knowledge bases, several objects occur on
multiple layers across multiple knowledge bases. For example, UmbertoEcosExemplar1 will occur
on the data layer of the first knowledge base as an instance of TheNameOfTheRose, and on the
data layer of the second knowledge base as an instance of Paperback.

The algorithm will again produce two knowledge bases. The first one contains both exem-
plars as individuals, and all four classes on its metalayer. It does not, however, contain the

5.3. MODELLING TOWERS OF META 125

instantiation of TheNameOfTheRose as a Book.

UmbertoEcosExemplar1 type TheNameOfTheRose .

UmbertoEcosExemplar1 type Hardcover .

UmbertoEcosExemplar2 type TheNameOfTheRose .

UmbertoEcosExemplar2 type Paperback .

Hardcover subClassOf Book .

Paperback subClassOf Book .

The second knowledge base also contains the exemplars, but without instantiating
TheNameOfTheRose. Additionally, TheNameOfTheRose is included as an individual, instantiating
Book.

UmbertoEcosExemplar1 type Hardcover .

UmbertoEcosExemplar2 type Paperback .

TheNameOfTheRose type Book .

Hardcover subClassOf Book .

Paperback subClassOf Book .

We will now use a larger example to show how the algorithm from listing 5.4 works.

HomoSapiens

Alice

data layer

meta-layer 1

meta-layer 2

Bob Ceasar

Primates Carnivora CanisMammalia

Species Order Class Order Species

ManPersonWoman Dog

meta-layer 3

isMarriedTo owns

isBestFriendOf

Figure 5.4: Metalayers of example 5.3.10 (black arrowheads represent instantiation relation-
ships, empty arrowheads represent generalisation relationships, open arrowheads represent other
relationships)

Example 5.3.10 (Multiple Metalayers (3)). This example models a married couple and their

126 CHAPTER 5. PROCESSING DIGITAL DOCUMENTS

dog in a biological taxonomy. An illustration of its metalayers is shown in figure 5.4.

Alice isMarriedTo Bob .

Bob isMarriedTo Alice .

Alice type Woman .

Bob type Man .

Bob owns Ceasar .

Ceasar type Dog .

Woman subClassOf Person .

Man subClassOf Person .

Person type HomoSapiens .

Dog type Canis .

Dog isBestFriendOf HomoSapiens .

HomoSapiens subClassOf Primates .

Primates subClassOf Mammalia .

Canis subClassOf Carnivora .

Carnivora subClassOf Mammalia .

HomoSapiens type Species .

Primates type Order .

Mammalia type Class .

Canis type Species .

Carnivora type Order .

Species subClassOf Order .

Order subClassOf Class .

The algorithm first isolates all individuals, namely Alice, Bob, and Ceasar. It then lists all
classes that are instantiated by any of these individuals, namely Woman, Man, and Dog. It now
adds any equivalent classes or generalisations, namely Person, until no more classes are found.
From this, a knowledge base containing the individuals, classes, instantiation relationships, rela-
tionships between individuals, and relationships between classes is created:

Alice isMarriedTo Bob .

Bob isMarriedTo Alice .

Alice type Woman .

Bob type Man .

Bob owns Ceasar .

Ceasar type Dog .

Woman subClassOf Person .

Man subClassOf Person .

Now, the set of classes is used as a starting point to find the classes on the next metalayer:
all classes that are instantiated by any of the “old” classes are listed as the new set of classes,
namely HomoSapiens and Canis. Again, this set is extended by more general classes until no
more are found, resulting in the final set of classes {HomoSapiens, Primates, Mammalia, Canis,
Carnivora}. For these classes, the instantiating individuals Person and Dog are found. A new
knowledge base is created:

Person type HomoSapiens .

Dog type Canis .

HomoSapiens subClassOf Primates .

Primates subClassOf Mammalia .

Canis subClassOf Carnivora .

Carnivora subClassOf Mammalia .

Again, the “old” classes serve as the basis for identifying the new ones: Species, Order and
Class. This time, the instantiating individuals are the same as the old classes, leading to the

5.3. MODELLING TOWERS OF META 127

following new knowledge base:

Dog isBestFriendOf HomoSapiens .

HomoSapiens type Species .

Primates type Order .

Mammalia type Class .

Canis type Species .

Carnivora type Order .

Species subClassOf Order .

Order subClassOf Class .

Proposition 5.3.11 (Correctness of the Algorithm). We will show that the algorithm satisfies
three basic properties for knowledge bases that are towers of meta:

1. it constructs a stack of knowledge bases that fulfilles the tower of meta properties,

2. none of the knowledge bases in this stack contains a metaconflict, and

3. each knowledge base in this stack is maximal.

Proof of Proposition 5.3.11, Item 1. The algorithm creates a stack of knowledge bases
(kb0, . . . , kbn), the first (lowest) in line 8, and the others in line 13. Since the bottom know-
ledge kb0 base may instantiate objects from any other knowledge base kbi (i > 0), we only need
to regard the knowledge bases created in line 13.

The only instantiation relationships integrated into a knowledge base kbi are defined in
line 40ff., and line 44 explicitly states that only elements from the set of classes may be in-
stantiated. So it remains to be shown that if a class is instantiated in kbi, it does not also occur
in any kbj , with j < i.

Assuming that such a class c, instantiated by an individual o, exists in kbi, and that c
also occurs in a kbj (j < i), then there must exist a sequence of objects (o0, . . . , om), with o0
instantiating both c and o1, ok instantiating ok+1, and om instantiating c.

This sequence must exist, because for any object to be placed on the metalayer of a knowledge
base kbk, it must be instantiated by an object that was on the metalayer of knowledge base kbk−1
(lines 24 and 10). For c to be on the metalayer of kbj , o0 must exist (with possibly o0 = o or
o1 = c). For c to be on the metalayer of kbi, om must exist (with possibly om = o0 or om = o).
For om to be on the data layer of kbi, it must be on the metalayer of a knowledge base below
kbi, for example kbi−1. For om to be on the meta layer of kbi−1, om−1 must exist, and so forth.
This is illustrated in figure 5.5.

However, if this sequence exists, then o0 as an instance of c must be in kbi. But then
there is an instantiation relationship from kbj to kbi (o0 instantiating c) and and instantiation
relationship from kbi to kbj (o0 instantiating o1). This violates the precondition that the original
knowledge base is a tower of meta, because it precludes such cycles. Therefore, no such class c
may exist.

Proof of Proposition 5.3.11, Item 2. No knowledge base created by the algorithm can contain
two classes c1 and c2 on its metalayer, with c1 instantiating c2. This is ensured in line 44, which
explicitly forbids the instantiation of a class on the same metalayer.

Proof of Proposition 5.3.11, Item 3. Every knowledge base kbi created by the algorithm contains
all classes that are either in a relationship with another class from kbi, or with an individual
from the data layer of kbi. This is ensured by lines 26 and 33, respectively.

128 CHAPTER 5. PROCESSING DIGITAL DOCUMENTS

meta-layer j

meta-layer j+1

meta-layer i-1

o0

meta-layer i

o1

om-1

om

c

o

c

o

o0

kbj

kbj+1

kbi-1

kbi

...

Figure 5.5: Metalayers and knowledge bases (black arrowheads represent instantiation relation-
ships)

Proposition 5.3.12 (Runtime Complexity of the Algorithm). The complexity of the algorithm
is bounded by O(|o|2 · |s|), with |o| the number of objects and |s| the number of statements in the
knowledge base.

In other words, splitting a suitable knowledge base into a tower of meta with the algorithm
shown in listing 5.4 requires effort that is cubic in the size of the original knowledge base.

Proof of Proposition 5.3.12. The algorithm is dominated by its while-loop (lines 9 through 14).
In the worst case, each object in the original knowledge base is on a separate layer. In this case,
the loop has to be executed |o| times, with |o| the number of objects in the knowledge base.

The complexity of line 11 is determined by the getClasses method. First, for each object
in a given set, it has to check statements that involve this object. This results in at most |o| · |s|
execution steps, with |s| the number of statements in the knowledge base. Then, for each object
that has been identified as a class, the method has to find statements that connect this object
to other classes. This process is repeated at most |o| times, resulting in a maximum of |o|2 · |s|
steps.
This can, however, be reduced to |o| · |s| because only newly found classes need to be scrutinised
again. This reduces the maximum number of objects for which statements need to be checked
from |o|2 to |o|, since no object needs to be looked at twice.
This results in a total upper bound of O(|o| · |s|+ |o| · |s|) = O(|o| · |s|) for the getClasses method.

For line 12, the complexity is determined by the getIndividuals method, which for each
object in a given set has to check all statements involving said object. This makes O(|o| · |s|) an
upper bound for the getIndividuals method.

The getModel method determines the complexity of line 13. This method has to iterate twice
over sets of objects and regard statements for each object, leading, again, to an upper bound
complexity of O(|o| · |s|+ |o| · |s|) = O(|o| · |s|).

5.3. MODELLING TOWERS OF META 129

For similar reasons as the getIndividuals method, the containsOnlyTopElements method
has an upper bound of O(|o| · |s|).

In total, the complexity of the algorithm is bounded by O((|o|·|s|+|o|·|s|+|o|·|s|+|o|·|s|)·|o|) =
O(|o|2 · |s|).

Conclusion

In this section we have discussed a challenge in modelling complex worlds. We have presented a
novel approach to dealing with this challenge under certain conditions and have given an effective
and efficient algorithm that implements the approach.

130 CHAPTER 5. PROCESSING DIGITAL DOCUMENTS

Chapter 6

Background Knowledge

In chapters 4 and 5, we have already made extensive use of background knowledge. We have seen
how background knowledge, formalised as an ontology, can be used to enrich document models.
Specifically, semantic document models make use of two background knowledge ontologies: the
structural ontology OS , and the terminological ontology OT . We have also seen how background
knowledge can enable a transformation process between document models, specifically in the
form of a keyword taxonomy XK and a style taxonomy XS used in transformation rules.

In this chapter, we will explore the notion of background knowledge in more detail, with
particular focus on how to obtain and formalise background knowledge.

So far, we have only seen background knowledge in the form of ontologies. In general, however,
background knowledge can exist in many other forms, most of which are not formalised. The
transformation rules introduced in section 5.1, for instance, make use of background knowledge
as part of the transformation logic. Not only do they use taxonomical knowledge, but knowledge
about the composition of the document models is also incorporated directly into the design of
the rules.

Description 6.0.13 (Background Knowledge). Background knowledge is knowledge about an
entity, a process, or a relationship that is not explicitly contained within its object.

Example 6.0.14 (Background Knowledge). The ontologies OS and OT from example 4.2.15,
the ontologies OS and OT from example 4.2.36, and the taxonomies XK from example 5.1.1 and
XS from example 5.1.4 are formalisations of background knowledge. The transformation rule in
example 5.1.18 contains background knowledge about how the structure of a base document model
can best be transformed into a semantic document model.

Description 6.0.15 (Domain Knowledge). Domain knowledge is knowledge that is specific for
a domain, and that is potentially only valid there. Some background knowledge is specific to
a domain, and some domain knowledge is also background knowledge. Therefore, sometimes
domain knowledge can be used as background knowledge.

Example 6.0.16 (Domain Knowledge). As discussed in section 4.2.1, both ontologies OS and
OT from example 4.2.15 are domain knowledge, and more specifically, domain specific background
knowledge.

131

132 CHAPTER 6. BACKGROUND KNOWLEDGE

6.1 Obtaining Knowledge from Wikipedia

Social collaboration projects offer a large source of knowledge about many different domains.
They are created by volunteers, who are often either interested laypersons or professionals in
certain domains. In the latter case, they bring valuable expertise in their domain to the project.

However, not all information contained in such a social collaboration project is necessarily
correct. Human error is not always detected (and corrected) immediately. For some topics
there are also different opinions, and often not all of them can be integrated into the project.
Sometimes only a single opinion can be implemented, even if there is no general consensus on
which opinion is the “correct” one, or if there even is a correct opinion. For very controversial
issues, where contributors cannot agree on a subject that they feel strongly about, sabotage or
so-called “edit wars” can happen, with different users continuously overwriting contributions of
others.

Diverging or evolving options can lead to content changes in a project over time, so the
“knowledge” contained in such a project is not fixed (cf. also the discussion on fixed vs. fluid in
section 4.1).

Wikipedia is currently the largest and most well-known social collaboration project. Through
its size, especially through the number of contributors, it can act as a normative reference. A
huge number of people use and implicitly trust the content of Wikipedia, which reinforces this
interpretation. In mid-2012, the German district court in Tübingen ruled in favour of Wikipedia,
citing that it served the public interest of supplying information1. Different from standardisation
bodies or many other normative authorities, Wikipedia’s supposed normativity has not been
artificially created and is not supported by contracts or laws, but has emerged naturally and is
silently accepted in many cases.

Yet even (or maybe especially) a project as large as Wikipedia is not free of factual errors,
omissions, misconceptions, or misrepresentations [Dal09]. Some options of dealing with this are
shown in section 6.1.1. Wikipedia also suffers from the issue of multiple conflicting opinions on
topics, as named above.

These issues also apply to its category structure, which makes the categorisation (or classific-
ation) somewhat arbitrary. It can be argued that classification systems are always arbitrary or
dependent on a cultural domain. Jorge Luis Borges illustrates this in his 1942 response to a 1668
work of John Wilkins [Wil68], which he takes ad absurdum by listing a completely ridiculous
(yet factually correct) taxonomy [Bor99].

This means, however, that projects like Wikipedia do not actually contain “hard” knowledge.
They contain a soft form of knowledge that represents a best-effort approach, or the current
consensus on some data. It might be questioned if something like “hard” knowledge even exists,
or at least if it can be produced with any reliability by fallible humans. Even “hard” facts like
measurements or historical data depend on the reliability of instruments, on the correctness of
scientific theories, and on the reliability of historical sources.

Science does not aim at establishing immutable truths and eternal dogmas; its aim is to
approach the truth by successive approximations, without claiming that at any stage final
and complete accuracy has been achieved.” – Bertrand Russel

We will, however, delegate this discussion into the realm of philosophy and simply recognise

1File number 7 O 525/10, original quote “Mit dieser Gewährleistung korrespondiert insbesondere das Interesse
der Öffentlichkeit an einer ausreichenden Versorgung mit Informationen.”, available online at http://openjur.

de/u/582363.html, last accessed on 05-2013.

http://openjur.de/u/582363.html
http://openjur.de/u/582363.html

6.1. OBTAINING KNOWLEDGE FROM WIKIPEDIA 133

that most human knowledge is prone to be incomplete or even erroneous. Further discussion can
for example be found in [Röt99].

How does this impact our attempt to obtain background knowledge from Wikipedia? Primar-
ily, it means that all results based on this background knowledge must be taken with a grain of
salt as they may not be entirely reliable. However, since virtually all (background) knowledge
may contain errors, this is not really anything new. At the same time, it can even be advantage-
ous when changes in how events or relations are commonly perceived, or simple factual changes,
also make their way into our document models.

Before we continue, we will give a simplified definition of Wikipedia that we will use through-
out this section.

Definition 6.1.1 (Wikipedia). Wikipedia in a language l is a tuple wl = (Cl, sl, Al, rl,ml, nl, tl),
where

Cl is a set of categories,
sl ⊆ Cl × Cl is a sub-category relation,
Al is a set of articles,
rl ⊆ Al ×Al is a reference relation between articles,
ml ⊆ Al × Cl is a membership relation between articles and categories,
nl is a function that assigns to each article a ∈ Al and to each category

c ∈ Cl a name that is unique within Al or Cl, respectively, and
tl is a function that assigns to each article a ∈ Al its textual content.

The complete Wikipedia is a tuple W = (L,W, tc(l1,l2), t
a
(l1,l2)

), where

L is a set of languages,
W = {wl | l ∈ L} is a set of Wikipedias in different languages,
tc(l1,l2) ⊆ Cl1 × Cl2 , l1 6= l2 ∈ L, is a set of translation relations between

categories, and
ta(l1,l2) ⊆ Al1 ×Al2 , l1 6= l2 ∈ L, is a set of translation relations between

articles.

This definition ignores aspects of Wikipedia that are not relevant for our use case, such as
multiple versions of articles, or references to specific sections of an article.

Remark 6.1.2. Note that the sub-category relation sl is not nearly as strict in its semantics as
the sub-concept relation v in description logics. We will discuss this in more detail below.

Example 6.1.3 (Wikipedia). As an example, we will regard a partial version W =
(L,W, tc(l1,l2), t

a
(l1,l2)

) of the complete Wikipedia, reduced to the set of languages L =

{en, de, nl, fr, it, pl, es, ru, pt}, namely English, German, Dutch, French, Italian, Polish, Span-
ish, Russian, and Portuguese.

Table 6.1 shows some statistics for the categories of the various languages, as they were
found in Wikipedia at the end of May 2012. |Cl| represents the number of categories for language
l. ø|nl| represents the average length (number of characters) of category names for language l,
while ø||nl|| represents the average number of tokens, i.e., whitespace-separated words, in category
names. ø|tc(l,∗)| represents the average number of translations from a category in language l into

any other language from L. ø|sl| represents the average number of sub-categories for a category.
Similarly, table 6.2 shows some statistics for the articles of the various languages. |Al| rep-

resents the number of articles for language l. ø|nl| represents the average length of article names
for language l, while ø||nl|| represents the average number of tokens in article names. ø|ta(l,∗)| rep-
resents the average number of translations from an article in language l into any other language
from L. ø|ml| represents the average number of category membership relationships for articles,
and ø|rl| represents the average number of reference relationships for articles.

134 CHAPTER 6. BACKGROUND KNOWLEDGE

l |Cl| ø|nl| ø||nl|| ø|tc(l,∗)| ø|sl|
en 852,960 28.24 3.96 0.72 2.01
de 144,355 21.51 2.40 2.16 1.93
nl 67,531 20.17 2.55 3.55 2.66
fr 203,450 24.37 3.51 2.15 1.89
it 162,345 25.77 3.77 1.98 1.81
pl 97,835 24.32 3.12 2.92 1.77
es 176,116 25.46 3.85 2.29 1.96
ru 203,359 25.55 3.26 2.11 1.83
pt 137,137 23.53 3.60 2.65 1.69

Table 6.1: Statistics for the Wikipedia categories from example 6.1.3, as of 2012-05-30.

l |Al| ø|nl| ø||nl|| ø|ta(l,∗)| ø|ml| ø|rl|
en 9,489,965 19.51 2.80 0.53 1.57 14.68
de 2,627,753 18.03 2.11 1.23 1.90 17.72
nl 1,528,477 17.92 2.19 1.85 1.11 15.21
fr 2,703,643 21.28 2.82 1.33 1.48 19.54
it 1,396,641 18.25 2.59 2.28 0.93 28.24
pl 1,212,297 18.35 2.38 2.41 1.80 23.35
es 2,291,957 20.93 3.04 1.29 1.00 16.55
ru 2,067,504 20.25 2.44 1.25 1.12 15.87
pt 1,430,570 20.01 2.77 1.86 1.08 15.78

Table 6.2: Statistics for the Wikipedia articles from example 6.1.3, as of 2012-05-30.

In total, W contains 2,045,088 categories and 24,748,807 articles in nine languages.
It is interesting to note that the average number of translations from the English language

version is decidedly smaller both for categories and for articles than in other languages. This is
caused by the larger absolute numbers of categories and articles in English, leaving many with
no counterpart in other languages. Vice-versa, the number of translations for Dutch categories
is well above average, caused by the small number of existing categories in this language.

It is also noteworthy that articles in Italian have the highest number of references among
themselves, while at the same time they have the lowest number of category membership relation-
ships. Similar, if less extreme, peculiarities exist for most languages, which is most likely a result
of the evolving habits of different Wikipedia communities.

6.1.1 Preparing Wikipedia for Knowledge Extraction

We have explored several options of making Wikipedia more suitable for knowledge extraction,
i.e., of correcting omissions and removing unnecessary content [SPF10].

Example 6.1.4 (Preparing Wikipedia). Figure 6.1 (a) shows an excerpt of the English Wikipedia
as of 2009-11-30, with eight categories and five sub-category relationships. We will use this
example to illustrate the options discussed in this section. Figure 6.1 (b) shows the resulting
category structure after applying the extension approaches.

6.1. OBTAINING KNOWLEDGE FROM WIKIPEDIA 135

United States Law
United States

Department of Justice

Prisons in the
United States

Law Enforcement
in the United States

United States
Magistrate Judges

Law Enforcement
in Texas

Law Enforcement in the
United States by State

Law Enforcement
in Florida

sub-category

sub-category

sub-category

sub-category sub-category

(a) Original Wikipedia (English) categories as of 2009-11-30

United States Law
United States

Department of Justice

Prisons in the
United States

Law Enforcement
in the United States

United States
Magistrate Judges

Law Enforcement
in Texas

Law Enforcement
in Florida

sub-category

sub-category
sub-category

(b) Extended Wikipedia (English) categories as of 2009-11-30

sub-category

related

Figure 6.1: Wikipedia categories before (a) and after (b) extension

136 CHAPTER 6. BACKGROUND KNOWLEDGE

Utilising Translations (φtrans)

Our first step is to utilise other language versions to extend the sl, ml, and rl relations for a
language l. W.l.o.g., we will describe this approach for sl, but it can be used for ml and rl
analogously.

Let l ∈ L be a specific language, and c1, c2 ∈ Cl be two categories from wl for which no
sub-category relationship has been defined, i.e., with (c1, c2) /∈ sl. We will now see if such a
relationship has been defined in another language for translations of c1 and c2. If

∃l′ ∈ L : ∃c′1, c′2 ∈ Cl′ : (c1, c
′
1) ∈ tc(l,l′) ∧ (c′1, c

′
2) ∈ sl′ ∧ (c′2, c2) ∈ tc(l′,l),

then add (c1, c2) to sl. In other words, if two categories are in a sub-category relationship in
another language, they should also be in a sub-category relationship in the language l.

This approach depends on the accuracy of the tc relation, and on the assumption that omitting
a tc relationship is more likely than inserting an erroneous one. To mitigate the effects of these
dependencies, it is possible to require that a sl relationship exists in not one but two (or more)
other languages.

Unfortunately, such a requirement greatly reduces the effectiveness for the English language.
The English version of Wikipedia is by far the largest, which necessarily results in the lowest
average number of translations per category (cf. table 6.1), because many categories simply do
not exist in other languages. Therefore, requiring not one but two translations for a pair of
categories greatly reduces the number of candidates.

Example 6.1.5 (Utilising Translations to Extend Relations). The English Wikipedia wen as of
2009-11-30 contains two categories “United States Law” and “Prisons in the United States” that
are not in a sub-category relationship, as seen in example 6.1.4.

On the other hand, the French Wikipedia wfr of the same date contains two categories “Droit
des États-Unis” and “Prison aux États-Unis” that are in a sub-category relationship, and Wikipe-
dia contains two translation relationships (“United States Law”, “Droit des États-Unis”) ∈ tcen,fr
and (“Prison aux États-Unis”, “Prisons in the United States”) ∈ tcfr,en.

From this, we can infer that “Prisons in the United States” is a sub-category of “United States
Law”. Given the broad semantics of the sub-category relation, this can be regarded as accurate.

The complexity of φtrans is bounded by O(|Cl|2), because for every category (|Cl|), each
outgoing reference (sub-category relationship) has to be checked (|Cl|). The translations back
and forth can all be checked in constant time, leaving the complexity quadratic in the number
of categories. However, in practise, the number of outgoing references is strictly limited and can
be regarded as a constant factor (cf. table 6.1), leading to a more realistic complexity of

Θ(|Cl|).

Utilising Lexical Databases (φlex)

Our next approach uses a lexical database to find relationships based on semantic similarity.

Definition 6.1.6 (Lexical Database). A lexical database is an ontology with words as individuals,
and at least the roles synonym and related that are used to represent semantically equivalent
words and semantically similar words, respectively. Both roles are symmetric.

Example 6.1.7 (Lexical Database). Wordnet [Mil06] is a well-known lexical database for the
English language. Another powerful form of lexical databases are thesauri, such as the Wiktion-
ary2 project.

2http://www.wiktionary.org/, visited 05/2013

http://www.wiktionary.org/

6.1. OBTAINING KNOWLEDGE FROM WIKIPEDIA 137

Again, we will describe the approach for categories, but it can be similarly used on articles.
For the name n = nl(c) of a category c consisting of ||n|| words, let n[i] denote the ith word

of n, with 0 < i ≤ ||n||. We will disregard so-called stop words, words that carry no or little
relevance, such as “the”, “on”, or “is”.

Let OL = (∅, {synonym, related}, IL, XL) be a lexical database. For each pair of categories
c1, c2 ∈ Cl, we calculate a semantic similarity score s3(c1, c2) as follows, where n1 = nl(c1) and
n2 = nl(c2):

s3(c1, c2) =

∑||n1||
i=1

∑||n2||
j=1 sd(n1[i], n2[j])
||n1||+||n2||

2

This score determines a semantic similarity for each pair of words in the names of c1 and
c2 (numerator), normalised in relation to other scores by the average number of tokens of the
two names (denominator). As described in section 4.2, we will assume that every word is in a
grammatical base form.
We define the semantic distance sd(w1, w2) between two words as:

sd(w1, w2) =

 0.8 if w1 = w2 or synonym(w1, w2) ∈ XL

0.5 if related(w1, w2) ∈ XL

0.0 otherwise

The constants 0.8 and 0.5 have been chosen arbitrarily, but have been validated through
experiments on several thousand category names in multiple languages.

While other, more complex score functions might lead to even better results, the high quality
of the results obtained with s3 (see below) coupled with its low calculation cost make s3 a good
choice. In future work, we plan to compare the precision and efficiency of s3 with other score
functions, in particular with even simpler functions that trade precision for speed.

If the semantic similarity score for two categories is above a certain threshold that is empir-
ically determined for each language, then the two categories are considered to be related to each
other. For articles, this can be represented directly through references, using the rl relation. For
categories, this can be represented either as a mutual sub-category relationship sl(c1, c2) and
sl(c2, c1), which is consistent with the loose sub-category semantics discussed below, or it can be
used as confirmation of a sub-category relationship discovered in the first extension step outlined
above.

Example 6.1.8 (Utilising a Lexical Database to Extend Relations). The English Wikipedia wen

as of 2009-11-30 contains two categories “United States Department of Justice” and “United
States Magistrate Judges” that are not in a sub-category relationship, as seen in example 6.1.4.

Two words, “United” and “States”, occur in both category names. The words “Department”
and “Magistrate” have no relation to each other, and the stop word “of” is ignored. Finally, the
words “Justice” and “Judge” are found to be related according to Wordnet. This leads to a score
s3 of (0.8 + 0.8 + 0.0 + 0.5)/((4 + 4)/2) = 0.525. For the English Wikipedia, a threshold of 0.52
has been determined empirically, so the two categories are considered to be related.

Experiments have shown that this approach can only be used reliably if the respective category
names contain three words or more. Otherwise, there is not enough evidence to support any
perceived semantic relation. For instance, homonyms (i.e., words with the same spelling or
pronunciation but with different meaning) can lead to false positives if their occurrence is not
offset by a quantity of other words. This also necessitates great care when determining the
threshold.

138 CHAPTER 6. BACKGROUND KNOWLEDGE

As an example, regard the two categories “Parks and Commons in Edinburgh” and “Creative
Commons”. Not only do they share one word, but the same word, “commons”, is actually a
somewhat archaic word for “park”. This raises the score for this pair of categories to a respectable
0.52. Only because the second category name is too short for a meaningful analysis can it be
disregarded.

The score function is symmetric, i.e., s3(c1, c2) = s3(c2, c1) for categories c1, c2 ∈ Cl be-

cause
∑||n1||
i=1

∑||n2||
j=1 sd(n1[i], n2[j]) =

∑||n2||
j=1

∑||n1||
i=1 sd(n1[i], n2[j]) (commutativity of addition).

Therefore, each pair of categories only has to be regarded once, resulting in
∑|Cl|
i=1 |Cl| − i =

|Cl|2 − |Cl| · |Cl|+1
2 applications of the score function. This is bounded by O(|Cl|2).

The score function itself requires effort that is quadratic in the number of tokens in a category
(or article) name ø||nl||, which is a constant with an average value smaller than 4. The complexity
of the score function is thus only determined by the complexity of accessing the lexical database.
This complexity can be approximated as finding a role assertion inOL, which can be accomplished
with a binary search in O(log |IL|).

An upper bound for the overall complexity of extending a Wikipedia wl in a language l is
therefore

O(|Cl|2 · log |IL|).

If the lexical database can make use of an index structure, the complexity of an assertion
lookup for finding terms that are related to a given term is reduced to O(1), resulting in an upper
bound for φlex of

O(|Cl|2).

Using an inverted index on the category names further reduces the complexity. An inverted
index that maps words onto sets of categories containing this word allows us to only regard
pairs of categories that either have at least one word in common, or that use a synonym or
related word. In particular, for every category (|Cl|), for every word in this category (ø||nl||,
constant factor c1), we look up every synonym and related word in the lexical data base (constant
factor c2). The number of these related words is theoretically bounded by |IL|, the size of the
lexical database. However, in practice, this number is smaller than 20 in most cases, allowing us
to regard it as a constant factor as well (c3). Now, for each of these related words, we find the
categories that also contain one of these words using the inverted index (constant factor c4). This
leads to a lower and upper bound for the overall complexity for φlex of Θ(|Cl| · c1 · c2 · c3 · c4) =

Θ(|Cl|).

Unfortunately, while this method scales well, the numbers for |Cl| as well as some of the constant
factors are very high, which leads to very high absolute runtime costs (see below).

Removing Superfluous Categories (φremC)

Wikipedia, as an online encyclopaedia, has a structure that is optimised for browsing and viewing,
not for knowledge representation. This is apparent in categories whose sole purpose is the sorting
or some other visual re-representation of data. These categories usually have a super-category
whose content they arrange differently, for example ordering or grouping it by some criterion.
They are indicated by the keyword “by” in English, as in “Law Enforcement in the United States
by State”, or by the phrase “lists of”. Similar keywords exist for other languages.

Our third step is to remove these superfluous categories to optimise the structure for know-
ledge representation. This step is only applied to categories, but has ramifications for the relations
ml and sl, as well.

6.1. OBTAINING KNOWLEDGE FROM WIKIPEDIA 139

Superfluous categories must have a super-category with the same topic, but without the
specific ordering or grouping. In particular, a category named “X by Y ”, where X and Y
consist of one or more words, must have a super-category named “X” to be recognisable as
superfluous. Similarly, a category named “Lists of X” must have a super-category named “X”.
There are many categories that contain one or more keywords, but that are not just visual re-
representations of the content of another category. Most of these are ignored by our approach
(see below) because they lack the telling super-category.

If a category cx is recognised as superfluous, it is removed from Cl. Its super-category cp is
identified, and (cx, cp) is removed from sl. Then, all occurrences of cx in the sub-category and
article-membership relations sl and ml are replaced by cp. This means that all its sub-categories
and member articles are directly attached to its super-category.

Example 6.1.9 (Removing Superfluous Categories). The English Wikipedia wen as of 2009-11-
30 contains four categories “Law Enforcement in the United States”, “Law Enforcement in the
United States by State”, “Law Enforcement in Texas” and “Law Enforcement in Florida”. The
first is a super-category of the second, and the last two are sub-categories of the second, as seen
in example 6.1.4.

The category “Law Enforcement in the United States by State” can be recognised as a super-
fluous ordering category by its name pattern of topic-keyword-ordering condition and by the
existence of a super-category with the same topic. When removed, its two sub-categories become
direct sub-categories of “Law Enforcement in the United States”.

However, not all categories that appear to be superfluous at first glance are devoid of new
information. The category “Writers by Genre”, a sub-category of “Writers”, clearly contains
merely a grouping of the contents of its super-category. On the other hand, the category “Novels
by Jane Austen”, a sub-category of “Novels” may very well be regarded as carrying additional
information. It is not merely a grouping by author, but an attribution to a specific author.
However, this distinction is in the eye of the beholder and should be determined by the manager
of the knowledge base obtained from Wikipedia.

For reasons similar to those for φtrans, φremC is bounded by

Θ(|Cl|).

Removing Superfluous References (φremR)

The primary focus of Wikipedia is not to represent knowledge, but to make knowledge accessible
to its readers. This is a subtle but important difference. Next to superfluous categories as
discussed above, it also leads to many references between articles that – from a knowledge
representation perspective – are superfluous. These are references that expand on terms used
to describe the topic of an article, but that do not expand on the topic itself. We call these
references meta references.

Example 6.1.10 (Meta Reference). For example, an article about the “United States” (of Amer-
ica) states that its de facto national language is English, with references to “de facto”, “National
Language”, and “English”. While “English” is relevant to the topic, both “National Language”
and “de facto” contain meta information that is required to understand the assertions about the
United States, but that have no relevance for the content of the topic. Both references are meta
references.

Our forth and final step in preparing Wikipedia for knowledge extraction is to remove these
meta references. Our approach is to calculate a weight for every reference relationship that

140 CHAPTER 6. BACKGROUND KNOWLEDGE

indicates how strongly two articles are indirectly connected even without the direct reference.
This is based on the assumption that two topics that are semantically related are also strongly
connected in the Wikipedia graph structure. If this weight is above a certain threshold, then the
reference is retained; otherwise it is removed from rl.

There are several approaches to calculating weights for references between Wikipedia articles
in the literature. [MWM08, MW08, GHP10] define weights based on how strongly the categories
that the articles belong to are connected. [VTP08] define weights based on the number of common
categories, i.e., categories that both articles belong to. The score function s3 that uses a lexical
database to determine the semantic similarity can also be used to calculate weights for existing
references [SPF10].

In [Wil11], several such approaches were analysed for the plausibility of their results, their
efficiency, and their applicability. Using the semantic similarity score depends on the quality and
availability of the lexical database, which differs for various languages. It is also not applicable
to short topic names. Additionally, it can only be a positive indicator, but not a negative one:
two topic names that do not contain any common or related words may well be related anyway.
The best overall results are obtained by combining two of the connection-based approaches.

There are, however, some cases where these approaches are either ineffective, or require very
careful adjustment of the threshold value, because some meta references are very common across
a large number of articles with similar topics. For example, in the Wikipedia as of 2009-11-30,
most articles about a city contained the city’s size in square kilometres, with a meta reference
to the article on “Metre”. Only the weighting function defined in [VTP08] gives these references
a low score (the approach using lexical databases is not applicable because the article name
“Metre” is too short).

Our assumption that semantic relation correlates with strong connection in the graph can
be substantiated for most articles and is indeed made – even if often only implicitly – in the
literature. Yet it is impossible to entirely rule out cases where this assumption does not hold.
Combining multiple weighting functions can mitigate this effect.

In general, all of the approaches for extending and preparing Wikipedia can introduce new
errors, because they rely on data that may already contain errors, and because they can only
heuristically try to recognise the intentions of the authors. None of the approaches can offer
more than a best guess on why a certain reference or category membership was defined.

Evaluation and Results

Evaluating Wikipedia-related approaches is generally challenging due to the immense volume
of data involved, but especially so for any qualitative evaluation. A quantitative evaluation is
mainly challenging in terms of time and space requirements.

All time measurements in this section were performed on a computer with an Intel Core2
2.1 GHz CPU and 2 GB of working memory. The operating system was Windows 7 (x64), with
Java 7 installed. Microsoft SQL Server 2008 R2 was used as a database server.

For Wikipedia as of 2009-11-30, the XML data dumps for categories and articles available
at http://dumps.wikimedia.org/3 require 25.5 GB and 6.7 GB harddrive space alone for the
English and German versions, respectively. They contain 528, 128 and 75, 454 categories, and
1, 022, 255 and 130, 127 sub-category relationships, respectively.

In the first step, φtrans, we identified 146, 912, or 14 %, additional sub-category relationships
for the English Wikipedia. This took 178 seconds. For the German Wikipedia, we identified
59, 514, or 46 %, new sub-category relationships in 111 seconds. The large difference in relative

3visited 05/2013

http://dumps.wikimedia.org/

6.1. OBTAINING KNOWLEDGE FROM WIKIPEDIA 141

effectiveness (14 % vs. 46 %) is caused by the relatively small number of translations available for
the English Wikipedia versus the relatively large number for the German Wikipedia. A similar
distribution was also apparent in table 6.1 for the Wikipedia as of 2012-05-30.

The second step, φlex, yielded 144, 318, or another 14 %, new sub-category relationships for
the English Wikipedia, but only 3, 723, or 3 %, for the German Wikipedia. This can be attributed
directly to the different lexical databases employed: the Wordnet database for English, which is
both very large and of high quality, and an early version of the OpenThesaurus4, which in 2009
was still very small. The flip side is that finding the new relationships took over 15 hours for
the English language, including about 5 minutes for creating an inverted index, but less than a
minute for the German language.

During step three (φremC), 22, 702, or 4.3 %, and 1, 278, or 1.7 %, categories were removed
from the English and German Wikipedia, respectively. The smaller percentage for the German
Wikipedia reflects the smaller number of sorted aggregation pages there.

Due to the huge time and main-memory requirements for step four (φremR), we were unable
to complete measurements for the full Wikipedia. We did, however, succeed in making tests for
a subset of Wikipedia, as described in section 6.1.2.

We considered two possibilities for measuring the precision of our approach, i.e., the number
of new relationships we identified in steps one and two that would not hold up to closer scrutiny.

Formally, we define the precision of an approach a as p(a) =
|sl|−|serrl |
|sl| , where serrl are those new

sub-category relationships that are erroneous.

The first possibility is to actually write the new relationships into the live Wikipedia, and
see how many have been removed by the community after a certain time. This should give an
indication of how many of these relationships do not have merit. However, this approach is
clearly very problematic from an ethical point of view, so we refrained from using it.

The second possibility is to extract a relatively small random sample from the newly generated
data and have it manually evaluated by volunteers. To this end, we found four independent users.
Each of them was given a different random sample of 100 sub-category relationships, with the
task to rate their plausibility on a scale of 1 (very plausible) to 4 (completely implausible). We
used an even number of choices to discourage “I-am-not-sure” choices and to force the users to
decide in favour or against a specific relationship.

Calculating the sum of all 1 and 2 choices, and normalising it by the sample size yielded a
precision value in the range [0, 1], as desired. We then calculated the average precision value øp
for all users. For the English Wikipedia, the results were øp(φtrans) = 0.96 and øp(φlex) = 0.99,
with similar values øp(φtrans) = 0.96 and øp(φlex) = 0.98 for the German Wikipedia.

For information extraction approaches, these values are very encouraging, especially con-
sidering that knowledge representation is very often a matter of opinion. Additionally, errors
and inconsistencies between language versions in Wikipedia may contribute to the slightly lower
values for øp(φtrans).

Unfortunately, there is no “perfect” and “complete” version of Wikipedia (even if such a
thing could exist) against which we could compare our results against. Therefore, calculating an
absolute recall value, i.e., the number of new relationships that were missed by steps one and
two, is impossible.

A possible way to at least get an indication of the recall is to apply our approach to an old
data set, and then compare it with a more recent version. This assumes, however, that a new
version is automatically a “better”, i.e., more correct and complete, version. While this does not
have to be the case, we also realised that there may be large structural changes in Wikipedia

4http://www.openthesaurus.de, visited 05/2013

http://www.openthesaurus.de

142 CHAPTER 6. BACKGROUND KNOWLEDGE

over time that do not constitute actual “corrections”, but merely a different way to represent
the data.

For example, the category structure around “United States Law”, as described in ex-
ample 6.1.4 for 2009-11-30, does not exist in this form any more in the Wikipedia as of 2012-05-30.
This greatly decreases the value of such a comparison. However, a total increase of 28 % and
49 % for English and German, respectively, is a strong indication that our approach has merit,
even if it would miss some relationships.

We decided against a formal evaluation of step three (φremC), because its results are too sub-
jective. In various discussions we found vastly diverging opinions on what constitutes superfluous
data and what does not. We will therefore leave it in the hands of knowledge engineers to decide
on a case-by-case basis whether or not to employ this step.

Finally, we tested the suitability of Wordnet as a lexical database. We used a list of word-
pairs with a manually judged degree of how closely they are related, as a point of reference. This
list was created in [RG65], where a number of students were paid to manually judge the degree
of relatedness for each word pair. This score was then averaged over the number of students.
The original score, called “judged synonymy”, was in the range of [0, 4], which we reduced to
[0, 1] (called “adjusted judged synonymy”, or AJS) as shown in table 6.3.

Because the score s3 is obtained in a completely different way, we could not make a direct
comparison between the values for s3 and AJS. Instead, we sorted the sample set twice, once
according to the order imposed by s3, and once according to the order order imposed by AJS.
We then compared the relative order of samples for each sorting, noting where s3 put a sample in
a different position than AJS. We disregarded the relative order of samples with identical values.

First, we calculated the score s3 for each of the 65 word pairs given in table 6.3, resulting in
nine word pairs with a score of 0.8, eleven word pairs with a score of 0.5, and 45 pairs with a
score of 0. Out of the top nine, there are three pairs that were ranked lower by AJS; four pairs
out of the middle tier were ranked either lower or higher by AJS; and three pairs out of the 0-tier
were ranked higher by AJS. Thus, ten word pairs in total were ranked differently between using
the Wordnet-based score and the “judged synonymy” based score.

While most of these rankings were not too different, there were a few notable exceptions. For
example the pair (“serf”, “slave”) has an AJS of 0.865, but scored 0 for s3. In Wordnet, the word
“serf” is related to “thrall”, which in turn is related to “bond servant”, which is finally related
to “slave”. This indirect relationship is stretched too far to be automatically recognisable.

Additionally, Wordnet does not provide a weight for relationships, only a discrete yes/no
value. This is apparent for the pair (“boy”, “lad”). According to Wordnet, they are not syn-
onyms, but related, resulting in an s3 score of 0.5. However, while they may not be exactly
synonymous, they are very close to it, which is reflected by an AJS value of 0.955. This degree
of precision cannot be captured by Wordnet.

Now, we extended our sample base to see how longer terms would influence the results. We
generated a random sample of 64 term pairs, each term consisting of four words. We then
calculated both s3 and a normalised AJS for each pair. For example, for the pair (“cushion bird
hill gem”, “jewel woodland mound jewel”), we calculated an s3 score of 0+0+0.5+0.8

4 = 0.325, and
a normalised AJS of 0.1125+0.31+0.8225+0.985

4 = 0.5575.
The longer term length increased the effect observed for the first sample set: 39 out of 64

samples were in a different order. This increase is caused by the larger number of different values
for the s3 score: when only two words were compared, 0, 0.5, and 0.8 were the only possible
values for s3. For two terms of four words each, the possible number of values is much larger.
Therefore, when comparing the order of the samples sorted by s3 and AJS, respectively, the
number of samples with the same position is smaller. For instance, with only two words, a large

6.1. OBTAINING KNOWLEDGE FROM WIKIPEDIA 143

number of samples had an s3 score of 0. These samples all held the same relative position, greatly
decreasing the possibilities for inconsistencies with the order defined by AJS.

These results show that there are obviously differences of opinion how linguistic relationships
are to be weighted, or at least how they are to be represented. This also leads to differences in
how Wikipedia relationships should be weighted, making the selection of a lexical database an
important step that has to be undertaken carefully.

6.1.2 Harvesting Wikipedia

There have been a number of attempts to gather knowledge from Wikipedia.

[HSB07] argue that Wikipedia articles and categories have names that are unambiguous in
the domain of Wikipedia and can thus be used as entities in an ontology. They further argue
that these names can be understood intuitively by humans, which makes them even more useful
for knowledge representation purposes.

The “Semantic WikiMedia” is an extension of the MediaWiki framework proposed by
[KVV+07] that attempts to represent semantic knowledge explicitly in the data. It lets au-
thors add semantic information to wiki pages, enriching links and text fragments by annotating
semantic data. The drawback of this approach is that content authors need to handle the
semantic representation manually, which makes authoring harder, more time consuming, and
introduces new possibilities for human error. Also, the amount of semantic knowledge that is
actually available is currently rather small.

In Wikipedia, there are templates for representing content of certain types, such as default
data points for cities, plants, or people. [AL07, BLK+09] utilise this standardised encoding of
information to extract data tuples. This data can be used to augment an existing ontology.

Similarly, [WW08] creates a knowledge base from Wikipedia articles based on templates,
using default data points as properties. Similar attributes, Google query results, and Wordnet
relationships are used to infer additional relationships between articles.

[SKW07] proposes YAGO, an OWL-based ontology that uses both Wikipedia and Wordnet
as sources, representing Wikipedia categories and Wordnet synsets as classes, Wikipedia articles
as objects, and category and synset relationships as properties between classes. This represent-
ation makes it incompatible with standard description logics (cf. section 5.3). While it derives
additional properties for objects from articles, it does not attempt to harmonise the sets of classes
derived from Wikipedia and Wordnet, respectively, leaving them entirely separate.

[NS08] posit that new category relationships are encoded in category names. They use gram-
matical rules of the English language to analyse these names and extract “is-a”, “narrower-than”,
and “related” relationships with good reliability. This process can be used to complement our
own approach.

[dMW10] attempt to extract a taxonomy from Wikipedia. Their focus is on creating a multi-
lingual taxonomy, rather than using different languages to improve a single language knowledge
base. Similar to YAGO, they try to integrate Wordnet into their results.

Mapping the Wikipedia structure onto an ontology structure is – at first glance – straightfor-
ward: categories are mapped onto concepts, articles onto individuals, sub-category relationships
onto sub-concept relationships, membership relationships onto concept assertions, and reference
relationships onto role assertions.

While such a simple mapping will suffice for large parts of Wikipedia, it is unsuitable in
general. The sub-category relation implies a similar semantics to that of the sub-concept relation,
but in reality this semantics is neither formally defined nor is it consistently applied. This
observation has been substantiated by [PS07].

144 CHAPTER 6. BACKGROUND KNOWLEDGE

Word A Word B AJS Word A Word B AJS
cord smile 0.0050 hill woodland 0.3700
rooster voyage 0.0100 car journey 0.3875
noon string 0.0100 cemetery mound 0.4225
fruit furnace 0.0125 glass jewel 0.4450
autograph shore 0.0150 magician oracle 0.4550
automobile wizard 0.0275 crane implement 0.5925
mound stove 0.0350 brother lad 0.6025
grin implement 0.0450 sage wizard 0.6150
asylum fruit 0.0475 oracle sage 0.6525
asylum monk 0.0975 bird crane 0.6575
graveyard madhouse 0.1050 bird cock 0.6575
glass magician 0.1100 food fruit 0.6725
boy rooster 0.1100 brother monk 0.6850
cushion jewel 0.1125 asylum madhouse 0.7600
monk slave 0.1425 furnace stove 0.7775
asylum cemetery 0.1975 magician wizard 0.8025
coast forest 0.2125 hill mound 0.8225
grin lad 0.2200 cord string 0.8525
shore woodland 0.2250 glass tumbler 0.8625
monk oracle 0.2275 grin smile 0.8650
boy sage 0.2400 serf slave 0.8650
automobile cushion 0.2425 journey voyage 0.8950
mound shore 0.2425 autograph signature 0.8975
lad wizard 0.2475 coast shore 0.9000
forest graveyard 0.2500 forest woodland 0.9125
food rooster 0.2725 implement tool 0.9150
cemetery woodland 0.2950 cock rooster 0.9200
shore voyage 0.3050 boy lad 0.9550
bird woodland 0.3100 cushion pillow 0.9600
coast hill 0.3150 cemetery graveyard 0.9700
furnace implement 0.3425 automobile car 0.9800
crane rooster 0.3525 midday noon 0.9850

gem jewel 0.9850

Table 6.3: Word pairs with their respective Adjusted Judged Synonymy (AJS), after [RG65].

6.1. OBTAINING KNOWLEDGE FROM WIKIPEDIA 145

Example 6.1.11 (Wikipedia Relation Semantics). Regard, for example, the category “Cru-
sades”, which as of 2012-05-30 is a sub-category of “History of Europe”. This, in turn, is a
sub-category of “Europe”, which is a sub-category of “Continents”. Applying a sub-concept se-
mantics, this would make every crusade into a specialisation of a continent, which is clearly
inconsistent with the intended semantics of the knowledge represented in these categories.

Additionally, mapping membership relationships onto concept assertions would make the
“Holy Lance”, an article in the “Crusades” category, into a crusade and – combined with the
sub-concept semantics, into a continent.

Instead, we map the Wikipedia structure onto an ontology with less stringent semantics.

Definition 6.1.12 (Wikipedia Ontology). Let OW = (CW , RW , IW , XW) be an ontology with
CW = {Term} and
RW = {hasNarrower, hasMember, hasReference}.

Every category name nl(c) from Wikipedia is mapped onto an individual ic ∈ IW , and every
article name nl(a) is mapped onto an individual ia ∈ IW . For every individual i ∈ IW , a concept
assertion Term(i) is added to XW .

Sub-category relationships sl(c1, c2) are mapped onto role assertions hasNarrower(ic2 , ic1),
membership relationships ml(a, c) are mapped onto role assertions hasMember(ic, ia), and refer-
ence relationships rl(a1, a2) are mapped onto role assertions hasReference(ia1 , ia2).

Then OW is a Wikipedia ontology. It can be implemented, for example, using the SKOS
model.

Example 6.1.13 (Wikipedia Ontology). Recall the extended Wikipedia categories from fig-
ure 6.1 (b). Then O6.1 (b) = (C,R, I,X) is a Wikipedia ontology, with

C = {Term},
R = {hasNarrower, hasMember, hasReference},
I = {United States Law,Prisons in the United States, . . .}, and
X = {Term(United States Law),

Term(Prisons in the United States),
. . . ,
hasNarrower(United States Law,Prisons in the United States),
. . .}.

While a Wikipedia ontology allows for fewer assertions to be inferred from the knowledge
base than the straightforward mapping mentioned above, it is still sufficient to serve as a
keyword taxonomy XK = (CK , RK , IK , XK) (cf. section 5.1) or as a terminological ontology
OT = (CT , RT , T,XT) (cf. section 4.2.1).

However, a full Wikipedia ontology is far too large to be used in practice. We therefore
extract a “core” of knowledge, centred on a specific topic. Starting from the article representing
this topic, we gather all articles and categories that are in a direct or indirect relationship with
the article. Every direct relationship must have a weight above a minimal threshold tmin to
ensure that it is relevant. Every indirect relationship must have an aggregated weight over all
its components that is below a maximal threshold tmax to ensure that it is not too far removed.

Specifically, we use the centre article as the initial “core”, and then successively select all
articles that are referenced by an article in the core and that also share at least one category
with an article from the core. This is repeated up to a specific distance from the centre element.

Formally, we use a weight function w that assigns a value of 1 to two articles a1, an if
(a1, an) ∈ rl, a1 is in the core, and an shares a category with an article in the core. It assigns a

value of
∑n−1
i=1 w(ai, ai+1) if there is a shortest sequence of articles (a2, . . . an−1) with (ai, aj) ∈ sl

for 1 ≤ i < j ≤ n. Otherwise, the function assigns a value of 0.

146 CHAPTER 6. BACKGROUND KNOWLEDGE

tmax = 2 tmax = 3
l Centre article Time |Art.| |Cat.| Time |Art.| |Cat.|

pih “List of Countries” 0.6 s 14 33 2.8 s 70 343
sco “Forture 500” 1.7 s 1 6 7.1 s 111 752
sco “List of Countries” 1.2 s 2 4 38.5 s 799 6,536
en “Ballroom Dance” 340.3 s 7 40
en “Data Structure” 195.3 s 14 401
en “Computer Science” 2,661.8 s 104 8,498
en “Germany” 9,602.4 s 282 26,578

Table 6.4: Statistics for Wikipedia cores, as of 2012-05-30.

Empirically, we have obtained useful results for a minimal threshold tmin = 1 and a maximal
threshold tmax ∈ [2, 3]. This creates a core of relevant articles that are at most three “hops”
removed from the centre. However, there is still a need for manual corrections, leaving room for
optimisations. Possible approaches are additional weight functions as cited in section 6.1.1, step
four, and a combination with methods cited at the beginning of this section.

Table 6.4 shows extraction times and sizes of Wikipedia cores for several centre articles in
three languages. As of 2012-05-30, the Norfolk (pih) version of Wikipedia has 145 categories and
1515 articles, and the Scots (sco) version has 13,659 categories and 89,917 articles, making them
good candidates for evaluation purposes. We chose English (en) as the third language, because
it is the largest Wikipedia to date.

As centre articles for Norfolk and Scots, we used articles with a high number of references
from other articles, i.e., with a high indegree. These articles are in both instances the “List of
Countries”, “Lyst o’ Kuntrii” in Norfolk with an indegree of 447, and “Leet o Kintras” in Scots
with an indegree of 390. In Scots, we also used the “Fortune 500” article, which has an indegree
of 748. For the English Wikipedia, we used four articles that are each thematically central to
their topic: “Ballroom Dance”, “Data Structure”, “Computer Science”, and “Germany”.

As can be seen in table 6.4, extraction times steeply increase with the number of articles
(columns 4 and 7) and categories (columns 5 and 8) in the core. However, the increase is not
proportional, because the extraction time depends on the total number of references that need
to be investigated, not on the number of references that are actually relevant.

The approaches presented here can, in principle, also be applied to other wikis. There exist
wikis that may be more suited for use as background knowledge, because they cover domain spe-
cific topics, such as corporate wikis that are used to aggregate and archive corporate knowledge.
Other examples are Diplopedia, a wiki on international relations maintained by the United States
Department of State, or Scholarpedia with a focus on scientific topics.

6.1.3 Practical Considerations

For reasons of efficiency, we store the extracted Wikipedia in a relational database system. An
EER diagram of the database schema is shown in figure 6.2. The disjoint entity types “Article”
and “Category” have a common super-type with three attributes “id” (primary key), “name” (nl)
and “language” (l). Translation relationships “translates” are defined on both “Article” (ta(l1,l2))

and “Category” (tc(l1,l2)) to keep them separate. References can connect entities of either type,

so the appropriate “references” relationship (sl, ml, rl) is defined on their common super-type.
The relevant database tables and index structures of the implemented database schema are

6.1. OBTAINING KNOWLEDGE FROM WIKIPEDIA 147

shown in table 6.5. There are tables for storing the names of articles and categories, and a table
for storing translation relationships between articles or categories. There is also one table for
storing references between articles and categories, where references between categories are inter-
preted as sub-category relationships, and references from categories to articles are interpreted as
membership relationships. The Boolean attributes src cat and trgt cat indicate whether the
source or the target, respectively, is a category or an article.

Article Category

translates

id

name

language

references

translates

mn

n m n m

ArticleOrCategory

d

Figure 6.2: Database schema for Wikipedia

This closely mimics the design of Wikipedia, which does not differentiate between different
types of references, only interpreting them differently based on the context. In Wikipedia, even
translation relationships are not specified differently then other references. Instead, the wiki
framework detects cross-language references and interprets them as translations. We moved
translations into a separate table to enhance clarity. Experiments with a further partitioning
of the data into additional tables, such as a partitioning by language, showed no performance
improvements, neither for insertion nor retrieval.

This schema design also allows us to slightly relax the primary key property of the id attrib-
ute: according to the EER schema, a value for id must be unique across both the articles and
categories tables. However, using the * cat attributes in references allows us to restrict this
requirement to each table, thus changing the common primary key attribute of articles and
categories into two primary key attributes of the two respective tables. While this is forbidden
in the EER model, it is possible in the implementation.

Table 6.6 lists the times required for the different steps of extracting the Wikipedia structure.

148 CHAPTER 6. BACKGROUND KNOWLEDGE

Table name Attributes Indices
articles id, lang, name primary key (id), unique (lang, name)
categories id, lang, name primary key (id), unique (lang, name)
references src, trgt, src cat, trgt cat indices (src, src cat), (trgt, trgt cat)
translations src, trgt, src cat, trgt art indices (src, src cat), (trgt, trgt cat)

Table 6.5: Database indices for Wikipedia

l XML preprocessing Reading nl Reading ta(l,∗), sl, ml, rl
∑

en 4,685 s 37,509 s 164,627 s 57.5 h
de 1,357 s 9,560 s 51,598 s 17.4 h
nl 530 s 4,558 s 33,122 s 10.6 h
fr 1,321 s 10,283 s 59,246 s 19.7 h
it 836 s 6,753 s 43,776 s 14.3 h
pl 617 s 4,818 s 32,900 s 10.6 h
es 911 s 7,671 s 44,064 s 14.6 h
ru 1,095 s 7,102 s 38,198 s 12.9 h
pt 558 s 4,083 s 29,664 s 9.5 h∑

11,910 s 92,335 s 497,196 s 167 h

Table 6.6: Time measurements for the Wikipedia extraction, as of 2012-05-30.

The first step (XML preprocessing) removes irrelevant content from the raw Wikipedia XML files,
such as translations into languages that are not part of the extraction, and transforms the wiki
syntax for references into more easily parsable XML code.

The second step reads all article and category names and populates the table articles and
categories, creating unique IDs for each article and category in the process. These IDs abstract
from multiple ways of writing a name (e.g., “Ballroom Dance” vs. “Ballroom dance”), which are
treated separately in Wikipedia. Treating them separately greatly increases the complexity of
the structure, because it requires special redirection references between articles with different
versions of the same name. It also holds a large potential for errors, for example when references
point to the wrong name version of an article, or when redirection references are missing. At the
same time, it offers little additional information, because special disambiguation pages are used
whenever different capitalisation in a name implies a different meaning.

The third and final step reads all references, populating the references and translations

tables. Creating the indices took an additional 12,889 seconds, or about 3.5 hours. In total,
almost seven days where required to extract the entire Wikipedia structure in nine languages.

Several challenges had to be met during the extraction. For example, Wikipedia categories are
only identified and differentiated from articles by a keyword that is prefixed to their names. This
keyword, however, is different for each language: “Category” in English, “Kategorie” in German,
or “Kategori�” in Russian. Not only must these keywords be identified and used throughout, it
is also important that Unicode characters are supported in every step of the extraction process.

When article and category names are inserted into the database in step two, no duplicate
entries must occur. There are several possible solutions for this on the database side:

1. create a unique index on the name and language attributes,

2. use an IF NOT EXISTS ... INSERT statement to insert the data,

6.2. OBTAINING KNOWLEDGE FROM OTHER SOURCES 149

3. combine solutions 1 and 2,

4. use a MySQL specific INSERT IGNORE statement to insert the data, or

5. combine solutions 1 and 4.

The actual INSERT statements used for solutions 2 and 4, respectively, are shown for articles
in listing 6.1.

1 IF NOT EXISTS (SELECT * FROM articles WHERE lang=? and name =?) INSERT INTO

articles (lang , name) VALUES (?, ?)

2 INSERT IGNORE INTO articles (lang , name) VALUES (?, ?)

Listing 6.1: INSERT statements for Wikipedia articles

Using MySQL 5.5 proved to be too slow for our purpose: for a sample dataset with 31 articles
and 18 categories, solution 1 took 11,333 ms. The MySQL-specific solution 4 took even longer
(11,575 ms), and their combination (solution 5) took the longest with 12,015 ms. All times were
measured five times, with the mean of the last three results taken as the final result time.

Solution 1 with Microsoft SQL Server 2008 only took 504 ms. Solution 2 took 1,393 ms,
and solution 3 was executed the fastest, with 502 ms. To be able to better differentiate the
results of only using a unique index and of combining a unique index with an IF NOT EXISTS

... INSERT statement (solutions 1 and 3), we repeated the test for a larger dataset, namely
Wikipedia in the three languages Ænglisc, Norfolk, and Scots, with a total of 121,839 articles
and 15,362 categories. Here, the combination of solutions 1 and 2 clearly won out, with a total
time of 217,789 ms over 281,986 ms for solution 1.

Based on these results, we used a combination of a unique index and an IF NOT EXISTS ...

INSERT statement with an MS SQL Server for the actual extraction process.

Conclusion

In this section, we have contributed several novel optimisations for semantically exploiting Wiki-
pedia, which we have also implemented and evaluated successfully. Options for optimising ef-
ficiency have been discussed and assessed, as well as the suitability of Wordnet as the most
prominent lexical database available.

6.2 Obtaining Knowledge from other Sources

Other sources for background knowledge are existing ontologies like the Cyc knowledge base of
everyday knowledge [WBC+03], the Library of Congress Subjects Headings [LCS09], the LKIF
ontology of basic legal concepts [HBBB07], or the OpenGALEN ontology for medical terms and
procedures [RRZvdH03].

However, for many domains, no ontologies are available. Yet often there are sources of
semi-formalised knowledge available, for example in the form of glossaries or listings. Using
the ITIL (IT Infrastructure Library)5 terminology as a show case to demonstrate feasibility and
effectiveness, we will discuss a five-step procedure of how a formalised knowledge base can be
obtained from such sources.

5“ITIL” and “IT Infrastructure Library” are registered trademarks of the government of the United Kingdom

150 CHAPTER 6. BACKGROUND KNOWLEDGE

Obtaining Knowledge from Semi-Formalised Public Sources

The first step is to determine the semantics inherent in the source data: what kinds of concepts
are covered by the data, what relations are defined, and what are the semantics of these relations?
This step should preferably be done or supported by a domain expert. This step also determines
if knowledge extraction is worth the effort, or if it is even possible at all.

Next, the detected semantics need to be formalised: ontology concepts and roles need to be
defined that can represent the data, and axioms need to be specified that define their semantics.

The third step is to identify keywords, formatting styles, and other indicators for relevant
data and semantic relations.

Then, using these indicators, the source data is parsed and individuals, as well as concept
and role assertions are interpreted from the data and asserted in the resulting ontology.

Finally, the obtained knowledge base should be evaluated. A manual comparison against
the source data based on a random sample of the ontology can be used to judge the extraction
quality. A comparison with an existing knowledge base covering a related topic can be used to
ascertain the quality of the source data, provided that the extraction has both a high precision
and recall.

Example 6.2.1 (Extracting an ITIL Ontology from a Glossary). The ITIL terminology is avail-
able online at http: // www. itil. org/ en/ glossar/ glossarkomplett. php 6. It contains a
collection of terms that describe ITIL concepts, each with a description. This description may
contain textual references to more general concepts, to related concepts, and to equivalent con-
cepts (or, more precisely, to synonymous terms). We therefore need to represent instances of
concepts, and three different relations.

Instead of defining a new schema, we will use the SKOS model as a basis for the formalisation.
In particular, we will represent ITIL concepts as skos:Concepts, and concept generalisation,
relatedness, and equivalence as skos:broadMatch, skos:relatedMatch, and skos:exactMatch,
respectively. In addition, concept names will be specified using skos:prefLabel, and the concept
description will be attached to each concept instance with skos:note.

We identified a formatting style for terms, and two keywords and one writing convention for
relations. Terms, or concept names, are always formatted in bold. Related concepts are textually
referenced in the last sentence of a description following the keyword “see”. Equivalent concepts
are textually referenced in the description following the keywords “synonym for”. Generalisations
are written in parentheses at the beginning of a description.

A short (less than 200 lines of code) Java program facilitates the actual extraction process
based on these indicators and writes the obtained ontology to a file in Turtle syntax.

A manual matching of 50 randomly selected concepts (including all of their outgoing relation-
ships) from the ontology against the source data detected no errors, and the number of concepts
defined in the source matches the number of concepts in the ontology, which indicates both high
precision and recall values. Since the source is an accepted domain authority, we will regard the
ontology as normative, rather than attempting to verify it against less authoritative ontologies
like the one obtained from Wikipedia.

The source glossary is available in two languages, so a simple extension of the keywords
allowed us to obtain a multi-lingual ontology. This ontology does not, however, contain any
translation relationships, which arguably makes it more into two parallel ontologies in different
languages on the same topic. In a postprocessing step it might be possible to obtain such transla-
tions automatically from Wikipedia, from Wiktionary, or from Google Translate, but we did not
attempts this.

6visited 05/2013

http://www.itil.org/en/glossar/glossarkomplett.php

6.2. OBTAINING KNOWLEDGE FROM OTHER SOURCES 151

In total, the dual-language ontology contains 1,089 concepts (544 in English, 545 in German),
794 generalisations, 304 relatedness relationships, and 52 equivalences. The entire extraction
process, including data transmissions and writing the ontology file, took 1.9 seconds.

Other approaches, such as Cyc, focus on domain experts to create and formalise ontologies.
While the quality of a manually and expertly created knowledge base is – at least for now –
clearly above that of automatically harvested ones [WBC+03], these approaches are not only
very expensive in terms of manpower, but they also ignore the knowledge and resources that are
already available.

Obtaining Knowledge from Documents

A different source of background knowledge can be found in the very documents for which this
knowledge is required. They are by definition relevant for the domain, and they often contain a
wealth of terminology. The general methodology is the same as for other sources of knowledge, as
described above. However, for these documents the methods described in chapter 5 have usually
already been implemented, so they are available for tasks like extracting headlines or topics.
This makes the implementation of step four easier, and possibly more effective.

Unfortunately, most documents are written to be actually read, and not to just look up some
data points. Moreover, they are written for human readers. As a consequence, many documents
are written with the human process of understanding in mind, i.e., they are structured based more
on didactic requirements than on semantic coherence. This is aggravated by consideration for
human “foibles” such as aesthetics, and makes inference from were terms appear in a document’s
structure to relationships between these terms unrealistic in general. For example, topics that are
discussed on the level of chapters are not necessarily more general than terms discussed on the
level of sub-sections. Further research in this area might uncover less obvious bases for inference,
but for the time being we will be content with extracting unstructured terminologies, i.e., lists
of terms, from documents.

Additionally, authors expect a reader’s human-level ability for abstraction and for classifica-
tion. For example, a human reader is usually able to differentiate between the different uses of
parentheses in “Example: XML (continued)” and “Example: XML (OWL)”. In the first case,
the parentheses contain metainformation about the example, namely that it is the continuation
of an earlier example. In the latter case, the parentheses contain a clarification. The latter
information is part of the example’s topic, the former is not. It might be possible to capture
some of these ambiguities using text analysis techniques, but that is beyond the scope of this
work.

While it is possible to isolate a number of special cases and treat them specifically, this is
not feasible in general. Cross-checking with existing terminologies can also help raise the quality
of the extracted terms and topics. In particular, validating the domain specific terminology
obtained from a document against a large but general purpose terminology like the one obtained
from Wikipedia may improve the precision of the extracted data. This comes, however, at the
cost of a lower recall, because many specialised terms are not part of Wikipedia (or some other
general terminological corpus) and are thus stricken from the extracted terms (see below).

Yet even background knowledge of low quality may be useful, or at least better than having
no background knowledge at all. In particular, it can be instrumental in detecting occurrences
of terms that are not in any way marked in the document, i.e., a relevant term that is simply
used in a text section. Knowledge that this particular text section deals with a certain topic
indicated by that term may be relevant later, so catching the term is important.

On the other hand, detecting large numbers of irrelevant terms and integrating them into a
document model quickly deteriorates the overall quality of said model. Yet if the background

152 CHAPTER 6. BACKGROUND KNOWLEDGE

knowledge contains many erroneous or irrelevant terms, this is exactly what may happen. It is
therefore advisable to put the focus on the precision of the background knowledge, even to the
detriment of the recall, which brings us back to validating the extracted terminology against a
large but not domain-specific corpus.

An important question is where such background knowledge may actually be used – in par-
ticular, if it may be used in extracting the data models or in the semantic modelling of the same
documents from which it was obtained, or if the two corpora of documents must be kept strictly
separate. In principle, such a separation is clearly desirable to avoid a propagation of errors. An
irrelevant term that has been extracted from a document d as part of the background knowledge
bd would directly become part of the semantic document model for d, if bd were used in extracting
and modelling d. Other documents might not contain this irrelevant term, limiting the harm
done by the imprecise background knowledge if it were only applied to documents other than d.

If such background knowledge is validated as discussed above before using it, while there
is still a need for caution, there does not seem to be a compelling reason to force a complete
separation between the document corpora. This assumption could be substantiated in tests
conducted in a laboratory environment, but these result largely depend on the quality and size
of the terminology used for validation.

Example 6.2.2 (Background Knowledge Obtained from E-Learning Documents). From two cor-
pora of e-learning documents, which we will simply call “Passau” and “Rostock” (see chapter 10),
we attempted to extract background knowledge terminologies. Since there already exist transform-
ation rules for extracting semantic document models from these documents, we used these rules
for obtaining the terminology by first extracting semantic document models for each document,
and then aggregating the topics, headlines and terms in these models. The knowledge base schema
for a simple word list is rather straightforward and consists of a single concept Term.

Extracting the semantic document models took 359 seconds for the “Passau” corpus (1,747 s
for the “Rostock” corpus), and aggregating the background knowledge from these models took
another 20 seconds (“Rostock”: 58 s). The resulting terminologies contained 2,265 and 13,433
terms for “Passau” and “Rostock”, respectively.

Validating these terms against the Wikipedia terminology reduced the numbers to 307 and
2,237 terms, or about 14 and 17 percent of the original list, respectively. Assuming idealised
Wikipedia data that is completely devoid of errors, this provides us with a reasonably large
domain-specific terminology of high quality.

Conclusion

In this section, a methodology for obtaining formalised knowledge from semi-formalised sources
was discussed. We have successfully applied the methodology to both publicly available data and
to corpora of documents from a specific domain that are not publicly available. This increases
the availability and attainability of domain specific background knowledge, thus enhancing the
effectiveness of approaches developed in chapters 4 and 5. We have also discussed the quality
of the newly obtained background knowledge and the ramifications of errors in the knowledge
base.

Part III

Implementation

Chapter 7

System Architecture

In this chapter, the new software framework that implements the notions introduced in part II
will be described. The actual implementation is part of a larger framework that was developed
for the Verdikt research project [FWJS08]. We will limit our discussion here to the components
that were created as part of this thesis.

7.1 System Overview

In this section, we will provide an overview of the system architecture, how document models
are implemented, how background knowledge is implemented, and which interfaces are relevant
for document processing.

Figure 7.1 shows the data flow of the system at a high level of abstraction. A digital document
is run through a preprocessing chain to obtain a representation of a connected base document
model (cf. definition 4.1.29 on page 75). Through a semantic processing step that uses background
knowledge, a representation of a semantic document model (cf. definition 4.2.14 on page 82) is
obtained, which is then run through a postprocessing chain to obtain the desired final result, for
example a temporal model or a taxonomy. The primary postprocessing step (cf. section 9.3) can
be specified using a graphical tool [Sch10].

The package structure of the implementation is shown in figure 7.2. de.uni passau.verdikt

is the base for all relevant packages. The DocumentModel sub-package contains the interfaces
used to represent semantic document models. The actual, Jena-based implementation is loc-
ated elsewhere. DocumentModel has two sub-packages: adapter and BackgroundKnowledge.
The latter contains the interfaces and classes used to represent background knowledge, while
the former contains the interfaces used for processing the document models. Their various im-
plementations are located in adapter’s implementation sub-package, which in turn contains
the VerificationModel package that holds classes and interfaces required for specifying how a
verification model is to be obtained from a semantic document model.

We will use XML documents (namely instances of org.w3c.dom.Document) to represent base
document models. As discussed in section 4.2.1, this is possible because each XML element can
be seen as a separate media object, with its successor defined by the document order. This is,
however, a very cumbersome way to represent XML documents. We will later see more convenient
methods for specific XML formats. Metadata associated with a base document model can be
represented as XML attributes.

XML is a convenient format for this purpose because not only is it possible to represent
almost any other document format in XML, but the conversion is often simple (in the sense of

155

156 CHAPTER 7. SYSTEM ARCHITECTURE

Digital
Document

Semantic Processing

Connected
Base Document

Model

Semantic
Document

Model

Result

Background
Knowledge

Preprocessing

...

Processing chain

Postprocessing

...

Processing chain

Figure 7.1: System architecture

package implementation

package adapter

BackgroundKnowledge

VerificationModel

package de.uni_passau.verdikt

package DocumentModel

Figure 7.2: Package overview

7.1. SYSTEM OVERVIEW 157

being straight forward, but not necessarily easy). XML is also a convenient format for further
preprocessing.

How semantic document models are represented is shown in the UML diagram in figure 7.3.
The central entity is the DocumentModel interface that consists of a hierarchy of Fragments,
starting with a root fragment. Fragments represent parts of a document model. They can hold
references (Annotations) to other fragments (in particular, has-part and successor references),
references to ontology classes (in particular, to classes of a structure ontology), and references to
literal data values (in particular, to terminological data). The Fragment interface provides several
convenience methods for obtaining and manipulating specific references (getAnnotations(),
getChildren(), getParent(), getSuccessor(), addChild(), . . .).

The DocumentModel, in addition to aggregating fragments, also provides several methods
for retrieving fragments and other resources, for example by their identifier (findFragment()),
by their relations to other fragments or resources (findSubjects(), findObjects()), or by
specifying graph queries (queryFragments(), queryLiterals()).

A factory pattern is used in the creation of new fragments and annotations. As stated above,
an implementation exists that is based on Jena.

A document model relies on a Vocabulary that holds the names of all annota-
tions that can represent relations on the document model. For special relations, such
as the successor relations, the has-part relation, or the relation that binds ontology
classes to fragments, methods exist that return a default name for the appropriate
annotations (getDefaultReferenceAnnotationName(), getDefaultChildAnnotationName(),
getDefaultTypeAnnotationName()). For annotations with domain or range restrictions, these
restrictions can be queried (getAnnotationDomain(), getAnnotationRange()).

The vocabulary also holds the available class names of the structural ontology
(getFunctionTypes(), getStructuralTypes()). The classes are divided into two groups: the
classes that solely represent structural elements such as chapters or paragraphs, and the classes
that also indicate that the represented element serves an additional function, such as a definition
or an example. A list of the entire document vocabulary developed in the course of this thesis
can be found in appendix A.

If an annotation name is not known, then getAnnotationName() can be used to find the
closest match to a given string in the available names. This makes the handling of the vocabulary
easier, since knowledge engineers do not have to know the exact name of an annotation (e.g.,
has-part, has part, or hasPart).

As many other classes and interfaces in this implementation, document models are
Configurable with an instance of the IConfiguration interface. Available configuration op-
tions for document models depend on the implementation. For the Jena-based implementation,
they include persistent storage information for both the vocabulary and for the document model
itself.

The BackgroundKnowledge package shown in figure 7.4 contains all interfaces and classes
relevant for representing and dealing with background knowledge. BackgroundKnowledgeBase

is the base interface for knowledge bases. It provides “term groups”, which serve a similar, if
simplified, purpose as concepts in ontologies. They serve as named aggregations of terms, which
can be seen as an abstraction of individuals. The interface provides access methods for terms
and term groups, in particular the getTermGroups() method. It returns a Map that maps term
group names onto sets of terms.

The Ontology class serves as a wrapper for the Jena ontology implementation. It
provides additional access methods to obtain terms based on their relations to other terms.
InferenceOntology extends Ontology with inference services. SKOSOntology can be used to
represent ontologies in the SKOS format (cf. section 3.3.4). It supports multiple languages and

158 CHAPTER 7. SYSTEM ARCHITECTURE

<
<

In
te

rf
a

c
e

>
>

D
a

ta
A

n
n

o
ta

ti
o

n

+
ge

tT
yp

e(
):

 S
tr

in
g

+
ge

tV
al

u
e(

):
 O

b
je

ct
+

se
tT

yp
e(

St
ri

n
g)

: v
o

id
+

se
tV

al
u

e(
O

b
je

ct
):

 v
o

id

<
<

In
te

rf
a

c
e
>

>

C
la

s
s

A
n

n
o

ta
ti

o
n

+
ge

tV
al

u
e(

):
 O

n
to

lo
gy

C
la

ss
+

se
tV

al
u

e(
O

n
to

lo
gy

C
la

ss
):

 v
o

id

<
<

In
te

rf
a

c
e

>
>

A
n

n
o

ta
ti

o
n

+
ge

tN
am

e(
):

 S
tr

in
g

+
ge

tV
al

u
e(

):
 O

b
je

ct
+

se
tN

am
e(

St
ri

n
g)

: v
o

id
+

se
tV

al
u

e(
O

b
je

ct
):

 v
o

id

<
<

In
te

rf
a

c
e
>

>

F
ra

g
m

e
n

t

+
ad

d
A

n
n

o
ta

ti
o

n
(A

n
n

o
ta

ti
o

n
):

 v
o

id
+

ad
d

C
h

ild
(F

ra
gm

en
t)

: v
o

id
+

ad
d

Fu
n

ct
io

n
Ty

p
e(

O
n

to
lo

gy
C

la
ss

):
 v

o
id

+
ad

d
R

ef
er

en
ce

(F
ra

gm
en

t)
: v

o
id

+
ad

d
St

ru
ct

u
ra

lT
yp

e(
O

n
to

lo
gy

C
la

ss
):

 v
o

id
+

cl
ea

rA
n

n
o

ta
ti

o
n

s(
):

 v
o

id
+

ge
tA

n
n

o
ta

ti
o

n
s(

):
 C

o
lle

ct
io

n
+

ge
tA

n
n

o
ta

ti
o

n
sB

yN
am

e(
St

ri
n

g)
: C

o
lle

ct
io

n
+

ge
tA

n
n

o
ta

ti
o

n
sB

yN
am

eV
al

u
e(

St
ri

n
g,

 O
b

je
ct

):
 C

o
lle

ct
io

n
+

ge
tA

n
n

o
ta

ti
o

n
sB

yV
al

u
e(

O
b

je
ct

):
 C

o
lle

ct
io

n
+

ge
tC

h
ild

re
n

()
: L

is
t

+
ge

tF
o

llo
w

in
gS

ib
lin

g(
):

 F
ra

gm
en

t
+

ge
tF

u
n

ct
io

n
Ty

p
es

()
: C

o
lle

ct
io

n
+

ge
tP

ar
en

t(
):

 F
ra

gm
en

t
+

ge
tP

o
si

ti
o

n
()

: i
n

t
+

ge
tP

re
ce

d
in

gS
ib

lin
g(

):
 F

ra
gm

en
t

+
ge

tR
ef

er
en

ce
s(

):
 C

o
lle

ct
io

n
+

ge
tS

tr
u

ct
u

ra
lT

yp
es

()
: C

o
lle

ct
io

n
+

ge
tS

u
cc

es
so

r(
):

 F
ra

gm
en

t
+

re
m

o
ve

A
n

n
o

ta
ti

o
n

(A
n

n
o

ta
ti

o
n

):
 v

o
id

<
<

In
te

rf
a

c
e
>

>

V
o

c
a

b
u

la
ry

+
ge

tA
n

n
o

ta
ti

o
n

D
o

m
ai

n
(S

tr
in

g)
: S

et
+

ge
tA

n
n

o
ta

ti
o

n
N

am
e(

St
ri

n
g)

: S
tr

in
g

+
ge

tA
n

n
o

ta
ti

o
n

R
an

ge
(S

tr
in

g)
: S

et
+

ge
tC

h
ild

A
n

n
o

ta
ti

o
n

N
am

es
()

: S
et

+
ge

tD
at

aA
n

n
o

ta
ti

o
n

N
am

es
()

: S
et

+
ge

tD
ef

au
lt

C
h

ild
A

n
n

o
ta

ti
o

n
N

am
e(

):
 S

tr
in

g
+

ge
tD

ef
au

lt
Fu

n
ct

io
n

Ty
p

e(
):

 S
tr

in
g

+
ge

tD
ef

au
lt

ID
A

n
n

o
ta

ti
o

n
N

am
e(

):
 S

tr
in

g
+

ge
tD

ef
au

lt
P

o
si

ti
o

n
A

n
n

o
ta

ti
o

n
N

am
e(

):
 S

tr
in

g
+

ge
tD

ef
au

lt
R

ef
er

en
ce

A
n

n
o

ta
ti

o
n

N
am

e(
):

 S
tr

in
g

+
ge

tD
ef

au
lt

St
ru

ct
u

ra
lT

yp
e(

):
 S

tr
in

g
+

ge
tD

ef
au

lt
Ty

p
eA

n
n

o
ta

ti
o

n
N

am
e(

):
 S

tr
in

g
+

ge
tF

ra
gm

en
tA

n
n

o
ta

ti
o

n
N

am
es

()
: S

et
+

ge
tF

u
n

ct
io

n
Ty

p
es

()
: S

et
+

ge
tI

D
A

n
n

o
ta

ti
o

n
N

am
es

()
: S

et
+

ge
tP

o
si

ti
o

n
A

n
n

o
ta

ti
o

n
N

am
es

()
: S

et
+

ge
tR

ef
er

en
ce

A
n

n
o

ta
ti

o
n

N
am

es
()

: S
et

+
ge

tS
tr

u
ct

u
ra

lT
yp

es
()

: S
et

+
is

A
n

n
o

ta
ti

o
n

Si
n

gl
et

o
n

(S
tr

in
g)

: b
o

o
le

an

<
<

In
te

rf
a

c
e

>
>

R
e

s
o

u
rc

e

+
ge

tI
D

()
: i

n
t

<
<

In
te

rf
a

c
e

>
>

O
n

to
lo

g
y

C
la

s
s

+
ge

tU
R

I(
):

 S
tr

in
g

+
se

tU
R

I(
St

ri
n

g)
: v

o
id

<
<

In
te

rf
a

c
e

>
>

F
ra

g
m

e
n

tA
n

n
o

ta
ti

o
n

+
ge

tV
al

u
e(

):
 F

ra
gm

en
t

+
se

tV
al

u
e(

Fr
ag

m
en

t)
: v

o
id

<
<

In
te

rf
a

c
e
>

>

F
ra

g
m

e
n

tF
a

c
to

ry

+
cr

ea
te

C
la

ss
A

n
n

o
ta

ti
o

n
(S

tr
in

g,
 O

n
to

lo
gy

C
la

ss
):

 C
la

ss
A

n
n

o
ta

ti
o

n
+

cr
ea

te
D

at
aA

n
n

o
ta

ti
o

n
(S

tr
in

g,
 O

b
je

ct
):

 D
at

aA
n

n
o

ta
ti

o
n

+
cr

ea
te

Fr
ag

m
en

t(
in

t)
: F

ra
gm

en
t

+
cr

ea
te

Fr
ag

m
en

tA
n

n
o

ta
ti

o
n

(S
tr

in
g,

 F
ra

gm
en

t)
: F

ra
gm

en
tA

n
n

o
ta

ti
o

n
+

cr
ea

te
O

n
to

lo
gy

C
la

ss
(S

tr
in

g)
: O

n
to

lo
gy

C
la

ss

<
<

In
te

rf
a

c
e
>

>

C
o

n
fi

g
u

ra
b

le

+
se

tC
o

n
fi

gu
ra

ti
o

n
(I

C
o

n
fi

gu
ra

ti
o

n
):

 v
o

id
+

ge
tC

o
n

fi
gu

ra
ti

o
n

()
: I

C
o

n
fi

gu
ra

ti
o

n
+

ge
tD

ef
au

lt
C

o
n

fi
gu

ra
ti

o
n

()
: I

C
o

n
fi

gu
ra

ti
o

n

<
<

In
te

rf
a

c
e
>

>

IC
o

n
fi

g
u

ra
ti

o
n

+
ge

tO
p

ti
o

n
s(

):
 S

et
+

se
tV

al
u

e(
St

ri
n

g,
 O

b
je

ct
):

 v
o

id
+

ge
tV

al
u

e(
St

ri
n

g)
: O

b
je

ct
+

is
M

an
d

at
o

ry
(S

tr
in

g)
: b

o
o

le
an

+
se

tM
an

d
at

o
ry

(S
tr

in
g,

 b
o

o
le

an
):

 v
o

id
+

ge
tT

yp
e(

St
ri

n
g)

: C
la

ss
+

se
tT

yp
e(

St
ri

n
g,

 C
la

ss
):

 v
o

id

<
<

In
te

rf
a

c
e
>

>

D
o

c
u

m
e

n
tM

o
d

e
l

+
cl

ea
r(

):
 v

o
id

+
cl

o
se

()
: v

o
id

+
fi

n
d

Fr
ag

m
en

t(
in

t)
: F

ra
gm

en
t

+
fi

n
d

O
b

je
ct

s(
R

es
o

u
rc

e,
 S

tr
in

g)
: C

o
lle

ct
io

n
+

fi
n

d
Su

b
je

ct
s(

St
ri

n
g,

 O
b

je
ct

):
 C

o
lle

ct
io

n
+

ge
tF

ra
gm

en
tF

ac
to

ry
()

: F
ra

gm
en

tF
ac

to
ry

+
ge

tR
es

o
u

rc
eI

te
ra

to
r(

):
 It

er
at

o
r

+
ge

tR
o

o
t(

):
 F

ra
gm

en
t

+
ge

tV
o

ca
b

u
la

ry
()

: V
o

ca
b

u
la

ry
+

o
p

en
()

: v
o

id
+

q
u

er
yF

ra
gm

en
ts

(S
tr

in
g)

: L
is

t
+

q
u

er
yL

it
er

al
s(

St
ri

n
g)

: L
is

t
+

se
tR

o
o

t(
Fr

ag
m

en
t)

: v
o

id
+

se
tV

o
ca

b
u

la
ry

(V
o

ca
b

u
la

ry
):

 v
o

id
+

si
ze

()
: i

n
t

p
a

c
k

a
g

e
 D

o
c
u

m
e

n
tM

o
d

e
l

Figure 7.3: UML diagram: document model

7.1. SYSTEM OVERVIEW 159

provides methods for obtaining the broader and narrower relationship instantiations of terms.

KnowledgeExtendable is an interface for all classes that make use of knowledge bases.

DataMapping represents a mapping as used in section 5.1. It contains domain- and format-
dependent information about what structural types or relations are represented by specific XML
elements and attributes.

HugeOntology is an interface for dealing with very large ontologies. There is an in-memory
implementation for computers with a large amount of working memory, a database-backed im-
plementation, and a hybrid implementation (HugeOntologyMemDB). The latter keeps the TBox
in main memory and moves the ABox to a database. Reasoning is only done on the TBox. The
getObjectsForClass() method aggregates the objects for a specific class and all its sub-classes
from the database. This implementation is far more efficient than a purely database-backed
solution, and far more scalable than a purely main-memory-backed solution (cf. section 11.5).
Inference services are restricted to subsumption and instantiation, however.

Figure 7.5 shows part of the adapter package. It is centred on the GenericDocumentAdapter,
the base interface for all adapters that read or process documents.
The ExternalExtractionDocumentAdapter is an interface for obtaining an XML document from
a URI. The XMLProcessingDocumentAdapter is an interface for preprocessing such an XML
document. The ExtractionDocumentAdapter is an interface for obtaining a DocumentModel

from an XML document, i.e., it can be used to extract a semantic document model from a base
document model. The ExtractionAdapterPipeline unites these adapters into a single pipeline
from an XML file to a DocumentModel to make handling easier.

The DocumentModelProcessingDocumentAdapter is an interface for postprocessing a
DocumentModel. The GenerationDocumentAdapter is an interface for obtaining an XML doc-
ument from a DocumentModel. The ExternalGenerationDocumentAdapter is an interface for
writing an XML document to a location identified by a URI. The GenerationAdpaterPipeline

unites these adapters into a single pipeline from a DocumentModel to an XML file.

The abstract RuleDocumentAdapter class implements several of these interfaces, allowing for
the extraction, generation, and processing of files and models using rules.

The DocumentAdapterManager is a management class that can be used to list and access
available adapters.

Figure 7.6 shows the second part of the adapter package. The GlobalContext and
LocalContext interfaces serve as implementations of global and local environments, respectively
(cf. definitions 5.1.16 and 5.1.14). They also provide many convenience methods for accessing
background knowledge and for constructing a DocumentModel. The visit() method of the
GlobalContext keeps track of processed files to prevent infinite loops when following circular
references. The GlobalContextRegister serves as a register for multiple GlobalContexts.

Each instance of LocalContext is meant to hold exactly one media object of the base docu-
ment model’s implementation, e.g., one XML node. It is also meant to hold an optional reference
to a Fragment, i.e., to a document fragment in a document model. This is adequate because
usually a single node in a base document model may lead to the creation of at most a single
fragment in a semantic document model, simply because a single atomic media object (the node)
cannot hold more structural information than for a single fragment. However, if there exist some
special case in which this assumption is not true, it is still easily possible to create two or more
local contexts that hold the same media object, but different fragments. Yet in the course of this
work, we have never encountered such as case.

The DocumentException and its two sub-classes are used to encapsulate errors that occur
during the processing of documents or document models.

160 CHAPTER 7. SYSTEM ARCHITECTURE

<
<

In
te

rf
a

c
e
>

>

B
a

c
k

g
ro

u
n

d
K

n
o

w
le

d
g

e
B

a
s

e

+
ge

tN
am

e(
):

 S
tr

in
g

+
ge

tT
er

m
G

ro
u

p
(S

tr
in

g)
: L

is
t

+
ge

tT
er

m
G

ro
u

p
s(

):
 M

ap
+

ge
tT

er
m

s(
):

 L
is

t
+

lo
ad

(S
tr

in
g)

: v
o

id
+

sa
ve

(S
tr

in
g)

: v
o

id
+

se
tN

am
e(

St
ri

n
g)

: v
o

id

<
<

In
te

rf
a

c
e
>

>

C
o

n
c

e
p

t

+
ge

tN
am

e(
St

ri
n

g)
: S

tr
in

g
+

se
tN

am
e(

St
ri

n
g,

 S
tr

in
g)

: v
o

id

D
a

ta
M

a
p

p
in

g

#
so

u
rc

e:
 S

tr
in

g
#

ta
rg

et
: S

tr
in

g

+
lo

ad
(S

tr
in

g)
: L

is
t

<
<

In
te

rf
a

c
e
>

>

H
u

g
e

O
n

to
lo

g
y

+
cl

o
se

()
: v

o
id

+
ge

tC
la

ss
es

()
: S

et
+

ge
tO

b
je

ct
sF

o
rC

la
ss

(S
tr

in
g)

: S
et

+
ge

tS
u

b
cl

as
se

s(
St

ri
n

g)
: S

et
+

is
R

ea
so

n
in

g(
):

 b
o

o
le

an
+

o
p

en
()

: v
o

id
+

se
tR

ea
so

n
in

g(
b

o
o

le
an

):
 v

o
id

H
u

g
e

O
n

to
lo

g
y

D
B

-
SQ

LC
o

n
n

ec
ti

o
n

: S
tr

in
g

+
se

tD
B

La
yo

u
t(

La
yo

u
tT

yp
e)

: v
o

id

H
u

g
e

O
n

to
lo

g
y

M
e

m
H

u
g

e
O

n
to

lo
g

y
M

e
m

D
B

-
A

B
o

x:
 M

o
d

el
-

SQ
LC

o
n

n
ec

ti
o

n
: S

tr
in

g
-

TB
o

x:
 M

o
d

el

+
se

tD
B

La
yo

u
t(

La
yo

u
tT

yp
e)

: v
o

id

In
fe

re
n

c
e

O
n

to
lo

g
y

+
re

as
o

n
in

g(
):

 v
o

id

<
<

In
te

rf
a

c
e
>

>

K
n

o
w

le
d

g
e

E
x

te
n

d
a

b
le

+
ad

d
K

n
o

w
le

d
ge

B
as

e(
St

ri
n

g,
 B

ac
kg

ro
u

n
d

K
n

o
w

le
d

ge
B

as
e)

: v
o

id
+

ge
tK

n
o

w
le

d
ge

B
as

e(
St

ri
n

g)
: B

ac
kg

ro
u

n
d

K
n

o
w

le
d

ge
B

as
e

+
ge

tK
n

o
w

le
d

ge
B

as
eN

am
es

()
: C

o
lle

ct
io

n
+

re
m

o
ve

K
n

o
w

le
d

ge
B

as
e(

St
ri

n
g)

: v
o

id

T
e

rm
in

o
lo

g
y

#
co

n
ce

p
ts

: L
is

t

+
ad

d
C

o
n

ce
p

t(
C

o
n

ce
p

t)
: b

o
o

le
an

+
co

n
ta

in
s(

C
o

n
ce

p
t)

: b
o

o
le

an
+

ge
tC

o
n

ce
p

ts
()

: L
is

t
+

re
m

o
ve

C
o

n
ce

p
t(

C
o

n
ce

p
t)

: b
o

o
le

an

T
a

x
o

n
o

m
y

S
K

O
S

O
n

to
lo

g
y

-
d

ef
au

lt
La

n
gu

ag
e:

 S
tr

in
g

+
ge

tB
ro

ad
er

()
: M

ap
+

ge
tB

ro
ad

er
(S

tr
in

g)
: C

o
lle

ct
io

n
+

ge
tB

ro
ad

er
(S

tr
in

g,
 S

tr
in

g)
: C

o
lle

ct
io

n
+

ge
tB

ro
ad

er
Se

lf
()

: M
ap

+
ge

tB
ro

ad
er

Se
lf

(S
tr

in
g)

: C
o

lle
ct

io
n

+
ge

tB
ro

ad
er

Se
lf

(S
tr

in
g,

 S
tr

in
g)

: C
o

lle
ct

io
n

+
ge

tD
ef

au
lt

Te
rm

(S
tr

in
g)

: S
tr

in
g

+
ge

tD
ef

au
lt

Te
rm

(S
tr

in
g,

 S
tr

in
g)

: S
tr

in
g

+
ge

tN
ar

ro
w

er
(S

tr
in

g)
: C

o
lle

ct
io

n
+

ge
tN

ar
ro

w
er

(S
tr

in
g,

 S
tr

in
g)

: C
o

lle
ct

io
n

+
ge

tN
ar

ro
w

er
Se

lf
(S

tr
in

g)
: C

o
lle

ct
io

n
+

ge
tN

ar
ro

w
er

Se
lf

(S
tr

in
g,

 S
tr

in
g)

: C
o

lle
ct

io
n

+
ge

tT
er

m
G

ro
u

p
(S

tr
in

g)
: L

is
t

O
n

to
lo

g
y

+
ge

tT
er

m
B

yP
ro

p
er

ty
(S

tr
in

g)
: L

is
t

+
ge

tT
er

m
B

yP
ro

p
er

ty
V

al
u

e(
St

ri
n

g,
 S

tr
in

g)
: L

is
t

+
ge

tT
er

m
sW

it
h

P
ro

p
er

ti
es

()
: M

ap

p
a

c
k

a
g

e
 B

a
c
k
g

ro
u

n
d

K
n

o
w

le
d

g
e

Figure 7.4: UML diagram: background knowledge

7.1. SYSTEM OVERVIEW 161

<
<

In
te

rf
a

c
e

>
>

C
o

n
fi

g
u

ra
b

le

R
u

le
D

o
c

u
m

e
n

tA
d

a
p

te
r

{a
b

s
tr

a
c
t}

+
ex

tr
ac

t(
D

o
cu

m
en

t,
 D

o
cu

m
en

tM
o

d
el

):
 D

o
cu

m
en

tM
o

d
el

+
ge

n
er

at
e(

D
o

cu
m

en
tM

o
d

el
):

 D
o

cu
m

en
t

+
p

ro
ce

ss
(D

o
cu

m
en

t)
: D

o
cu

m
en

t
+

p
ro

ce
ss

(D
o

cu
m

en
tM

o
d

el
):

 D
o

cu
m

en
tM

o
d

el

<
<

In
te

rf
a

c
e
>

>

K
n

o
w

le
d

g
e

E
x

te
n

d
a

b
le

<
<

In
te

rf
a

c
e

>
>

G
e

n
e

ri
c

D
o

c
u

m
e

n
tA

d
a

p
te

r

+
cl

o
se

()
: v

o
id

+
ge

tD
es

cr
ip

ti
o

n
()

: S
tr

in
g

+
ge

tN
am

e(
):

 S
tr

in
g

+
o

p
en

()
: v

o
id

<
<

In
te

rf
a

c
e

>
>

G
e

n
e

ra
ti

o
n

D
o

c
u

m
e

n
tA

d
a

p
te

r

+
ge

n
er

at
e(

D
o

cu
m

en
tM

o
d

el
):

 D
o

cu
m

en
t

G
e

n
e

ra
ti

o
n

A
d

a
p

te
rP

ip
e

li
n

e

#
ex

te
rn

al
: E

xt
er

n
al

G
en

er
at

io
n

D
o

cu
m

en
tA

d
ap

te
r

#
ge

n
er

at
io

n
: G

en
er

at
io

n
D

o
cu

m
en

tA
d

ap
te

r
#

p
o

st
p

ro
ce

ss
in

g:
 L

is
t

#
p

re
p

ro
ce

ss
in

g:
 L

is
t

+
ge

n
er

at
e(

D
o

cu
m

en
tM

o
d

el
, U

R
I)

: v
o

id

<
<

In
te

rf
a

c
e

>
>

E
x

tr
a

c
ti

o
n

D
o

c
u

m
e

n
tA

d
a

p
te

r

+
ex

tr
ac

t(
D

o
cu

m
en

t,
 D

o
cu

m
en

tM
o

d
el

):
 D

o
cu

m
en

tM
o

d
el

E
x

tr
a

c
ti

o
n

A
d

a
p

te
rP

ip
e

li
n

e

#
ex

te
rn

al
: E

xt
er

n
al

Ex
tr

ac
ti

o
n

D
o

cu
m

en
tA

d
ap

te
r

#
ex

tr
ac

ti
o

n
: E

xt
ra

ct
io

n
D

o
cu

m
en

tA
d

ap
te

r
#

p
o

st
p

ro
ce

ss
in

g:
 L

is
t

#
p

re
p

ro
ce

ss
in

g:
 L

is
t

+
ex

tr
ac

t(
U

R
I,

 D
o

cu
m

en
tM

o
d

el
):

 D
o

cu
m

en
tM

o
d

el

<
<

In
te

rf
a

c
e
>

>

E
x

te
rn

a
lG

e
n

e
ra

ti
o

n
D

o
c

u
m

e
n

tA
d

a
p

te
r

+
ge

n
er

at
e(

D
o

cu
m

en
t,

 U
R

I)
: v

o
id

<
<

In
te

rf
a

c
e

>
>

E
x

te
rn

a
lE

x
tr

a
c

ti
o

n
D

o
c

u
m

e
n

tA
d

a
p

te
r

+
ex

tr
ac

t(
U

R
I)

: D
o

cu
m

en
t

<
<

In
te

rf
a

c
e
>

>

D
o

c
u

m
e

n
tM

o
d

e
lP

ro
c

e
s

s
in

g
D

o
c

u
m

e
n

tA
d

a
p

te
r

+
p

ro
ce

ss
(D

o
cu

m
en

tM
o

d
el

):
 D

o
cu

m
en

tM
o

d
el

D
o

c
u

m
e

n
tA

d
a

p
te

rM
a

n
a

g
e

r

+
ge

tD
o

cu
m

en
tA

d
ap

te
r(

St
ri

n
g)

: G
en

er
ic

D
o

cu
m

en
tA

d
ap

te
r

+
ge

tD
o

cu
m

en
tA

d
ap

te
rs

()
: C

o
lle

ct
io

n

<
<

In
te

rf
a

c
e
>

>

X
M

L
P

ro
c

e
s

s
in

g
D

o
c

u
m

e
n

tA
d

a
p

te
r

+
p

ro
ce

ss
(D

o
cu

m
en

t)
: D

o
cu

m
en

t

p
a

c
k

a
g

e
 a

d
a

p
te

r
(1

)

Figure 7.5: UML diagram: document adapters (1/2)

162 CHAPTER 7. SYSTEM ARCHITECTURE

<
<

In
te

rf
a

c
e

>
>

G
lo

b
a

lC
o

n
te

x
t

+
cr

ea
te

C
la

ss
(S

tr
in

g)
: O

n
to

lo
gy

C
la

ss
+

cr
ea

te
D

at
aA

n
n

o
ta

ti
o

n
(S

tr
in

g,
 O

b
je

ct
):

 D
at

aA
n

n
o

ta
ti

o
n

+
cr

ea
te

Fr
ag

m
en

t(
):

 F
ra

gm
en

t
+

cr
ea

te
Fr

ag
m

en
tA

n
n

o
ta

ti
o

n
(S

tr
in

g,
 F

ra
gm

en
t)

: F
ra

gm
en

tA
n

n
o

ta
ti

o
n

+
cr

ea
te

Lo
ca

lC
o

n
te

xt
()

: L
o

ca
lC

o
n

te
xt

+
ge

tK
n

o
w

le
d

ge
b

as
e(

St
ri

n
g)

: B
ac

kg
ro

u
n

d
K

n
o

w
le

d
ge

B
as

e
+

ge
tK

n
o

w
le

d
ge

b
as

es
()

: M
ap

+
ge

tM
ap

p
in

gs
(S

tr
in

g)
: L

is
t

+
ge

tM
o

d
el

()
: D

o
cu

m
en

tM
o

d
el

+
ge

tS
ta

ck
()

: L
is

t
+

lo
ad

D
o

cu
m

en
t(

St
ri

n
g)

: D
o

cu
m

en
t

+
se

tM
ap

p
in

gs
(L

is
t,

 S
tr

in
g)

: v
o

id
+

se
tM

o
d

el
(D

o
cu

m
en

tM
o

d
el

):
 v

o
id

+
vi

si
t(

St
ri

n
g)

: b
o

o
le

an

<
<

In
te

rf
a

c
e

>
>

IC
o

n
fi

g
u

ra
ti

o
n

<
<

In
te

rf
a

c
e

>
>

L
o

c
a

lC
o

n
te

x
t

+
ge

tF
ra

gm
en

t(
):

 F
ra

gm
en

t
+

ge
tN

o
d

e(
):

 E
le

m
en

t
+

ge
tP

ar
en

t(
):

 L
o

ca
lC

o
n

te
xt

+
se

tF
ra

gm
en

t(
Fr

ag
m

en
t)

: v
o

id
+

se
tN

o
d

e(
El

em
en

t)
: v

o
id

+
se

tP
ar

en
t(

Lo
ca

lC
o

n
te

xt
):

 L
o

ca
lC

o
n

te
xt

G
lo

b
a

lC
o

n
te

x
tR

e
g

is
te

r

+
cl

ea
r(

):
 v

o
id

+
ge

tC
o

n
te

xt
(S

tr
in

g)
: G

lo
b

al
C

o
n

te
xt

+
ge

tC
o

n
te

xt
N

am
es

()
: S

et
+

is
R

eg
is

te
re

d
(S

tr
in

g)
: b

o
o

le
an

+
re

gi
st

er
C

o
n

te
xt

(S
tr

in
g,

 G
lo

b
al

C
o

n
te

xt
):

 G
lo

b
al

C
o

n
te

xt
+

u
n

re
gi

st
er

C
o

n
te

xt
(S

tr
in

g)
: G

lo
b

al
C

o
n

te
xt

G
e

n
e

ra
ti

o
n

E
x

c
e

p
ti

o
n

E
x

tr
a

c
ti

o
n

E
x

c
e

p
ti

o
n

D
o

c
u

m
e

n
tE

x
c

e
p

ti
o

n

p
a

c
k

a
g

e
 a

d
a

p
te

r
(2

)

Figure 7.6: UML diagram: document adapters (2/2)

7.2. PREPROCESSING 163

7.2 Preprocessing

Figure 7.7 shows the classes from the implementation package that implement preprocessing
functionality.

The XMLDocumentAdapter simply reads and writes XML documents from and to files. The
XMLTidyDocumentAdapter reads XML documents from files and attempts to correct documents
that are not well-formed. This is especially useful for reading HTML documents that often do
not adhere to the strict requirements of XML documents.

The LatexDocumentAdapter attempts to parse a file in LATEX format and represent it as
an XML document. LATEX environments, such as \begin{itemize} ...\end{itemize}, are
converted to opening and closing XML elements. LATEX commands without parameters, such as
\pagebreak, are converted to empty XML elements. LATEX commands with parameters, such
as \emph{} are converted to XML elements with attributes and/or child elements, depending on
the type of parameters. Due to the very high complexity and versatility of the LATEX syntax,
this adapter only supports environments and commands that were previously defined. Such a
list must be provided to the LatexDocumentAdapter as a parameter.

The WordDocumentAdapter attempts to parse a file in Microsoft Word format (pre-XML, file
extension .doc). It uses an external tool written in C# for this thesis, that makes use of the Visual
Studio Tools for Office (VSTO). The VSTO provides an API for office documents, including word
documents. Using the VSTO has several disadvantages, however, the most important being their
meagre performance in terms of efficiency and reliability, and their reliance on Microsoft Office
being installed on the machine using the tools.

The DocXDocumentAdapter attempts to avoid these disadvantages. It can only be used for
files in a newer version of the Microsoft Word format (XML-based, file extension .docx). Instead
of relying on external tools, it parses the XML files of a Word document directly and extracts
both the textual content and its formatting, including named styles.

The GZipDocumentAdapter provides read and write access to files compressed in gzip-format.
This is particularly useful when processing archived corpora of documents.

The CombinationDocumentAdapter allows for combining multiple XML files into a single
XML document. This is particularly useful when processing documents that consist of multiple
files, or when processing corpora of multiple documents as a single contiguous entity.

The XQueryDocumentAdapter allows using XQuery for specifying extraction or generation
instructions. XQuery programs can be used to preprocess XML documents, to extract and
process DocumentModels, and to postprocess models.

The ML3DocumentAdapter provides custom preprocessing for documents in the ML3 e-
learning format. This includes resolving the inclusion of other files, and dealing with multiple
versions of a document in a single set of files (see below).

7.3 Semantic Processing

Figure 7.8 shows the classes from the implementation package that implement semantic pro-
cessing functionality.

The XMLModelDocumentAdapter provides serialisation functionality for DocumentModels. It
can be used to read and write processed models from and to XML documents.

The DroolsDocumentAdapter extends the abstract RuleDocumentAdapter class with an im-
plementation based on the JBoss Drools rule language (cf. section 3.4). Drools rule sets can be
used to preprocess XML documents, to extract and process DocumentModels, and to postprocess
models. Since Drools rule sets need to be compiled before they can be used, the adapter provides

164 CHAPTER 7. SYSTEM ARCHITECTURE

C
o

m
b

in
a

ti
o

n
D

o
c

u
m

e
n

tA
d

a
p

te
r

-
ex

te
rn

al
: E

xt
er

n
al

Ex
tr

ac
ti

o
n

D
o

cu
m

en
tA

d
ap

te
r

D
o

c
X

D
o

c
u

m
e

n
tA

d
a

p
te

r
G

Z
ip

D
o

c
u

m
e

n
tA

d
a

p
te

r

L
a

te
x

D
o

c
u

m
e

n
tA

d
a

p
te

r

-
d

ef
s:

 L
at

ex
D

ef
in

it
io

n
s

M
L

3
D

o
c

u
m

e
n

tA
d

a
p

te
r

W
o

rd
D

o
c

u
m

e
n

tA
d

a
p

te
r

X
M

L
D

o
c

u
m

e
n

tA
d

a
p

te
r

X
M

L
T

id
y

D
o

c
u

m
e

n
tA

d
a

p
te

r

+
ge

tP
ar

se
Er

ro
rs

()
: i

n
t

X
Q

u
e

ry
D

o
c

u
m

e
n

tA
d

a
p

te
r

<
<

In
te

rf
a

c
e
>

>

E
x

te
rn

a
lE

x
tr

a
c

ti
o

n
D

o
c

u
m

e
n

tA
d

a
p

te
r

+
ex

tr
ac

t(
U

R
I)

: D
o

cu
m

en
t

<
<

In
te

rf
a

c
e
>

>

X
M

L
P

ro
c

e
s

s
in

g
D

o
c

u
m

e
n

tA
d

a
p

te
r

+
p

ro
ce

ss
(D

o
cu

m
en

t)
: D

o
cu

m
en

t

p
a

c
k

a
g

e
 i
m

p
le

m
e

n
ta

ti
o

n
 (

p
re

p
ro

c
e

s
s
in

g
)

Figure 7.7: UML diagram: preprocessing

7.4. POSTPROCESSING 165

a method for pre-compiling them. This allows the implementation to cache a pre-compiled ver-
sion of the rules and use it without additional compilation overhead until the rule set changes.

DroolsGlobalContext and DroolsLocalContext are Drools-specific extensions of the ab-
stract AbstractGlobalContext and AbstractLocalContext classes, respectively.

The XQueryDocumentAdapter has already been described above. XQueryGlobalContext and
XQueryLocalContext are XQuery-specific extensions of the abstract AbstractGlobalContext

and AbstractLocalContext classes, respectively.
The RDFExtractionDocumentAdapter attempts to read DocumentModels directly from a doc-

ument in RDF format, provided that the RDF document uses RDF vocabulary that is compatible
with semantic document models (cf. appendix A).

7.4 Postprocessing

Figure 7.9 shows the classes from the implementation package that implement postprocessing
functionality.

XMLDocumentAdapter, GZipDocumentAdapter, XQueryDocumentAdapter, XMLModel-

DocumentAdapter, and DroolsDocumentAdapter have already been described above.
The CTLDocumentAdapter creates a temporal model for CTL model checking (cf. section 3.5.1)

from a DocumentModel. The layout of this temporal model is specified as a VMSpecification

parameter (see below).
Similarly, the ALCCTLDocumentAdapter creates a temporal model forALCCTL model checking

(cf. section 3.5.2) from a DocumentModel. The layout of this temporal model is also specified as
a VMSpecification parameter.

The HTMLDocumentAdapter creates an HTML document for a DocumentModel. The HTML
document is a generic example of a document for which the DocumentModel represents a semantic
document model.

The GraphDocumentAdapter shows a graph view of a DocumentModel, using the JUNG Graph
library1.

The BGKGenerationDocumentAdapter attempts to extract background knowledge from a
DocumentModel, as discussed in section 6.2. It uses the Vocabulary of the DocumentModel to
determine which annotations may hold suitable information. In particular, it uses the data
annotations defined in the vocabulary, except specific annotations like identifiers.

Counterpart to the RDFExtractionDocumentAdapter, the RDFGenerationDocumentAdapter

creates an RDF document that represents a DocumentModel.
Figure 7.10 shows the classes from the VerificationModel package that are used to define

the layout of a temporal model for model checking.
The VMSpecification class combines all parts of the layout specification for a temporal

model. It contains one instance of VMStateSpecification that specifies which parts of a
DocumentModel should be represented by states in the temporal model. Most commonly, frag-
ments that either represent chapters or paragraphs in the original document serve as the boiler-
plates for states in the temporal model.

The VMSpecification also contains one instance of VMStartingStateSpecification that
defines a single starting state for the model checking problem. It contains one instance of
VMSuccessorSpecification that defines the successor relation between states.

Finally, the specification contains lists of VMConceptSpecifications and VMRole-

Specifications that define concepts and roles and their respective interpretations in each state.
The role definition first specifies a base, relative to which both role partners are specified. In other

1http://jung.sourceforge.net/, visited 05/2013

http://jung.sourceforge.net/

166 CHAPTER 7. SYSTEM ARCHITECTURE

D
ro

o
ls

D
o

c
u

m
e

n
tA

d
a

p
te

r

-
m

ap
p

in
gs

: M
ap

+
co

m
p

ile
(S

tr
in

g,
 S

tr
in

g)
: v

o
id

-
lo

ad
C

ac
h

ed
(S

tr
in

g)
: v

o
id

-
lo

ad
U

n
ca

ch
ed

(S
tr

in
g)

: v
o

id

X
M

L
M

o
d

e
lD

o
c

u
m

e
n

tA
d

a
p

te
r

<
<

In
te

rf
a

c
e
>

>

E
x

tr
a

c
ti

o
n

D
o

c
u

m
e

n
tA

d
a

p
te

r

+
ex

tr
ac

t(
D

o
cu

m
en

t,
 D

o
cu

m
en

tM
o

d
el

):
 D

o
cu

m
en

tM
o

d
el

R
u

le
D

o
c

u
m

e
n

tA
d

a
p

te
r

{a
b

s
tr

a
c
t}

X
Q

u
e

ry
D

o
c

u
m

e
n

tA
d

a
p

te
r

A
b

s
tr

a
c

tG
lo

b
a

lC
o

n
te

x
t

{a
b

s
tr

a
c
t}

R
D

F
E

x
tr

a
c

ti
o

n
D

o
c

u
m

e
n

tA
d

a
p

te
r

A
b

s
tr

a
c

tL
o

c
a

lC
o

n
te

x
t

{a
b

s
tr

a
c
t}

X
Q

u
e

ry
G

lo
b

a
lC

o
n

te
x

t

X
Q

u
e

ry
L

o
c

a
lC

o
n

te
x

t

D
ro

o
ls

L
o

c
a

lC
o

n
te

x
t

D
ro

o
ls

G
lo

b
a

lC
o

n
te

x
t

<
<

In
te

rf
a

c
e

>
>

G
lo

b
a

lC
o

n
te

x
t

<
<

In
te

rf
a

c
e

>
>

L
o

c
a

lC
o

n
te

x
t

E
x

tr
a

c
ti

o
n

A
d

a
p

te
rP

ip
e

li
n

e

+
ex

tr
ac

t(
U

R
I,

 D
o

cu
m

en
tM

o
d

el
):

 D
o

cu
m

en
tM

o
d

el

p
a

c
k

a
g

e
 i
m

p
le

m
e

n
ta

ti
o

n
 (

s
e

m
a

n
ti
c
 p

ro
c
e

s
s
in

g
)

Figure 7.8: UML diagram: semantic processing

7.4. POSTPROCESSING 167

R
u

le
D

o
c

u
m

e
n

tA
d

a
p

te
r

{a
b

s
tr

a
c
t}

G
Z

ip
D

o
c

u
m

e
n

tA
d

a
p

te
r

X
M

L
D

o
c

u
m

e
n

tA
d

a
p

te
r

X
M

L
M

o
d

e
lD

o
c

u
m

e
n

tA
d

a
p

te
r

X
Q

u
e

ry
D

o
c

u
m

e
n

tA
d

a
p

te
r

<
<

In
te

rf
a

c
e

>
>

G
e

n
e

ra
ti

o
n

D
o

c
u

m
e

n
tA

d
a

p
te

r

+
ge

n
er

at
e(

D
o

cu
m

en
tM

o
d

el
):

 D
o

cu
m

en
t

<
<

In
te

rf
a

c
e
>

>

E
x

te
rn

a
lG

e
n

e
ra

ti
o

n
D

o
c

u
m

e
n

tA
d

a
p

te
r

+
ge

n
er

at
e(

D
o

cu
m

en
t,

 U
R

I)
: v

o
id

G
ra

p
h

D
o

c
u

m
e

n
tA

d
a

p
te

r

-
ge

tG
ra

p
h

(D
o

cu
m

en
tM

o
d

el
):

 D
ir

ec
te

d
G

ra
p

h

R
D

F
G

e
n

e
ra

ti
o

n
D

o
c

u
m

e
n

tA
d

a
p

te
r

H
tm

lG
e

n
e

ra
ti

o
n

D
o

c
u

m
e

n
tA

d
a

p
te

r

C
T

L
D

o
c

u
m

e
n

tA
d

a
p

te
r

B
G

K
G

e
n

e
ra

ti
o

n
D

o
c

u
m

e
n

tA
d

a
p

te
r

A
L

C
C

T
L

D
o

c
u

m
e

n
tA

d
a

p
te

r

G
e

n
e

ra
ti

o
n

A
d

a
p

te
rP

ip
e

li
n

e

+
ge

n
er

at
e(

D
o

cu
m

en
tM

o
d

el
, U

R
I)

: v
o

id

D
ro

o
ls

D
o

c
u

m
e

n
tA

d
a

p
te

r

p
a

c
k

a
g

e
 i
m

p
le

m
e

n
ta

ti
o

n
 (

p
o

s
tp

ro
c
e

s
s
in

g
)

Figure 7.9: UML diagram: postprocessing

168 CHAPTER 7. SYSTEM ARCHITECTURE

words, it points to a location in the DocumentModel, for example to all fragments that represent
definitions. From this base point, it points to two relative locations, for example to the fragment
identifier and to the topic associated with the fragment. The resulting role interpretation would
pair definitions with topics, as in a hasDefinedTopic role.

All specifications are based on SPARQL queries that can be executed against a
DocumentModel.

Both the concept specification and the role specification make use of VMDataPostProcessing
instances that further process the data retrieved for the interpretations. They can for example
be used to enforce uniform spelling conventions.

7.4. POSTPROCESSING 169

A
L

C
C

T
L

D
o

c
u

m
e

n
tA

d
a

p
te

r

B
G

K
V

a
lu

e
P

ro
c

e
s

s
in

g

V
M

S
p

e
c

if
ic

a
ti

o
n

-
co

n
ce

p
ts

: L
is

t
-

ro
le

s:
 L

is
t

-
st

ar
ti

n
gS

ta
te

s:
 V

M
St

ar
ti

n
gS

ta
te

Sp
ec

if
ic

at
io

n
-

st
at

es
: V

M
St

at
eS

p
ec

if
ic

at
io

n
-

su
cc

es
so

rs
: V

M
Su

cc
es

so
rS

p
ec

if
ic

at
io

n

+
lo

ad
(D

o
cu

m
en

t)
: V

M
Sp

ec
if

ic
at

io
n

+
sa

ve
(V

M
Sp

ec
if

ic
at

io
n

):
 D

o
cu

m
en

t

V
M

R
o

le
S

p
e

c
if

ic
a

ti
o

n

-
b

as
e:

 S
P

A
R

Q
LQ

u
er

y
-

d
at

aP
ro

ce
ss

in
g:

 L
is

t
-

in
ve

rs
e:

 b
o

o
le

an
-

le
ft

: S
P

A
R

Q
LQ

u
er

y
-

n
am

e:
 S

tr
in

g
-

ri
gh

t:
 S

P
A

R
Q

LQ
u

er
y

<
<

In
te

rf
a

c
e

>
>

V
M

D
a

ta
P

o
s

tP
ro

c
e

s
s

in
g

+
p

ro
ce

ss
(C

o
lle

ct
io

n
):

 C
o

lle
ct

io
n

V
M

S
u

c
c

e
s

s
o

rS
p

e
c

if
ic

a
ti

o
n

-
q

u
er

y:
 S

P
A

R
Q

LQ
u

er
y

-
ty

p
e:

 S
tr

in
g

V
M

C
o

n
c

e
p

tS
p

e
c

if
ic

a
ti

o
n

-
d

at
aP

ro
ce

ss
in

g:
 L

is
t

-
n

am
e:

 S
tr

in
g

-
q

u
er

y:
 S

P
A

R
Q

LQ
u

er
y

V
M

S
ta

rt
in

g
S

ta
te

S
p

e
c

if
ic

a
ti

o
n

-
q

u
er

y:
 S

P
A

R
Q

LQ
u

er
y

V
M

S
ta

te
S

p
e

c
if

ic
a

ti
o

n

-
q

u
er

y:
 S

P
A

R
Q

LQ
u

er
y

D
L

R
D

a
ta

P
o

s
tP

ro
c

e
s

s
in

g

-
m

o
d

el
: D

o
cu

m
en

tM
o

d
el

p
a

c
k

a
g

e
 V

e
ri
fi
c
a

ti
o

n
M

o
d

e
l

Figure 7.10: UML diagram: verification model

170 CHAPTER 7. SYSTEM ARCHITECTURE

Chapter 8

Implementing Document Models

In this chapter, we will discuss implementation options for document models, and the imple-
mentation we chose for this thesis.

8.1 Implementation Basics

For implementing document models, there are several options to choose from. Important prop-
erties of such an implementation are an efficient representation of both the structure and the
semantics of a model based on description logics.

The first option is to develop some custom data format for representing the model, and to
use a rule language and interpreter to realise its semantics. There exist, a number of resources
that make a completely new development unnecessary. Nonetheless, this option requires a large
effort in creating components that might already exist for other options.

Another option is to implement document models in Datalog or Prolog. While the necessary
inference rules would also have to be specified manually, this poses no great challenge. However,
both Datalog and Prolog employ backward chaining as their reasoning method, thus working
backwards from a specified goal. But when using document models, the goal may not be known
beforehand, or there may be more than one goal. This makes the forward chaining method more
useful, since it only needs to be done once and it can be done before the model is used.

This makes OWL, combined with RDF, a good candidate for implementing document models
that we will now investigate further.

When OWL/RDF is used to model data, there exist a number of implementations that can be
used, such as Jena [Jen] or Sesame [Ses]. The features of such an implementation that are crucial
for working with semantically rich document representations are scalability and reasoning support.
Scalability is important because the data that needs to be stored can become very considerable
in size, either in the form of very large document models, or in the form of extensive background
knowledge (cf. chapters 6 and 11). Scalability can most easily and reliably be achieved by
providing a database-backend for the data storage, which is available in many RDF frameworks.
In addition, the underlying structure of RDF data is a graph structure, which allows for a very
efficient and natural implementation of the relation-based structure of document models (see
below).

Reasoning support is needed to infer new and relevant data from the existing state-
ments. This includes additional type information for fragments (i.e., the transitive closure of
rdfs:subClassOf) and equivalence classes (i.e., the transitive closure of owl:sameAs and its

171

172 CHAPTER 8. IMPLEMENTING DOCUMENT MODELS

derivatives). Most RDF frameworks either offer a direct implementation of the required reas-
oning algorithms, or they provide an interface for using external reasoners such as Pellet or
HermiT. RDF/OWL reasoning is based on forward chaining, driven by the available assertions,
and OWL DL semantics are based on description logics. This makes it an ideal choice for the
implementation of semantic document models.

Also important but less crucial is support for schema specification languages like RDF(S) and
query languages like SPARQL. A schema specification not only provides assertions that can be
used to infer new data, but it also limits modelling in a way that allows for finding inconsistencies.
A query language can be used to retrieve specific parts of a document model, which is important
when extracting data or when generating new types of models from a document model.

In general, it is unimportant which specific schema or query language is used. For example,
earlier versions of Sesame did not support SPARQL, but provided a custom query language
named SeRQL with similar capabilities. However, support for standardised data and query
formats clearly facilitates easier exchange of data. At the time of this writing, the existing
frameworks support all relevant standards.

Both Jena and Sesame provide the required scalability and reasoning support. In current
implementations, there is an important caveat, however. When the number of RDF statements
grows so large that they need to be taken out of main memory, i.e., if they need to be written to
a database, the reasoning over these statements becomes cripplingly inefficient. We will address
this issue in section 11.5.

8.2 Implementing Document Fragments

Fragments of a semantic document model are best implemented as RDF named resources. To
this end, each fragment is assigned a unique numerical identifier. Combined with a constant URI
prefix like http://www.verdikt.uni-passau.de#ID, this identifier yields a URI to represent
the named resource, for example http://www.verdikt.uni-passau.de#ID04680347.

This allows for an easy and global identification of document fragments, even across docu-
ment models, which is useful when combining multiple document models to a larger model of
a document corpus. It also allows for an efficient implementation, because a simple number is
often sufficient for identification and handling, instead of a more cumbersome URI.

Unique identifiers can be obtained by calculating checksums on the source data, e.g., on the
absolute and unique XPath expression leading to the XML element or other media object that
induces the current fragment. Extended with the filename, such an XPath expression can look
like this: /documents/file.html#html/body/div[3]/p[2].

RDF statements can be used for annotating type information in the form of RDF/OWL
classes to fragments. Data-valued statements can be used for annotating literal values, such as
topic information or metadata.
The vocabulary for predicates and classes is described in appendix A.

8.3 Implementing Relations

Relationships between fragments can be implemented as object-valued RDF statements.

8.3.1 Implementing Include Relations

Some document formats offer the possibility of including (parts of) other documents, for example
the \input{} command in LATEX. In case a particular document or document part is included

http://www.verdikt.uni-passau.de#ID
http://www.verdikt.uni-passau.de#ID04680347

8.3. IMPLEMENTING RELATIONS 173

multiple times, there are two ways to implement this. In the formal semantic document model,
each included document or document part is represented as a unique fragment (cf. chapter 4).
The first option is to let the implementation reflect this and to represent the included fragments
multiple times. This results in additional space requirements and redundancy in the data.

The second option is to implement the included fragments only once and to reference it
multiple times. The drawbacks for this option are more severe, however. When processing a
document model, each fragment needs to be regarded in its local context, which includes its
place in the document structure. For a fragment that is included multiple times, this context
depends on the path that was taken to reach it. For example, a fragment can inherit the topics
of its parent fragment. In a fragment that is included multiple times, the actual topics change
with the path taken to reach the fragment, because the parent fragment changes.

Since the additional space requirements are less costly than the effort required to differentiate
between multiple contexts of a single fragment that was included in multiple places in a document
structure, we implement include relations en par with their representation in the document model,
namely by duplicating the included fragments.

8.3.2 Implementing Reference Relations

In most types of documents, references from one part of the document to another are in a linear
order. For example, if there are two outgoing references from chapter 2, one pointing to chapter 3
and one pointing to chapter 4, then one of these references comes before the other. This order
should be reflected in the implementation.

Figure 8.1 illustrates four options for implementing reference relations using a small hyper-
document with four fragments as an example. On the left hand side (a), the order of the reference
relationships is implemented by annotating the edges with numbers. For example, the reference
from A to B comes before the reference from A to C. Next (b), the order is implemented by
annotating the target nodes with numbers. As evident in node C, this is not sufficient in a
graph structure because the reference point for the numbering – namely, the predecessor – is not
unique. It is therefore unclear if C is the first reference of A and the second reference of B, or
vice versa.

(b) Reference relation
ordered with node numbers

(d) Reference relation
ordered with lists

(c) Reference relation
ordered with queues

A B

C D

A B

DC

A B

D

1

1 2

C
2

A B

C

head

head

su
cc

ess
or

Dsuccessor

1

2 1 2

(a) Reference relation
ordered with edge numbers

Figure 8.1: Implementation options for reference relations

Implementing the order with a queue of a single head relationship followed by a sequence
of successor (tail) relationships (c) is insufficient for similar reasons. A has references to both
B and C, in that order. This is implemented as a head relationship between A and B, and a
successor relationship between B and C. Other references from A would be implemented as a

174 CHAPTER 8. IMPLEMENTING DOCUMENT MODELS

chain of further successors, starting in C. However, C is also in a head relationship with B,
because B references C. It is therefore unclear if the successor relationship between C and D is
a continuation of the successor chain from B, or if it is the beginning of a new successor chain
from C.

On the right hand side (d), implementing the order of the reference relation using a list
structure is depicted. Both options (a) and (d) are valid possibilities. Annotating the edges (a)
allows for the efficient determination of the relative order of two references simply by comparing
the annotated numbers. It also avoids the cumbersome handling of OWL lists, with positive
effects on the readability of the program code. Using a list structure makes iterating in the
correct order over all outgoing edges of a node more efficient.

Unfortunately, not all formalisms allow the implementation of annotated edges. For example,
description logics do not support annotated role assertions. OWL does allow annotated state-
ments via reification, but does not provide a consistent semantics for it. Since experience has
shown that the order of references is only relevant in rare cases, we implement reference ordering
via reification, and use a custom SPARQL query to retrieve this order when necessary.

Remark 8.3.1. Note that reference relations are no ordering relations, because the possibility
of cycles conflicts with the antisymmetry requirement of a (partial) order: two fragments that
reference each other would have to be equal, which is not generally the case.

In a document model, it is important to differentiate between immediate successors and
indirect (transitive) successors. Therefore, successor relations should not be implemented as
transitive, i.e., they should not be implemented as sub-properties of owl:TransitiveProperty,
because after a reasoning step the inferred relationships cannot be distinguished from the original
ones. Transitive super-properties of successor properties, however, can be useful for conveniently
determining the transitive closure of these properties.

For example, for a successor relation implemented as successor, an additional re-
lation successor trans with successor trans v successor trans+ and successor v
successor trans can be defined. Provided that successor trans has no other sub-properties,
it represents exactly the transitive closure of successor.

8.3.3 Implementing Has-Part Relations

Different from reference relations, has-part relations are defined as left unique, i.e., no fragment
in a document model may be part of more than one other fragment. This restriction puts options
(b) and (c) from figure 8.1 back on the table for has-part relations.

Using a queue to implement the order of has-part relationships, i.e., which sub-fragment
comes before another, makes handling inconvenient. It also increases the cost of determining the
relative order of two fragments.

While numbered edges are not supported by all formalisms, numbered nodes pose no such
problem. Since many use cases involve the determination of the relative order of fragments or
appending a new fragment after the last existing fragment, where numbered nodes are more
efficient than lists, we use numbered nodes to implement has-part relations.

As with successor relations, has-part relations should not be implemented as transitive, but
transitive super-properties can be useful. They should, however, be implemented as inject-
ive (owl:InverseFunctionalProperty) to guarantee left uniqueness, i.e., > v≤ 1has-part−.
Other tree properties must be ensured by the document model framework.

8.3. IMPLEMENTING RELATIONS 175

8.3.4 Implementing Literal-Valued Relations

As stated above, relationships with a literal value can be implemented as literal-valued state-
ments. In particular, terms that are topics of fragments can be implemented as literals. How-
ever, literals cannot be the subject of a statement. This leads to problems when trying to
implement the terminological ontology OT of a semantic document model. OT contains as-
sertions about terms, where these terms can be both subjects and objects of statements, e.g.,
hasBroader(Binary Tree,Data Structure).

This leaves two options for implementing terms. The first option is to replace all literal
values with resources, for example instances of SKOS concepts, and to give these resources an
annotation that contains the actual literal value, for example skos:prefLabel. This results in
statements like

vdk:ID21 rdf:type vdk:Paragraph ;

vdk:topic vdk:DataStructure .

vdk:DataStructure rdf:type skos:Concept ;

skos:prefLabel "Data Structure"@en .

vdk:BinaryTree rdf:type skos:Concept ;

skos:prefLabel "Binary Tree"@en ;

skos:broader vdk:DataStructure .

The second option is to leave all terms as literal values in the document model, but to use
resources, for example instances of SKOS concepts, for the implementation of OT . This results
in statements like

vdk:ID21 rdf:type vdk:Paragraph ;

vdk:topic "Data Structure"@en .

vdk:DataStructure rdf:type skos:Concept ;

skos:prefLabel "Data Structure"@en .

vdk:BinaryTree rdf:type skos:Concept ;

skos:prefLabel "Binary Tree"@en ;

skos:broader vdk:DataStructure .

We use the second option, because it requires fewer joins on the data. Terms do not need to
be resolved to their literal value, which is a frequent requirement when processing a document
model. In addition, this reduces the dependency on the background knowledge, so that the core
part of the document model can be used and understood on its own.

We will now show an example implementation of a semantic document model based on the
decisions made in this chapter.

Example 8.3.2 (Document Model Implementation). The semantic document model from ex-
ample 4.2.15 can be implemented in RDF/OWL as follows.

Note that the vdk:position statements indicate the relative order of child fragments w.r.t.
the has-part relation, e.g., fragment vdk:ID42 with a position value of “2” is the second child of

176 CHAPTER 8. IMPLEMENTING DOCUMENT MODELS

fragment vdk:ID4.

@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix skos: <http://www.w3.org/2004/02/skos/core#> .
@prefix vdk: <http://www.verdikt.uni-passau.de#> .
vdk:ID0 rdf:type vdk:Document ;

vdk:part vdk:ID1 ;

vdk:part vdk:ID2 ;

vdk:part vdk:ID3 ;

vdk:part vdk:ID4 ;

vdk:part vdk:ID5 .

vdk:ID1 rdf:type vdk:Chapter ;

vdk:position "0"^^xsd:int ;

vdk:reference vdk:ID2 .

vdk:ID2 rdf:type vdk:Chapter ;

vdk:position "1"^^xsd:int ;

vdk:reference vdk:ID3 ;

vdk:reference vdk:ID4 ;

vdk:part vdk:ID21 .

vdk:ID3 rdf:type vdk:Chapter ;

vdk:position "2"^^xsd:int ;

vdk:reference vdk:ID5 ;

vdk:part vdk:ID31 .

vdk:ID4 rdf:type vdk:Chapter ;

vdk:position "3"^^xsd:int ;

vdk:reference vdk:ID5 ;

vdk:part vdk:ID41 ;

vdk:part vdk:ID42 .

vdk:ID5 rdf:type vdk:Chapter ;

vdk:position "4"^^xsd:int .

vdk:ID21 rdf:type vdk:Definition ;

vdk:position "0"^^xsd:int ;

rdf:type vdk:Paragraph ;

vdk:topic "Data Structure"@en .

vdk:ID31 rdf:type vdk:Example ;

vdk:position "0"^^xsd:int ;

rdf:type vdk:Paragraph ;

vdk:topic "Data Structure"@en .

vdk:ID41 rdf:type vdk:Definition ;

vdk:position "0"^^xsd:int ;

rdf:type vdk:Paragraph ;

vdk:topic "Binary Tree"@en .

vdk:ID42 rdf:type vdk:Illustration ;

vdk:position "2"^^xsd:int ;

rdf:type vdk:Paragraph ;

vdk:topic "Binary Tree"@en .

vdk:DataStructure rdf:type skos:Concept ;

skos:prefLabel "Data Structure"@en .

vdk:BinaryTree rdf:type skos:Concept ;

skos:prefLabel "Binary Tree"@en ;

skos:broader vdk:DataStructure .

8.4. DOCUMENT LIFECYCLE 177

8.4 Document Lifecycle

Documents that are part of a complex lifecycle can exist in multiple versions. So far, multiple
versions of a document have not been modelled as part of a document model. We will now briefly
discuss how different versions can be represented in a single semantic document model, and how
this affects the implementation.

(b) Integration

A B

C

(a) Duplication

A B A B

D

root

1 2 3
v.1 v.2 v.3

A B

C

root

D
v.3

v.1

v.1
v.2
v.3

v.1
v.2
v.3

Figure 8.2: Implementation options for document versions (arrows represent has-part relation-
ships)

The simplest way to include multiple versions in a single document model is to introduce new
fragments, one for each version, and then use has-part relationships to put them directly beneath
the root fragment. Each document version is then modelled as usual, using the corresponding
new version fragment as its root fragment. This is shown in figure 8.2 (a), where the version
number is highlighted in yellow and the new version fragments are indicated in grey.

The drawback of this approach is a potentially large number of duplicates. By integrating the
different versions into a single model and annotating the relevant version numbers directly to each
fragment as shown in figure 8.2 (b), the complete document can be modelled without duplicate
fragments. On the other hand, this appears to increase the retrieval overhead, because every
version-dependent processing step (such as the generation of a verification model) must extricate
the fragments relevant for a specific version from the complex model. In the first approach (a),
this can be achieved with a simple selection of the appropriate version fragment.

However, in a query language like SPARQL, approach (a) is actually more complex because
SPARQL provides no automatic mechanism for selecting an entire sub-tree starting in a specific
root note. This leads to a query like

1 SELECT ?s ?p ?o

2 WHERE {

3 ?r hasVersion "1" .

4 ?r hasPartTrans ?s .

5 ?r hasPartTrans ?o .

6 ?s ?p ?o

7 }

178 CHAPTER 8. IMPLEMENTING DOCUMENT MODELS

for extracting all statements that belong to version “1”, where hasPartTrans is a transitive
super-property of the has-part property.

On the other hand, extricating the relevant statements in approach (b) leads to a query like

1 SELECT ?s ?p ?o

2 WHERE {

3 ?s hasVersion "1" .

4 ?o hasVersion "1" .

5 ?s ?p ?o

6 }

which, by the simple virtue of requiring one less sub-graph pattern match, is less costly to execute.
Barring future research, we therefore tentatively recommend modelling and implementing

document versions by integrating the version information into the (single) document model.

8.5 Implementing Process Models

Process models can be implemented in a similar manner to document models. A different vocab-
ulary for predicates and classes is required, however. This is described in appendix A.

Conclusion

In this chapter, we have discussed several implementation choices for semantic document models
and their respective merits. We have outlined the reasoning behind the choices we made for our
implementation and given a brief outlook on dealing with document lifecycles.

Chapter 9

Processing Document Models

In this chapter, we will discuss implementation choices for extracting semantic models from digital
documents, for inference on semantic models, and for obtaining and materialising different views
on a semantic model.

9.1 Extracting Data Models

We will now discuss three options of obtaining an RDF graph that implements a semantic model,
for example a semantic document model, from a digital document. This is an implementation

of the mapping B,D0
T,K
↪→ D, for a connected base document model B, a semantic document

model D, an empty semantic document model D0, a set of transformation rules T , and a set of
background knowledge K, as defined in definition 5.1.21 on page 106.

The fist option is to write a regular program for the specific purpose, for example in Java.
The second option is to specify the extraction logic in a query language like XQuery. The third
option is to specify the extraction logic in the form of extraction rules.

Before the actual model extraction process is applied to a digital document, it is useful to
preprocess this document. Preprocessing can be used to correct errors or inconsistencies in the
original document specification, for example by applying an HTML tidy utility to an HTML
document that is not compliant with the HTML standard. It can also be used to simplify or to
unify a document’s technical structure, for example by using an XSLT stylesheet to harmonise
semantically equivalent but syntactically different commands like the HTML and
commands. It can also be used to convert proprietary or very complex document formats into
simpler formats, for example converting “old style” Word documents into the new, XML-based
Word format.

Remark 9.1.1. A note on term normalisation (e.g., by stemming or by matching against a
list of known terms): normalisation can either be done for every term when a document is first
processed, or it can be done on demand, i.e., whenever it is deemed necessary (or not at all).

The former means that everything, including background knowledge, needs to work with nor-
malised forms of terms all the time. This appears sensible, but experience has shown that in
many cases it can be omitted. Term matching (i.e., determining whether two strings represent
the same term) can then be done either by a strict lexical match, or by evaluating the Levenshtein
distance between two strings. If this distance, that measures the number of different letters in the
two strings, is below a certain threshold, say “2”, then the strings are considered a match.

179

180 CHAPTER 9. PROCESSING DOCUMENT MODELS

While this clearly introduces the possibility of errors (mainly false negatives), stemming may
also introduce errors (mainly false positives). Since false positives are worse than false negatives
in many applications, it is often not worth the effort to normalise terms.

For example, in document verification false negatives may lead to missing assertions that may
lead to errors in the verification. These errors, however, can be traced with relative ease. False
positives, on the other hand, almost always lead to incorrect assertions that may lead to errors
in the verification. These errors are very hard to trace, because the supposed root cause simply
does not exist in the original document.

In the following discussions and examples, as in our implementation, we will not use nor-
malisation for terms. This can, however, be changed easily by calling an appropriate function
whenever a term is added to the document model. We will also assume that an instance of a
semantic document model with an empty root fragment has already been created and is available
to any given program (analogue to D0 in definition 5.1.21). This is merely a convenience to limit
the number of special cases that need to be regarded in an implementation.

9.1.1 Program-based Extraction

Obviously, it is possible to use a regular programming language to specify extraction logic. This
usually requires a new program for each document format in each application domain. Within
such a program, the structure of the source document, represented as a base document model,
can be parsed by using a selector language like XPath, by iterating or recursing along the graph
structure like a DOM tree, or by a combination of the two.

Using Java, several extraction programs were created and integrated into the document frame-
work as part of the Verdikt project. In particular, programs were created for the e-learning
formats LMML [Kol08] and ML3, as well as for the DITA [Pre08], DocBook, and HTML formats.

Example 9.1.2 (Java Extraction Program). The following code fragment is part of the extrac-
tion program for HTML documents. It has been shortened and reduced to the core function of
parsing HTML files with chapters, definitions, examples, terms, and cross-references across mul-
tiple files. Auxiliary functions, error checking, and repetitive code has been excluded. Repetitive
code includes code that is similar to the one shown, but extends the functionality to, e.g., other
structural elements like sections or illustrations.

Line 1 defines an auxiliary data structure that keeps track of files that were already parsed,
in order to avoid infinite loops.

The primary extraction method starts in line 3. It initialises the visitedFiles data structure
and starts the extraction with the initial file.

Line 8ff. contains a method that starts the extraction of a single HTML file. It checks if
the file has already been parsed, loads and tidies the file’s DOM tree, and calls the main parse
method. The root fragment of the document model serves as the initial parent parameter for this
method.

The main parse method starts in line 15. It is a recursive method that processes the DOM
tree of an HTML file node by node, keeping track of the document fragment that corresponds to
the actual position in the DOM tree via its parent parameter.

It starts off with a case distinction on the current DOM node: <div> nodes are processed in
line 16, nodes are processed in line 40, and <a> nodes are processed in line 48. The
method concludes with a recursive call to all child elements of the current DOM node in line 56.

If a <div> node has a CSS class value that identifies it as a title node (line 17), its content
is annotated as a title to the current document fragment. First, the appropriate name for this

9.1. EXTRACTING DATA MODELS 181

annotation is found in the vocabulary associated with the document model. Then, an annotation
is created and added to the fragment.

Other <div> nodes represent document fragments (line 23). Therefore, a new fragment is
created with an identifier based on the file name and the precise position of the current element in
the XML DOM tree (createFragment(node)). It is annotated with type information according
to the CSS class value of the <div> node, e.g., “Chapter” or “Definition”. The new fragment
is then added as a child of the current fragment (i.e., it is put into a has-part relationship with
the parent fragment), and finally the new fragment replaces the old fragment as the currently
regarded fragment in line 38. Note that position annotations as shown in example 8.3.2 are
created automatically by the addChild() method of the Fragment class, based on the order of
insertion, i.e., if fragment f1 is inserted before fragment f2, then f1 will have a lower position
number than f2.

 nodes with an appropriate CSS class value contain terms that are relevant for the
document. Their text content is added as an annotation to the current document fragment.

References, represented by <a> nodes, lead to the parsing of the referenced file. In addition,
a new reference annotation is added between the current document fragment and the newly parsed
fragment.

1 private Set <String > visitedFiles;

2

3 public DocumentModel extract(String filename , DocumentModel model) {

4 visitedFiles = new HashSet <String >();

5 extractFile(filename , model);

6 }

7

8 private void extractFile(String filename , DocumentModel model) {

9 if (visitedFiles.contains(filename)

10 return;

11 Document htmlDocument = HTMLTidy.load(filename);

12 parseHtml(htmlDocument.getDocumentElement (), model.getRoot (), model);

13 }

14

15 private void parseHtml(Element node , Fragment parent , DocumentModel model) {

16 if (node.getNodeName ().equals("div")) {

17 if (node.getAttribute("class").equals("title")) {

18 String name = model.getVocabulary ().getAnnotationName("title");

19 String value = node.getTextContent ();

20 Annotation anno = model.getFragmentFactory ()

21 .createDataAnnotation(name , value);

22 parent.addAnnotation(anno);

23 } else {

24 Fragment fragment = model.getFragmentFactory ().createFragment(node);

25 if (node.getAttribute("class").equals("chapter")) {

26 fragment.setStructuralType("Chapter");

27 } else if (node.getAttribute("class").equals("definition")) {

28 fragment.setStructuralType("Paragraph");

29 fragment.setFunctionType("Definition");

30 } else if (node.getAttribute("class").equals("example")) {

31 fragment.setStructuralType("Paragraph");

32 fragment.setFunctionType("Example");

33 } else if (node.getAttribute("class").equals("illustration")) {

34 fragment.setStructuralType("Paragraph");

35 fragment.setFunctionType("Illustration");

36 }

37 parent.addChild(fragment);

38 parent = fragment;

39 }

40 } else if (node.getNodeName ().equals("span")) {

182 CHAPTER 9. PROCESSING DOCUMENT MODELS

41 if (node.getAttribute("class").equals("term")) {

42 String name = model.getVocabulary ().getAnnotationName("term");

43 String value = node.getTextContent ();

44 Annotation anno = model.getFragmentFactory ()

45 .createDataAnnotation(name , value);

46 parent.addAnnotation(anno);

47 }

48 } else if (node.getNodeName ().equals("a")) {

49 extractFile(node.getAttribute("href"), model);

50 Fragment target = findTarget(node.getAttribute("href"), model);

51 String name = model.getVocabulary ().getAnnotationName("reference");

52 Annotation anno = model.getFragmentFactory ()

53 .createFragmentAnnotation(name , target);

54 parent.addAnnotation(anno);

55 }

56 for (Element child: getChildNodes(node))

57 parseHtml(child , parent , model);

58 }

Consider the following HTML document, consisting of five HTML files. It implements the
document from example 4.1.24.

1 <!-- index.htm -->

2 <html>

3 <body>

4 <div class="chapter">

5 <div class="title">Introduction </div>

6 Link

7 </div>

8 </body>

9 </html>

1 <!-- chapter2.htm -->

2 <html>

3 <body>

4 <div class="chapter">

5 <div class="title">Chapter 2</div>

6 <div class="definition">

7 Data Structure

8 </div>

9 Link

10 Link

11 </div>

12 </body>

13 </html>

1 <!-- chapter3.htm -->

2 <html>

3 <body>

4 <div class="chapter">

5 <div class="title">Chapter 3</div>

6 <div class="example">

7 Data Structure

8 </div>

9 Link

10 </div>

9.1. EXTRACTING DATA MODELS 183

11 </body>

12 </html>

1 <!-- chapter4.htm -->

2 <html>

3 <body>

4 <div class="chapter">

5 <div class="title">Chapter 4</div>

6 <div class="definition">

7 Binary Tree

8 </div>

9 <div class="illustration">

10 Binary Tree

11 </div>

12 Link

13 </div>

14 </body>

15 </html>

1 <!-- chapter5.htm -->

2 <html>

3 <body>

4 <div class="chapter">

5 <div class="title">Conclusion </div>

6 </div>

7 </body>

8 </html>

When the above program is applied to this document, it results in a semantic document model
implementation similar to the one shown in example 8.3.2.

While these programs serve their intended purpose, they each had to be created separately
with little synergy effects from the existing programs. They are also hard to maintain and update
in case of format changes, because a lot of background knowledge about the formats and about
the domain of the documents is directly embedded into the Java code.

9.1.2 Query-based Extraction

In order to be used for the extraction of document models, a query language needs to be able
to combine query results into a coherent output structure. Otherwise, it can only be used from
inside another program, like XPath queries from within a Java extraction program.

The XML query language XQuery possesses this ability. While XQuery can only be applied
to XML documents, this is not a debilitating limitation, since most other document formats can
be converted to XML in a preprocessing step. XQuery can only produce output that is also in
XML format, so an XQuery program will produce an XML version of a document model, which
is easy to parse into an RDF/OWL-based document model implementation.

Extraction specifications in XQuery are often very complex, because it is better suited for
actual queries, not for constructing structured data based on query results. This makes the
syntax somewhat verbose and inconvenient, but still usable. A greater challenge is the need for
features that go beyond the scope and power of XQuery, such as external tools, efficient context
management, and access to data that is not available in XML format (such as background

184 CHAPTER 9. PROCESSING DOCUMENT MODELS

knowledge, cf. section 5.1 for a discussion on why background knowledge should not be stored
in XML format).

We use the Qexo XQuery engine of the GNU Kawa project, because it not only solves the
issues named above, but it also performs well and is freely available. It not only allows for
executing XQuery programs from within a Java program like the document framework, it also
allows for callbacks to the Java program from within the XQuery program. This feature can be
used to gain access to external tools or data.

Syntactically, a static method method of a class class can be called with
class:method(parameters). For non-static methods that can only be called on an instance of a
class, this instance must be given as the first parameter class:method(instance, parameters).

Example 9.1.3 (XQuery Extraction Program). The following code is a simplified version of
an XQuery implementation for extracting document models from HTML documents. We will
omit auxiliary functions, including the implementation details of Java methods that are called
from within the XQuery program. The program assumes that the source files are already in XML
format, or more specifically in XHTML format.

Lines 1 through 4 contain the main program. First, it retrieves a context object from a
register, using a Java callback on the GlobalContextRegister object. From this context object,
the program retrieves the initial file name. Calling the extractFile function, the program then
parses the given file and returns an XML file.

The initial parse function starts in line 6. It starts by checking if the current file has already
been processed. The visit(String) method returns false if the named file has already been
visited, otherwise it returns true and adds the file name to the list of visited files. The $context

variable is the context instance on which the method is called.
In line 9, the given XML file is parsed into a DOM tree representation. Then, all chapters

are parsed in line 11, and finally all other files referenced from the current one are recursively
parsed as well (line 12f.).

Parsing of a chapter is done in line 18ff. First, XML code for a new fragment is generated,
with an identifier based on the current XML node. Then, the structural type of the fragment is
defined, followed by its title(s). In line 23f., the paragraphs contained in the chapter are parsed.
Finally, reference relationships are implemented for all outgoing references in line 25f.

Line 31ff. contains the function for parsing paragraphs. It too starts by creating a new frag-
ment and defining its structural type. It then defines a functional type for the fragment based on
the current XML node’s class attribute value. It concludes with annotating any relevant terms
that occur in the paragraph to the fragment (line 34f.).

1 let $context := GlobalContextRegister:getContext("xquery"),

2 $filename := GlobalContext:getFilename($context),

3 $document := local:extractFile($filename , $context)

4 return (<vdk:document > { $document } </vdk:document >)

5

6 declare function local:extractFile($filename , $context) {

7 if (GlobalContext:visit($context , $filename))

8 then (

9 let $doc := doc($filename)

10 return (

11 local:parseChapter($doc//div[@class =" chapter"], $context),

12 for $ref in $doc//a/@href

13 return local:extractFile(data($ref), $context)

14)

15) else ()

16 };

17

18 declare function local:parseChapter($node , $context) {

9.1. EXTRACTING DATA MODELS 185

19 <vdk:fragment id="{GlobalContext:generateId($context , $node)}"> {

20 <vdk:structuralType name="Chapter"/>,

21 for $title in $node/div[@class="title"]/text()

22 return <vdk:title > { $title } </vdk:title >,

23 for $paragraph in $node/div

24 return local:parseParagraph($paragraph , $context),

25 for $ref in $node //a/@href

26 return <vdk:reference

27 target="{GlobalContext:findTarget($context , $ref)}"/>

28 } </vdk:fragment >

29 };

30

31 declare function local:parseParagraph($node , $context) {

32 <vdk:fragment id="{GlobalContext:generateId($context , $node)}"> {

33 <vdk:structuralType name="Paragraph"/>,

34 if ($node/@class = "definition")

35 then (<vdk:functionType name="Definition"/>)

36 else (

37 if ($node/@class = "example")

38 then (<vdk:functionType name="Example"/>)

39 else (

40 if ($node/@class = "illustration")

41 then (<vdk:functionType name="Illustration"/>)

42 else ())),

43 for $term in $node/span[@class="term"]/text()

44 return <vdk:term > { $term } </vdk:term >

45 } </vdk:fragment >

46 };

Applied to the HTML document from example 9.1.2, this XQuery program yields the following
output, which can easily be transformed into a semantic document model implementation similar
to the one shown in example 8.3.2.

1 <vdk:document >

2 <vdk:fragment id="ID1">

3 <vdk:structuralType name="Chapter"/>

4 <vdk:title >Introduction </vdk:title >

5 <vdk:reference target="ID2"/>

6 </vdk:fragment >

7 <vdk:fragment id="ID2">

8 <vdk:structuralType name="Chapter"/>

9 <vdk:title >Chapter 2</vdk:title >

10 <vdk:fragment id="ID21">

11 <vdk:structuralType name="Paragraph"/>

12 <vdk:functionType name="Definition"/>

13 <vdk:term >Data Structure </vdk:term >

14 </vdk:fragment >

15 <vdk:reference target="ID3"/>

16 <vdk:reference target="ID4"/>

17 </vdk:fragment >

18 <vdk:fragment id="ID3">

19 <vdk:structuralType name="Chapter"/>

20 <vdk:title >Chapter 3</vdk:title >

21 <vdk:fragment id="ID31">

22 <vdk:structuralType name="Paragraph"/>

23 <vdk:functionType name="Example"/>

24 <vdk:term >Data Structure </vdk:term >

25 </vdk:fragment >

26 <vdk:reference target="ID5"/>

27 </vdk:fragment >

186 CHAPTER 9. PROCESSING DOCUMENT MODELS

28 <vdk:fragment id="ID4">

29 <vdk:structuralType name="Chapter"/>

30 <vdk:title >Chapter 4</vdk:title >

31 <vdk:fragment id="ID41">

32 <vdk:structuralType name="Paragraph"/>

33 <vdk:functionType name="Definition"/>

34 <vdk:term >Binary Tree</vdk:term >

35 </vdk:fragment >

36 <vdk:fragment id="ID42">

37 <vdk:structuralType name="Paragraph"/>

38 <vdk:functionType name="Illustration"/>

39 <vdk:term >Binary Tree</vdk:term >

40 </vdk:fragment >

41 <vdk:reference target="ID5"/>

42 </vdk:fragment >

43 <vdk:fragment id="ID5">

44 <vdk:structuralType name="Chapter"/>

45 <vdk:title >Conclusion </vdk:title >

46 </vdk:fragment >

47 </vdk:document >

While XQuery programs can be created with reasonable effort for small and simple document
types, they become increasingly cumbersome and hard to write and maintain for more complex
document formats. Especially troublesome are document commands that do not adhere to the
XML tree structure, for example cross references. This is why, in example 9.1.3, references had
to be addressed in two different places in the program, while in example 9.1.2 this could be done
in one place.

9.1.3 Rule-based Extraction

For implementing a rule-based specification of the extraction logic, we will use JBoss Drools (cf.
section 3.4). Syntactically, a Drools rule starts with the keyword rule followed by an arbitrary
but unique name. The rule head starts with the keyword when, the conclusion starts with the
keyword then and ends with the keyword end. Drools uses a fact base of objects against which
the rule heads are matched, and matching rules are executed against the objects that they match
against. If multiple rules match the same object, each of these rules is executed against this object
in the reverse order in which they are defined, i.e., the last rule is executed first.
Using the keywords insert, retract, and modify, objects can be added to the fact base, removed
from the fact base, or be changed within the fact base. It is possible to define auxiliary functions
with the function keyword.

We will make use of the GlobalContext and LocalContext interfaces of the document frame-
work, or more specifically of their DroolsGlobalContext and DroolsLocalContext implement-
ations. The global context keeps track of the global state of the extraction process, e.g., which
files have already been processed, and of the document model that is created in the process.
It also provides convenience functions like loading external files or creating new fragments for
the document model. The local context keeps track of the original document’s structure, in
particular of the current XML node that is processed and of the hierarchy of nodes that came
before. While the Java implementation of XML DOM nodes provide similar capabilities, thus
making it possible to use XML elements directly instead of wrapping them into local contexts,
the DroolsLocalContext implementation provides several convenience functions that allow for
writing simpler and terser code.

9.1. EXTRACTING DATA MODELS 187

We will start with a small example with a similar functionality to that of examples 9.1.2 and
9.1.3, which we will expand on afterwards.

Example 9.1.4 (Drools Extraction Rules (1)). The following rules are a simplified version of
a naive rule-based implementation for extracting document models from HTML documents (cf.
example 5.1.23). As in previous examples, we will omit auxiliary functions. It is assumed that
when evaluation of the rules begins, the initial HTML file has already been parsed into a DOM
tree and its root elements has been wrapped into a local context and added to the Drools fact base.
An instance of a global context must also be in the fact base.

The first rule in line 1ff. matches any combination of global and local context. For every child
node of the node wrapped in the given local context, it creates a new local context, puts the child
node inside, sets it as a child of the current local context, and adds it to the fact base. This
recursively adds all elements of a DOM tree to the fact base, starting with the root element that
was put into the fact base initially.

Note that since the order in which nodes are processed determines the order in which new
fragments are inserted into the document model, and that the insertion order determines the
relative position numbers annotated to fragments, and thus the relative position of child fragments.
For example, if two nodes n1 and n2 each lead to the creation of a new fragment, f1 and f2,
respectively, then these fragments will be added as child nodes of their parent fragment in the
order in which n1 and n2 are processed. Drools matches objects in the fact base against rules in
LIFO (last in, first out) order, i.e., the last object to be inserted is the first to be matched. So
to ensure the correct order of document fragments, XML nodes need to be inserted into the fact
base in reverse order! This is accomplished by the getChildNodes() auxiliary function, which
returns the list of child nodes in reverse document order.

The next rule in line 14ff. matches any local context with a <div> element and a class
attribute value of “chapter”. It first creates a new fragment to represent this chapter, with an
identifier based on the current node. It then sets the fragment’s structural type and adds it
to the local context. Finally, in line 24, the fragment is added to the document model. The
parent fragment is determined by the getParentFragment() method by recursively checking the
hierarchy of local contexts, starting with the current local context and working its way up. If
one of them has a fragment attached to it, this fragment is returned. If none of them have an
attached fragment, then the root fragment of the document model is returned.

Line 27ff. holds a rule that matches titles defined in the HTML document. Using the auxiliary
annotate() function, this title is simply annotated to the current fragment, i.e., to the fragment
that was created for the lowest ancestor node of the current node. The annotate() function
(not shown) validates its parameters and uses the document model’s vocabulary to find the proper
relation name to use (similar to line 17ff. in example 9.1.2).

The following three rules (in line 37ff., 51ff., and line 65ff., respectively) match against nodes
that represent definitions, examples, or illustrations. They each create a new fragment to rep-
resent the paragraph, add both a structural type (“paragraph”) and a function type (“definition”,
“example”, or “illustration”, respectively), and insert it into the hierarchy of local contexts.

The term rule starting in line 79 matches against elements used to enclose terms.
It annotates the normalised term to the current fragment.

Finally, line 89ff. contains the reference rule that matches against <a> elements. It determ-
ines the file name for the reference and parses the file into a DOM tree. If the file has not yet
been processed (determined using GlobalContext’s visit() method, see above), the file’s root
element is wrapped into a local context and added to the fact base for processing. In any case, a
new fragment is created for the chapter contained in the file, and a new reference relationship is
added from the current fragment to the new one (line 101ff.). Since the new fragment is created
with the same identifier that is used when the “actual” fragment for this chapter is created with

188 CHAPTER 9. PROCESSING DOCUMENT MODELS

the chapter rule, these fragments are considered equivalent by the framework, so that the reference
really points to the correct fragment.

1 rule "Element Recursion"

2 when

3 $context: DroolsGlobalContext ()

4 $lcontext: DroolsLocalContext ()

5 then

6 for (Node $child: getChildNodes($lcontext.getNode ())) {

7 LocalContext $childcontext = $context.createLocalContext ();

8 $childcontext.setNode($child);

9 $childcontext.setParent($lcontext);

10 insert($childcontext);

11 }

12 end

13

14 rule "Chapter"

15 when

16 $context: DroolsGlobalContext ()

17 $lcontext: DroolsLocalContext(node.localName == "div"

18 && attributes["class"] == "chapter")

19 then

20 Fragment $fragment =

21 $context.createFragment($lcontext.getNode ());

22 $fragment.addStructuralType("Chapter");

23 $lcontext.setFragment($fragment);

24 $context.getParentFragment($lcontext).addChild($fragment);

25 end

26

27 rule "Title"

28 when

29 $context: DroolsGlobalContext ()

30 $lcontext: DroolsLocalContext(node.localName == "div"

31 && attributes["class"] == "title")

32 then

33 annotate($context.getParentFragment($lcontext), "title",

34 $lcontext.getTextContent (), $context);

35 end

36

37 rule "Definition"

38 when

39 $context: DroolsGlobalContext ()

40 $lcontext: DroolsLocalContext(node.localName == "div"

41 && attributes["class"] == "definition")

42 then

43 Fragment $fragment =

44 $context.createFragment($lcontext.getNode ());

45 $fragment.addType("Paragraph");

46 $fragment.addType("Definition");

47 $lcontext.setFragment($fragment);

48 $context.getParentFragment($lcontext).addChild($fragment);

49 end

50

51 rule "Example"

52 when

53 $context: DroolsGlobalContext ()

54 $lcontext: DroolsLocalContext(node.localName == "div"

55 && attributes["class"] == "example")

56 then

57 Fragment $fragment =

58 $context.createFragment($lcontext.getNode ());

59 $fragment.addType("Paragraph");

9.1. EXTRACTING DATA MODELS 189

60 $fragment.addType("Example");

61 $lcontext.setFragment($fragment);

62 $context.getParentFragment($lcontext).addChild($fragment);

63 end

64

65 rule "Illustration"

66 when

67 $context: DroolsGlobalContext ()

68 $lcontext: DroolsLocalContext(node.localName == "div"

69 && attributes["class"] == "illustration")

70 then

71 Fragment $fragment =

72 $context.createFragment($lcontext.getNode ());

73 $fragment.addType("Paragraph");

74 $fragment.addType("Illustration");

75 $lcontext.setFragment($fragment);

76 $context.getParentFragment($lcontext).addChild($fragment);

77 end

78

79 rule "Term"

80 when

81 $context: DroolsGlobalContext ()

82 $lcontext: DroolsLocalContext(node.localName == "span"

83 && attributes["class"] == "term")

84 then

85 String $value = $lcontext.getTextContent ();

86 annotate($context.getParentFragment($lcontext), "term", $value , $context);

87 end

88

89 rule "Reference"

90 when

91 $context: DroolsGlobalContext ()

92 $lcontext: DroolsLocalContext(node.localName == "a")

93 then

94 String $filename = $lcontext.getAttributes ().get("href");

95 Document $doc = $context.loadDocument($filename);

96 if ($context.visit($filename) {

97 LocalContext $refcontext = $context.createLocalContext ();

98 $refcontext.setNode($doc.getDocumentElement ());

99 insert($refcontext);

100 }

101 Element $chapter =

102 $context.evaluateXPath("//div[@class=’chapter ’]", $doc);

103 Fragment $target = $context.createFragment($chapter);

104 $context.getParentFragment($lcontext).addReference($target);

105 end

Remark 9.1.5. Evaluation data has shown that the use of auxiliary functions in combination
with rules can slow down the compilation of a rule set considerably, and to a certain degree also
its execution [Ste10]. This is a peculiarity of the Drools implementation. In practice, it can be
avoided easily by moving the code of auxiliary functions directly into the rules. Since this reduces
readability, however, we will continue using auxiliary functions in the code examples shown here.

Example 9.1.4 has shown how extraction rules can be used in a similar manner to Java or
XQuery programs. But that does not make them particularly useful yet. It is only when they go
beyond the advantages (and shortcomings) of the other approaches that extraction rules become
the approach of choice. The two primary points where extraction rules surpass the other options
are maintainability and transferability.

190 CHAPTER 9. PROCESSING DOCUMENT MODELS

Rule-based specifications are often easier to maintain, because the rule format encourages a
stricter structuring and a more methodical approach then a regular programming language does.
Obviously, a well structured extraction specification is easier to understand and to modify than
a badly structured one. It is also possible to remove much of the format-specific or domain-
specific information from the extraction logic in the form of background knowledge (see below),
which means that the extraction rules have to be modified only rarely. Instead, the formalised
background knowledge can be modified with the appropriate tools.

We will now show that it is possible to easily transfer a set of extraction rules to a new
document format or to a new application domain (or both) if certain conditions are met. The first
condition is that (almost) all format- and domain-specific knowledge is formalised as background
knowledge and used in the rules. The second condition is that some format-specific knowledge
that is hard to formalise in ontological form is instead encapsulated in a handful of auxiliary
functions that are also used in the extraction rules. In particular, the following two functions
need to be implemented based on the specifics of the file format:

I getChildElements(LocalContext): List. This function returns a list of LocalContext
objects that wrap the child elements of the given local context in reverse document order.
For non-hierarchical document formats, it only has to be called once to return all elements
of the document.

I getIndicators(LocalContext): String. This function determines the formatting op-
tions of the element wrapped in the given local context, and/or its textual content. If the
formatting is based on one or more named styles (like CSS classes or Word templates), then
a list of these names is returned. If the formatting consists of a set of unnamed formatting
options (like “bold” or “italic”), then a list of appropriate names for these options is re-
turned. If the formatting consists of both named styles and unnamed options, a mixture of
style names and option names is returned. If the element has textual content, any relevant
terms used are returned as well.

The returned string may also contain information like the name of the XML element
wrapped into the given context. If the result consists of multiple data points, they should
be placed in a well-defined order (e.g., in alphabetical order) and be clearly separated (e.g.,
by whitespace). The particulars of how the result is ordered and separated are not import-
ant beyond the requirement that they must be consistent with the available background
knowledge (see below).

Apart from these auxiliary functions, the extraction specification consists of a set of rules that
remain largely constant, of some additional rules that capture special cases, and of background
knowledge in the form of ontologies. This is illustrated in descriptions 9.1.6 and 9.1.8.

Before we explore the fully generic case of extracting an implementation of a semantic doc-
ument model from a digital document seen as a base document model, we will regard a case
that is slightly easier to handle. While in general a source document is just a graph of media
objects, there are source documents with a more complex structure, namely with a hierarch-
ical relationship between media objects in addition to the simple successor relationships. This
hierarchy can be used in the extraction specification. Source documents in XML format often
(but not always) contain such a hierarchy, as does the document shown in example 9.1.2, where
for example elements that represent paragraphs are contained within elements that represent
chapters.

We will now extend the rules from example 9.1.4 to reflect the necessary changes discussed
above.

9.1. EXTRACTING DATA MODELS 191

Description 9.1.6 (Drools Extraction Rules (Recursive)). First, the two required auxiliary
functions are defined. In line 1ff., the child elements of the current XML DOM element are listed
and returned in reverse document order. In line 10ff., the formatting styles of an XML element
are aggregated, including the element’s name and CSS class (if one exists). The underscore (“ ”)
is used as a separation character for technical reasons: the returned style information can now
be used directly to reference an individual name in a SKOS ontology, which may not contain
whitespace or many other typical separation characters like commas or semicolons. No keywords
are used in this rule set, so the getInicators() function does not return any terminology used.
In line 17ff., an identifier is calculated based on a given XML element. The location of this
element is specified in the background knowledge.

The element recursion rule (line 28ff.) is virtually unchanged from example 9.1.4, except that
it now uses the new getChildElements() function.

Line 106ff. contains the fragment rule that replaces the more specific rules for chapters, defin-
itions and so on. It is moved almost to the end of the rule file to make sure that it is triggered first
if multiple rules match one element. Since it creates the fragment that other rules (in particular
the data annotation rule, see below) use, is must be executed before them.

The rule matches all XML elements whose formatting style indicate that a new fragment
should be created for them. The head of the rule makes use of background knowledge. It accesses
a knowledge base named “structure” and retrieves a term group (i.e., a list of terms) named
“fragment”. In this case, the term group is implemented as an SKOS concept with multiple labels
(see below). The entries of this list are matched against the formatting styles of the current XML
element. Note that JBoss Drools provides an abbreviated syntax in rule heads: attributes can be
accessed by their name instead of using the appropriate get() method, and entries in a key-value
map can be accessed as map[key]. Using the generic getIndicators() function also allows this
rule to identify fragments based on keywords, if the background knowledge contains any.

For XML elements that match the rule’s condition, a new fragment is created. Then a know-
ledge base of mappings, named “styleFragments”, is accessed. All mappings that correspond to the
formatting styles of the current element are retrieved and their target types are annotated to the
fragment. For example, an XML element <div class="definition"> results in a formatting
style as returned by the getIndicators() function of “div definition”. There are two mappings
with an appropriate source in the “styleFragments” knowledge base, namely one pointing to the
concept Paragraph and one pointing to the concept Definition. Both types are annotated to
the newly created fragment.

Another set of mappings, “keywordFragment”, is also used. It can contain a mapping from
certain keywords onto structural types, where for each keyword found in the textual content of the
current node, the appropriate type is annotated to the new fragment. However, in this instance,
the “keywordFragment” knowledge base is empty, because the semantic document model can be
created using formatting information alone.

Similar to the fragment rule, the data annotation rule in line 41ff. matches against XML
elements with a specific formatting, which is specified in the background knowledge. If a match is
found, a list of data mappings named “data” is retrieved. Data mappings consist of a source that
specifies the location of a datum in the source document and of a target that specifies how this
datum should be annotated to the document model. The location specified in the source is given
relative to the current location in the document, for example relative to the currently regarded
XML element. The target consists of the annotation name, e.g., the predicate, with which the
data point is annotated to the current document fragment. If no data is found at the source
location, not annotation is made.

For each of these data mappings, a value is retrieved from the XML document by evaluating
the XPath expression specified as the source of the mapping. If a value could be found, it is then

192 CHAPTER 9. PROCESSING DOCUMENT MODELS

annotated to the current fragment, using the mapping’s specified target as the annotation name.
For example, for an XML element , the source of the mapping points to
the text content of said element, and the target specifies “term” as the annotation name.

In line 58ff. the reference rule matches all XML elements that are identified as references
by the background knowledge. The actual target location of the reference is again obtained
by using data mappings. Such a target may consist of a file name, a file name and an an-
chor, or just an anchor. An anchor specifies a specific location within a file. If no file name
is given, the anchor points to a position within the current file. For example, the reference
 points to an XML element within the “chapter3.html” file with
an identifier named “exa”. The auxiliary functions getFilename() and getAnchor() return the
appropriate parts of a reference location, or the empty string if this part is undefined.

If a file is referenced, it is parsed into an XML DOM tree. If the file still needs to be processed,
then its root element is wrapped into a local context instance and added to the Drools fact base
for processing. If an anchor is specified, then the appropriate element is located in the DOM
tree using the “idref” background knowledge. A new fragment with an identifier based on the
XML root element of the new file (or the element specified by the reference’s anchor) is created
and used as the target for a new reference relationship. The name of the reference annotation is
determined by the target attribute of the data mapping.

Finally, the new file root rule (line 130ff.) is necessary to establish an end point for references:
in general, it is not always possible to determine the exact position in a file that a reference
points to, if only the file itself is specified as the target of the reference (for example as in
). In example 9.1.4, a specific <div> element within the specified
file was used as an end point for a reference, but clearly this is only possible in special cases.
Therefore, a new fragment is created for each file (or, more specifically, for the root element of
each file, which is recognised as the only element without a parent). This fragment then serves
as an anchor for all fragments created for this particular file, i.e., new fragments are added as
children of the file fragment. This rule is placed last to ensure that it is triggered first if multiple
rules match a single element.

1 function List getChildElements(LocalContext lcontext) {

2 List result = new ArrayList ();

3 NodeList children = lcontext.getNode ().getChildNodes ();

4 for (int i=children.getLength () -1;i>=0;i--)

5 if (children.item(i) instanceof Element)

6 result.add(children.item(i));

7 return result;

8 }

9

10 function String getIndicators(LocalContext lcontext) {

11 String result = lcontext.getNode ().getLocalName ();

12 if (lcontext.hasAttribute("class"))

13 result += "_" + lcontext.getAttributes ().get("class");

14 return result;

15 }

16

17 function int getId(LocalContext lcontext , GlobalContext context) {

18 List <DataMapping > mappings = context.getMappings("id");

19 for (DataMapping mapping: mappings) {

20 Object obj = context.evaluateXPath(mapping.getSource (),

21 lcontext.getNode ());

22 if (obj != null)

23 return context.getId(obj);

24 }

25 return 0;

26 }

9.1. EXTRACTING DATA MODELS 193

27

28 rule "Element Recursion"

29 when

30 $context: DroolsGlobalContext ()

31 $lcontext: DroolsLocalContext ()

32 then

33 for (Node $child: getChildElements($lcontext)) {

34 LocalContext $childcontext = $context.createLocalContext ();

35 $childcontext.setNode($child);

36 $childcontext.setParent($lcontext);

37 insert($childcontext);

38 }

39 end

40

41 rule "Data Annotation"

42 when

43 $context: DroolsGlobalContext ()

44 $lcontext: DroolsLocalContext(

45 $context.knowledgebases["structure"]. termGroups["data"]

46 contains getIndicators($this))

47 then

48 List <DataMapping > $mappings = $context.getMappings("data");

49 for (DataMapping $mapping: $mappings) {

50 String $value = $context.evaluateXPath($mapping.getSource (),

51 $lcontext.getNode ());

52 if (! $value.equals(""))

53 annotate($context.getParentFragment($lcontext),

54 $mapping.getTarget (), $value , $context);

55 }

56 end

57

58 rule "Reference"

59 when

60 $context: DroolsGlobalContext ()

61 $lcontext: DroolsLocalContext(

62 $context.knowledgebases["structure"]. termGroups["reference"]

63 contains getIndicators($this))

64 then

65 List <DataMapping > $mappings = $context.getMappings("reference");

66 for (DataMapping $mapping: $mappings) {

67 String $reference = $context.evaluateXPath(

68 $mapping.getSource (), $lcontext.getNode ());

69 String $filename = getFilename($reference , $context);

70 String $anchor = getAnchor($reference , $context);

71 Node $node = null;

72 if (! $filename.equals("")) {

73 $node = $context.loadDocument($filename)

74 .getDocumentElement ();

75 if ($context.visit($filename) {

76 LocalContext $rcontext =

77 $context.createLocalContext ();

78 $rcontext.setNode($node);

79 insert($rcontext);

80 }

81 }

82 if (! $anchor.equals("")) {

83 for (DataMapping $idref:

84 $context.getMappings("idref")) {

85 String $xpath = $idref.getSource ()

86 .replace("?", $anchor);

87 Object $obj = $context.evaluateXPath($xpath ,

88 $lcontext.getNode ());

194 CHAPTER 9. PROCESSING DOCUMENT MODELS

89 if ($obj != null) {

90 $node = $obj;

91 break;

92 }

93 }

94 }

95 if ($node != null) {

96 LocalContext $rcontext = $context.createLocalContext ();

97 $rcontext.setNode($node);

98 Fragment $target = $context.createFragment(

99 getId($rcontext , $context));

100 annotate($context.getParentFragment($lcontext),

101 $mapping.getTarget (), $target , $context);

102 }

103 }

104 end

105

106 rule "Fragment"

107 when

108 $context: DroolsGlobalContext ()

109 $lcontext: DroolsLocalContext(

110 $context.knowledgebases["structure"]. termGroups["fragment"]

111 contains getIndicators($this))

112 then

113 Fragment $fragment =

114 $context.createFragment(getId($lcontext , $context));

115 String $ind getIndicators($lcontext);

116 List <DataMapping > $mappings;

117 $mappings = $context.getMappings("styleFragment");

118 for (DataMapping $mapping: $mappings)

119 if ($ind.equals($mapping.getSource ()))

120 $fragment.addType($mapping.getTarget ());

121 String $text = $lcontext.getNode ().getTextContent ();

122 $mappings = $context.getMappings("keywordFragment");

123 for (DataMapping $mapping: $mappings)

124 if ($text.contains($mapping.getSource ()))

125 $fragment.addType($mapping.getTarget ());

126 $lcontext.setFragment($fragment);

127 $context.getParentFragment($lcontext).addChild($fragment);

128 end

129

130 rule "File Root"

131 when

132 $context: DroolsGlobalContext ()

133 $lcontext: DroolsLocalContext(parent == null)

134 then

135 Fragment $fragment =

136 $context.createFragment(getId($lcontext , $context));

137 $fragment.setType("File");

138 $lcontext.setFragment($fragment);

139 $context.getModel ().getRoot ().addChild($fragment);

140 end

Note that this more generic approach scales better than the one described in example 9.1.4.
JBoss Drools uses the RETE algorithm [Doo95] to check which rules to apply to which objects in
the fact base. Since the RETE algorithm needs to check every rule for possible matches, reducing
the number of rules by using background knowledge in the premise of rules increases runtime
performance, especially since an efficient implementation of the contains operation runs in
constant time O(1). The background knowledge makes the (number of) rules mostly independent

9.1. EXTRACTING DATA MODELS 195

of the structure and content of the source document.

Example 9.1.7 (Drools Extraction Rules (2)). Consider the following background knowledge,
encoded in SKOS format and presented in Turtle syntax, that is available to the extraction rules.
Note that the concrete format of the background knowledge is immaterial, as long as it is supported
by the framework.

The knowledge base “structure” contains information about which XML elements, format-
ting styles and keywords should lead to the creation of fragments (aggregated under the SKOS
concept vdk:fragment), which elements and styles should lead to the annotation of data to exist-
ing fragments (vdk:data), and which should lead to the creation of new reference relationships
(vdk:reference). In this instance, it does not contain any keywords, because the formatting
styles are sufficient in this example.
vdk:fragment rdf:type skos:Concept ;

skos:prefLabel "div chapter" ;

skos:altLabel "div definition" ;

skos:altLabel "div example" ;

skos:altLabel "div illustration" .

vdk:data rdf:type skos:Concept ;

skos:prefLabel "div title" ;

skos:altLabel "span term" .

vdk:reference rdf:type skos:Concept ;

skos:prefLabel "a" .

Additionally, consider the following background knowledge, encoded as source-target mappings,
that is also available to the extraction rules.

The “id” mappings contain information about how a unique id can be found for an XML
node. In this case, the node itself is used:
source target

. id

The “idref” mappings contain information about how a reference can be resolved within a
document. The “?” is replaced by the actual reference string:
source target

//*[@id="?"] idref

The “data” mappings contain information about the specific location of the values of titles
and terms:
source target

.[@class="title"]/text() title

.[@class="term"]/text() term

The “reference” mappings contain information about the specific location of the target of a
reference:
source target

./@href reference

The “styleFragment” mappings contain information about which XML elements and format-
ting styles indicate specific types or classes in the semantic model:

196 CHAPTER 9. PROCESSING DOCUMENT MODELS

source target

div chapter Chapter

div definition Definition

div definition Paragraph

div example Example

div example Paragraph

div illustration Illustration

div illustration Paragraph

The “keywordFragment” mappings contain information about which keywords indicate specific
types or classes in the semantic model. It is empty in this instance:
source target

Applied to the document from example 9.1.2, the extraction process returns an implementation
of a semantic document model that is slightly different from the one shown in example 8.3.2,
because it contains one additional fragment for each of the five files. Figure 9.1 shows part of
the hierarchical source files and the corresponding part of the semantic document model, whose
implementation is extracted from the files. The identifiers shown are compatible with the notation
adopted in example 9.1.10 to increase comparability.

In addition to being somewhat easier to process, a hierarchical file format may also hold more
structural information about the document than a flat format, because it not only clearly defines
where a particular section of a document starts, but also where it ends. In many flat or semi-flat
file formats like LATEX or (sometimes) HTML, it is often unclear where a structural entity ends.

Consider, for example, the document from example 9.1.2. Through the format’s structure it
is clear the the references (the <a> elements) belong to their enclosing <div> element, which
represent chapters. In chapters 2 through 4, it is also clear that the references do not belong
to any of the definitions or other paragraphs. In a flat file format, however, the latter would
not be clear at all, since without a dedicated end command for structural elements like the
LATEX \chapter{} command, the affiliation of the references is ambiguous. This can be seen in
example 9.1.10 below.

While it is possible to process documents encoded in a hierarchical file format using the more
generic rules for flat file formats, we do not recommend it. It requires end nodes to be inserted
into the flat graph to mark the range of hierarchical elements, thereby increasing the number of
nodes to process. This also increases the size of the background knowledge because it must then
not only contain indicators for when an elements represents the start of a new fragments, but it
must also contain indicators for when an element represents the end of a fragment. It is therefore
not only more convenient, but also more efficient to process hierarchical file formats separately.

As stated above, description 9.1.6 shows rules for the special case of a hierarchically structured
source format. This simplifies the extraction process, because there is usually no need to keep
track of the document model’s structure. The assumption here is that the hierarchical structure
of the source format and the hierarchical structure of the document model do at least partially
align. More precisely, if elements e1 and e2 from the source document lead to the creation of
fragments f1 and f2 in the document model, respectively, and if e2 is a sub-element of e1 w.r.t.
the structural hierarchy, then f2 is a sub-fragment of f1.

If this assumption does not hold, or if the source document is not hierarchically structured
to begin with, then a more generic set of extraction rules is required.

To obtain a graph of media objects, a document’s files must be parsed file-by-file, observing
the order of media objects as defined in the files. If this “physical” order is of no consequence
for the resulting document model, i.e., if the structural order is defined by reference commands,

9.1. EXTRACTING DATA MODELS 197

ro
o

t

3
/

Fi
le 4
/

Fi
le

re
fe

re
n

ce

p
ar

t

p
o

si
ti

o
n

ty
p

eti
tl

e

te
rm

2
/

C
h

ap
t

er

"C
h

ap
te

r"

2
/

Fi
le

3
/

C
h

ap
t

er 4
/

C
h

ap
t

er

3
/

Ex
am p
le 4
/

Ill
u

st
ra

ti
o

n2
/

D
ef

in
i

ti
o

n

4
/

D
ef

in
i

ti
o

n

p
ar

t

p
ar

t

p
ar

t

p
ar

t

p
ar

t
p

ar
t

p
ar

t

p
ar

t

p
ar

t

"F
ile

"

"F
ile

"

"F
ile

"

"2
"

"3
"

"5
"

"0
"

"1
"

p
o

si
ti

o
n

p
o

si
ti

o
n

p
o

si
ti

o
n

p
o

si
ti

o
n

"P
ar

ag
ra

p
h

"

"D
ef

in
it

io
n

"

"E
xa

m
p

le
"

"I
llu

st
ra

ti
o

n
"

"C
h

ap
te

r
2

"

"D
at

a
St

ru
ct

u
re

"

"B
in

ar
y

Tr
ee

"

"C
h

ap
te

r
3

"

"C
h

ap
te

r
4

"

"C
h

ap
te

r"

"C
h

ap
te

r"

"P
ar

ag
ra

p
h

"

"P
ar

ag
ra

p
h

"

"P
ar

ag
ra

p
h

"

"D
ef

in
it

io
n

"

ty
p

e

ty
p

e
ty

p
e

ty
p

e

ty
p

e

ty
p

e
ty

p
e

ty
p

e
ty

p
e

ty
p

e
ty

p
e

ty
p

e
ty

p
e

"D
at

a
St

ru
ct

u
re

"

"B
in

ar
y

Tr
ee

"

ti
tl

e

ti
tl

e

te
rm

te
rm

te
rm

re
fe

re
n

ce

<
!
-
-

c
h
a
p
t
e
r
2
.
h
t
m

-
-
>

<
h
t
m
l
>

<
b
o
d
y
>

<
d
i
v

c
l
a
s
s
=
"
c
h
a
p
t
e
r
"
>

<
d
i
v

c
l
a
s
s
=
"
t
i
t
l
e
"
>
C
h
a
p
t
e
r

2
<
/
d
i
v
>

<
d
i
v

c
l
a
s
s
=
"
d
e
f
i
n
i
t
i
o
n
"
>

<
s
p
a
n

c
l
a
s
s
=
"
t
e
r
m
"
>
D
a
t
a

S
t
r
u
c
t
u
r
e
<
/
s
p
a
n
>

<
/
d
i
v
>

<
a

h
r
e
f
=
"
c
h
a
p
t
e
r
3
.
h
t
m
"
>
L
i
n
k
<
/
a
>

<
a

h
r
e
f
=
"
c
h
a
p
t
e
r
4
.
h
t
m
"
>
L
i
n
k
<
/
a
>

<
/
d
i
v
>

<
/
b
o
d
y
>

<
/
h
t
m
l
>

<
!
-
-

c
h
a
p
t
e
r
3
.
h
t
m

-
-
>

<
h
t
m
l
>

<
b
o
d
y
>

<
d
i
v

c
l
a
s
s
=
"
c
h
a
p
t
e
r
"
>

<
d
i
v

c
l
a
s
s
=
"
t
i
t
l
e
"
>
C
h
a
p
t
e
r

3
<
/
d
i
v
>

<
d
i
v

c
l
a
s
s
=
"
e
x
a
m
p
l
e
"
>

<
s
p
a
n

c
l
a
s
s
=
"
t
e
r
m
"
>
D
a
t
a

S
t
r
u
c
t
u
r
e
<
/
s
p
a
n
>

<
/
d
i
v
>

<
a

h
r
e
f
=
"
c
h
a
p
t
e
r
5
.
h
t
m
"
>
L
i
n
k
<
/
a
>

<
/
d
i
v
>

<
/
b
o
d
y
>

<
/
h
t
m
l
>

<
!
-
-

c
h
a
p
t
e
r
4
.
h
t
m

-
-
>

<
h
t
m
l
>

<
b
o
d
y
>

<
d
i
v

c
l
a
s
s
=
"
c
h
a
p
t
e
r
"
>

<
d
i
v

c
l
a
s
s
=
"
t
i
t
l
e
"
>
C
h
a
p
t
e
r

4
<
/
d
i
v
>

<
d
i
v

c
l
a
s
s
=
"
d
e
f
i
n
i
t
i
o
n
"
>

<
s
p
a
n

c
l
a
s
s
=
"
t
e
r
m
"
>
B
i
n
a
r
y

T
r
e
e
<
/
s
p
a
n
>

<
/
d
i
v
>

<
d
i
v

c
l
a
s
s
=
"
i
l
l
u
s
t
r
a
t
i
o
n
"
>

<
s
p
a
n

c
l
a
s
s
=
"
t
e
r
m
"
>
B
i
n
a
r
y

T
r
e
e
<
/
s
p
a
n
>

<
/
d
i
v
>

<
a

h
r
e
f
=
"
c
h
a
p
t
e
r
5
.
h
t
m
"
>
L
i
n
k
<
/
a
>

<
/
d
i
v
>

<
/
b
o
d
y
>

<
/
h
t
m
l
>à

 2
/F

ile

à
 3

/F
ile

à
 4

/F
ile

à
 2

/C
h

ap
te

r

à
 3

/C
h

ap
te

r

à
 4

/C
h

ap
te

r

à
 2

/D
ef

in
it

io
n

à
 3

/E
xa

m
p

le

à
 4

/D
ef

in
it

io
n

à
 4

/I
llu

st
ra

ti
o

n

à
 t

it
le

à
 t

er
m

à
 t

it
le

à
 t

it
le

à
 t

er
m

à
 t

er
m

à
 t

er
m

Figure 9.1: Hierarchical source document and semantic document model

198 CHAPTER 9. PROCESSING DOCUMENT MODELS

then adhering to the physical order will still do no harm. If the structural order is in full or in
part implied by the physical order, then observing it becomes necessary.

However, with the rules as shown in description 9.1.6, this order is disturbed whenever a
reference is encountered because the referenced target is then processed before the local processing
is resumed. In other words, the nodes of another file – albeit in their correct order – are inserted
into the fact base in between the nodes of the current file.

For the more generic rules, this requires a small change in the implementation of the rules
that process references. The rules for listing elements and for processing references are now
executed with a higher priority than other rules. This leads to all nodes being inserted into the
fact base in the correct order, before any other rule is executed (see below). In other words, the
entire base document model is loaded into the fact base before the transformation starts.

Another approach is to proceed as before, but to include information about the source file of
a node when determining its location in the document’s structure. As will be shown below, for
flat file formats it is necessary to keep track of the document’s structure by some means. For
each newly processed node, it must be determined if the node indicates a new sub-fragment in
the structure, if the node belongs to the current fragment, or if the node belongs to an ancestor of
the current fragment. If the file that the node belongs to is regarded in this determination, then
it is possible to infer the correct document structure even if the nodes are not strictly grouped
and processed by file.

However, this alternate approach requires a far more complex procedure for determining the
correct fragment for a node. It is also error prone because include commands like the LATEX
\input{} command result in different source files for nodes, but should not change their location
in the document model. We therefore recommend using the first approach to avoid unnecessary
complexity and potential for errors.

Description 9.1.8 (Drools Extraction Rules (Generic)). The generic extraction rules follow a
two-step approach. In the first step, all relevant elements of the source files are added to the
fact base in the correct order. This is akin to creating a base document model as described in
section 4.1. In the second step, a semantic document model is created based on this fact base.
This is akin to using transformation rules to obtain a semantic document model from a base
document model as described in section 5.1. The rules for the second step are an implementation
of the transformation rules specified in description 5.1.24.

The auxiliary function getChildElements() (line 13ff.) is now defined recursively, using
the getChildElementsRecursive() convenience function (line 1ff.). It returns all elements of
a DOM tree in reverse document order and is called by the element recursion rule in line 35ff.
This rule now only matches against local contexts with no parent element, i.e., against the root
elements of files. Combined with the rule’s high priority as indicated by the salience keyword,
this ensures that the elements of an entire file are inserted at once and in the correct order into
the fact base.

In the first line after the insertion block of the element recursion rule, the current local context
is modified (via the modify keyword) to re-insert it into the fact base. This is necessary to make
sure that it is the first element of its file to be processed. Setting the recursed attribute to true
ensures that it is not matched against the element recursion rule again. Then, a new fragment is
created and inserted into the document model. This is a place holder for the file fragment created
later (see below). It is inserted here to ensure that they are in the correct order in the document
model, namely in the order in which the files are referenced from one to another.

The getIndicators() and getId() functions in line 17ff. and in line 24ff. remain un-
changed.

A new reference insertion rule has been defined (line 53ff.). It takes on half of the functionality

9.1. EXTRACTING DATA MODELS 199

of the original reference rule: the insertion of the root element of referenced files into the fact
base. It is triggered with a higher priority (salience 10) to ensures that references are processed
immediately after all elements of a file have been inserted into the fact base. The even higher
priority of the element recursion rule (salience 20) then ensures that the newly inserted file
root element is processed right away.

The first part of the file root rule (line 175ff.) is also the same as before. The file fragment is
created with the same identifier as in the element recursion rule, so they are mapped onto each
other. In the last line, the new fragment is now pushed on top of a stack that keeps track of
the document’s structure. This has become necessary because we cannot rely on the source files’
structure to guide the document model’s structure.

The most notable changes were made to the fragment rule in line 136ff. The first part remains
the same, but when it comes to inserting the newly created fragment into the correct place in the
document model’s structure, the rule becomes more complex. First, a new knowledge base named
“documentStructure” is accessed, which contains information about the document’s structural
hierarchy. It is typically derived from the hasNarrower role in the semantic document model
that defines a hierarchy of structural types.
Then, the types of the new fragment are compared to the types of the fragment that is currently
on top of the stack: if, according to the knowledge base, one of the “new” types is broader or equal
(getBroaderSelf()) to one of the types from the stack, the top stack element is removed. This
is repeated until the new types are narrower than the types from the stack or until no relationship,
neither narrower nor broader nor equals, is known between them. Finally, the new fragment is
added as a child to the top stack element, and is then pushed onto the stack itself.

For example, if the top fragment on the stack has the type “paragraph” and the newly created
fragment has the type “section”, which is known to be broader than “paragraph”, then the top
fragment is removed from the stack. If the new top fragment has the type “chapter”, which is
known to be broader then “section”, the new fragment is inserted as a child of the top stack
fragment.

If there is a contradiction, i.e., if a new fragment has two types, one of which is broader
than the type of the stack fragment, and the other is narrower than the stack fragment, then the
broader type wins out. Thus, conflicts are resolved in favour of inserting fragments higher up in
the document structure. Fragments without type information are inserted at the current position.

Both the data rule (line 77ff.) and the reference rule (line 94ff.) have remained largely
unchanged, except that both rules now get the current document fragment from the stack instead
of from the context. In addition, the reference rule now only adds the appropriate reference
relationship to the document model without modifying the fact base, since the fact base has already
been updated by the reference insertion rule above.

This split is necessary because new files need to be inserted into the fact base as early as
possible to ensure the correct processing order. However, at this time the appropriate structure
of the document model is not yet ready. In particular, the starting fragment for the reference
has not been created yet and there is not enough context information yet to create it. Therefore,
the processing of references is split into two parts, the first part to update the fact base and the
second to update the document model.

1 function List getChildElementsRecursive(Element node) {

2 List result = new ArrayList ();

3 NodeList children = node.getChildNodes ();

4 for (int i=children.getLength () -1;i>=0;i--)

5 if (children.item(i) instanceof Element) {

6 Element child = (Element) children.item(i);

7 result.addAll(getChildElementsRecursive(child));

8 result.add(child);

200 CHAPTER 9. PROCESSING DOCUMENT MODELS

9 }

10 return result;

11 }

12

13 function List getChildElements(LocalContext lcontext) {

14 return getChildElementsRecursive(lcontext.getNode ());

15 }

16

17 function String getIndicators(LocalContext lcontext) {

18 String result = lcontext.getNode ().getLocalName ();

19 if (lcontext.hasAttribute("class"))

20 result += "_" + lcontext.getAttributes ().get("class");

21 return result;

22 }

23

24 function int getId(LocalContext lcontext , GlobalContext context) {

25 List <DataMapping > mappings = context.getMappings("id");

26 for (DataMapping mapping: mappings) {

27 Object obj = context.evaluateXPath(mapping.getSource (),

28 lcontext.getNode ());

29 if (obj != null)

30 return context.getId(obj);

31 }

32 return 0;

33 }

34

35 rule "Element Recursion"

36 salience 20

37 when

38 $context: DroolsGlobalContext ()

39 $lcontext: DroolsLocalContext(parent == null && recursed == false)

40 then

41 for (Node $child: getChildElements($lcontext)) {

42 LocalContext $childcontext = $context.createLocalContext ();

43 $childcontext.setNode($child);

44 $childcontext.setParent($lcontext);

45 insert($childcontext);

46 }

47 modify($lcontext) { setRecursed(true); }

48 Fragment $fragment =

49 $context.createFragment(getId($lcontext , $context));

50 $context.getModel ().getRoot ().addChild($fragment);

51 end

52

53 rule "Reference Insertion"

54 salience 10

55 when

56 $context: DroolsGlobalContext ()

57 $lcontext: DroolsLocalContext(

58 $context.knowledgebases["structure"]. termGroups["reference"]

59 contains getIndicators($this))

60 then

61 List <DataMapping > $mappings = $context.getMappings("reference");

62 for (DataMapping $mapping: $mappings) {

63 String $reference = $context.evaluateXPath(

64 $mapping.getSource (), $lcontext.getNode ());

65 String $filename = getFilename($reference , $context);

66 if (! $filename.equals("")) {

67 Document $doc = $context.loadDocument($filename);

68 LocalContext $rcontext =

69 $context.createLocalContext ();

70 $rcontext.setNode($doc.getDocumentElement ());

9.1. EXTRACTING DATA MODELS 201

71 if ($context.visit($filename)

72 insert($rcontext);

73 }

74 }

75 end

76

77 rule "Data Annotation"

78 when

79 $context: DroolsGlobalContext ()

80 $lcontext: DroolsLocalContext(

81 $context.knowledgebases["structure"]. termGroups["data"]

82 contains getIndicators($this))

83 then

84 List <DataMapping > $mappings = $context.getMappings("data");

85 for (DataMapping $mapping: $mappings) {

86 String $value = $context.evaluateXPath($mapping.getSource (),

87 $lcontext.getNode ());

88 if (! $value.equals(""))

89 annotate($context.getStack ().top(),

90 $mapping.getTarget (), $value , $context);

91 }

92 end

93

94 rule "Reference"

95 when

96 $context: DroolsGlobalContext ()

97 $lcontext: DroolsLocalContext(

98 $context.knowledgebases["structure"]. termGroups["reference"]

99 contains getIndicators($this))

100 then

101 List <DataMapping > $mappings = $context.getMappings("reference");

102 for (DataMapping $mapping: $mappings) {

103 String $reference = $context.evaluateXPath(

104 $mapping.getSource (), $lcontext.getNode ());

105 String $filename = getFilename($reference , $context);

106 String $anchor = getAnchor($reference , $context);

107 Node $node = null;

108 if (! $filename.equals("")) {

109 $node = $context.loadDocument($filename)

110 .getDocumentElement ();

111 }

112 if (! $anchor.equals("")) {

113 for (DataMapping $idref:

114 $context.getMappings("idref")) {

115 String $xpath = $idref.getSource ()

116 .replace("?", $anchor);

117 Object $obj = $context.evaluateXPath($xpath ,

118 $lcontext.getNode ());

119 if ($obj != null) {

120 $node = $obj;

121 break;

122 }

123 }

124 }

125 if ($node != null) {

126 LocalContext $rcontext = $context.createLocalContext ();

127 $rcontext.setNode($node);

128 Fragment $target = $context.createFragment(

129 getId($rcontext , $context));

130 annotate($context.getStack ().top(),

131 $mapping.getTarget (), $target , $context);

132 }

202 CHAPTER 9. PROCESSING DOCUMENT MODELS

133 }

134 end

135

136 rule "Fragment"

137 when

138 $context: DroolsGlobalContext ()

139 $lcontext: DroolsLocalContext(

140 $context.knowledgebases["structure"]. termGroups["fragment"]

141 contains getIndicators($this))

142 then

143 Fragment $fragment =

144 $context.createFragment(getId($lcontext , $context));

145 String $ind = getIndicators($lcontext);

146 List <DataMapping > $mappings;

147 $mappings = $context.getMappings("styleFragment");

148 for (DataMapping $mapping: $mappings)

149 if ($ind.equals($mapping.getSource ()))

150 $fragment.addType($mapping.getTarget ());

151 String $text = $lcontext.getNode ().getTextContent ();

152 $mappings = $context.getMappings("keywordFragment");

153 for (DataMapping $mapping: $mappings)

154 if ($text.contains($mapping.getSource ()))

155 $fragment.addType($mapping.getTarget ());

156 $lcontext.setFragment($fragment);

157 BackgroundKnowledgeBase $kb = $context.getKnowledgebases ()

158 .get("documentStructure");

159 boolean changed = true;

160 while (changed) {

161 changed = false;

162 for (String $newtype: $fragment.getTypes ())

163 for (String $stacktype: $context.getStack ().top()

164 .getTypes ())

165 if ($kb.getBroaderSelf($stacktype)

166 .contains($newtype)) {

167 $context.getStack ().pop();

168 changed = true;

169 }

170 }

171 $context.getStack ().top().addChild($fragment);

172 $context.getStack ().push($fragment);

173 end

174

175 rule "File Root"

176 when

177 $context: DroolsGlobalContext ()

178 $lcontext: DroolsLocalContext(parent == null)

179 then

180 Fragment $fragment =

181 $context.createFragment(getId($lcontext , $context));

182 $fragment.setType("File");

183 $context.getStack ().clear();

184 $context.getStack ().push($fragment);

185 end

Remark 9.1.9. Recall from section 5.1 (Application) that along with the correct processing
order of the media objects, it is also necessary to reset the stack context.getStack() to an
earlier state when backtracking to an earlier branching point in the base document model. The
correctness of the processing order is ensured by the order in which the media objects are inserted
by the rules, and by the processing order of the rule engine.

9.1. EXTRACTING DATA MODELS 203

Resetting the stack has to be done whenever a path from a branching point has been followed
to its end, i.e., when the current media object has no successors. A branching point is any media
object with more than one (unprocessed) successor. This can be achieved by introducing two
functions branch() and join(). The former pushes the current stack in its entirety on top of
a separate “backup stack”. The latter function restores the current stack from the top of this
“backup stack”.

In terms of the rules from description 9.1.8, this necessitates two changes. The fist change
is to the element recursion rule, where the number of successors is determined for each element
based on the background knowledge used in the reference insertion rule. Based on the number of
successors, local branch and join properties are set.

1 rule "Element Recursion"

2 salience 20

3 when

4 $context: DroolsGlobalContext ()

5 $lcontext: DroolsLocalContext(parent == null && recursed == false)

6 then

7 List <Node > $children = getChildElements($lcontext);

8 for (int $i=0;$i<$children.size();$i++) {

9 Node $child = $children.get($i);

10 LocalContext $childcontext = $context.createLocalContext ();

11 $childcontext.setNode($child);

12 $childcontext.setParent($lcontext);

13 int $successorCount = 1; // default

14 if ($context.getKnowledgebases ().get("structure").getTermGroups ()

15 .get("reference").contains(getIndicators($childcontext)))

16 $successorCount ++; // additional reference

17 if ($i == $children.size() - 1)

18 $successorCount --; // no default successor (last element)

19 if ($successorCount > 1)

20 $childcontext.setBranch(true);

21 else if ($successorCount == 0)

22 $childcontext.setJoin(true);

23 insert($childcontext);

24 }

25 modify($lcontext) { setRecursed(true); }

26 Fragment $fragment =

27 $context.createFragment(getId($lcontext , $context));

28 $context.getModel ().getRoot ().addChild($fragment);

29 end

The second change is the insertion of two rules to actually deal with the branching and joining.
The rules must be inserted between the reference insertion and the data annotation rules to ensure
that they are triggered at the correct time.

1 rule "Element Branching"

2 when

3 $context: DroolsGlobalContext ()

4 $lcontext: DroolsLocalContext(branch == true)

5 then

6 $context.branch ();

7 end

8

9 rule "Element Joining"

10 when

11 $context: DroolsGlobalContext ()

12 $lcontext: DroolsLocalContext(join == true)

13 then

204 CHAPTER 9. PROCESSING DOCUMENT MODELS

14 $context.join();

15 end

It is, however, not always necessary to make these control flow adjustments. In particular,
these adjustments can be omitted for document with a very regular structure, i.e., for documents
were different files always contain the same structural types and where references always point to
fragments with identical structural types. In practice, this is the case for most of the document
we have encountered. Since the above changes notably clutter up the rule definitions while only
necessary in specific cases, we have omitted them from description 9.1.8.

Example 9.1.10 (Drools Extraction Rules (3)). The generic extraction rules can be applied to
documents encoded in files like the following:

1 <!-- index.htm -->

2 <html>

3 <body>

4 <h1>Introduction </h1>

5 Link

6 </body>

7 </html>

1 <!-- chapter2.htm -->

2 <html>

3 <body>

4 <h1>Chapter 2</h1>

5 <h2 class="definition">Data Structure </h2>

6 Link

7 Link

8 </body>

9 </html>

1 <!-- chapter3.htm -->

2 <html>

3 <body>

4 <h1>Chapter 3</h1>

5 <h2 class="example">Data Structure </h2>

6 Link

7 </body>

8 </html>

1 <!-- chapter4.htm -->

2 <html>

3 <body>

4 <h1>Chapter 4</h1>

5 <h2 class="definition">Binary Tree</h2>

6 <h2 class="illustration">Binary Tree</h2>

7 Link

8 </body>

9 </html>

9.1. EXTRACTING DATA MODELS 205

1 <!-- chapter5.htm -->

2 <html>

3 <body>

4 <h1>Conclusion </h1>

5 </body>

6 </html>

This document does not specify exactly were references start in its structure: for example, in
“chapter4.htm”, the <a> reference could be part of the preceding illustration or it could be part
of the chapter. The extraction process will assume the former, so different from the previous
document model, references start in paragraphs and not in chapters.

The knowledge base “documentStructure” contains information about which structural types
indicate a higher level in the document hierarchy (recall that the skos:broader role represents a
has-broader relation, not an is-broader-than relation):
vdk:file rdf:type skos:Concept ;

skos:prefLabel "File" .

vdk:chapter rdf:type skos:Concept ;

skos:prefLabel "Chapter" ;

skos:broader vdk:file .

vdk:paragraph rdf:type skos:Concept ;

skos:prefLabel "Paragraph" ;

skos:broader vdk:chapter .

The knowledge base “structure” is adapted to the new file format as follows:
vdk:fragment rdf:type skos:Concept ;

skos:prefLabel "h1" ;

skos:altLabel "h2 definition" ;

skos:altLabel "h2 example" ;

skos:altLabel "h2 illustration" .

vdk:data rdf:type skos:Concept ;

skos:prefLabel "h1" ;

skos:altLabel "h2 definition" ;

skos:altLabel "h2 example" ;

skos:altLabel "h2 illustration" .

vdk:reference rdf:type skos:Concept ;

skos:prefLabel "a" .

The “id” and “idref” mappings remain unchanged from example 9.1.7:
source target

. id

source target

//*[@id="?"] idref

The “data” mappings are adapted as follows:
source target

.[node-name(.)="h1"]/text() title

.[node-name(.)="h2"]/text() term

The “reference” mappings remain the same as in example 9.1.7:
source target

./@href reference

206 CHAPTER 9. PROCESSING DOCUMENT MODELS

The “styleFragment” mappings are adapted as follows:
source target

h1 Chapter

h2 definition Definition

h2 definition Paragraph

h2 example Example

h2 example Paragraph

h2 illustration Illustration

h2 illustration Paragraph

The “keywordFragment” mappings remain empty.

Let us apply the extraction rules from description 9.1.8 to this document, using the given
background knowledge. We start with an initial fact base containing only the root element of the
first file, namely the <html> element of “index.htm” which we will denote as 1/html. Note that
we will use local contexts transparently by only regarding the file elements wrapped within these
contexts whenever possible. The initial fact base can be written as follows:

(1/html)

This element immediately triggers the element recursion rule because it matches the rule’s
condition and the rule has the highest priority. Recursively inserting all child elements in reverse
document order and then re-inserting the root element leads to the following fact base:

(1/html, 1/body, 1/h1, 1/a)

A place holder fragment for the current file is also created and added to the root of the
otherwise empty document model.

The next rule that is triggered is the reference insertion rule for the 1/a element, because it
has the highest priority of all matching rules. Its node name a matches the preferred label of the
reference concept in the “structure” knowledge base.

In the conclusion of this rule, all “reference” data mappings – namely the mapping from the
XPath ./@href onto a reference property – are resolved. Resolving the XPath for the 1/a

elements yields the file name “chapter2.htm”. This file is parsed into a DOM tree, and since it
has not been regarded before ($context.visit() evaluates to true), its root element (denoted as
2/html) is inserted into the fact base:

(2/html, 1/html, 1/body, 1/h1, 1/a)

The new root element immediately triggers the element recursion rule again, leading to the
the creation of another place holder fragment and to the insertion of all other elements from the
new file into the fact base:

(2/html, 2/body, 2/h1, 2/h2, 2/a[1], 2/a[2], 1/html, ...)

The first of the two references, denoted as 2/a[1], triggers the reference insertion rule and the
root element of the file “chapter3.htm” is inserted into the fact base. This leads to the insertion
of the other elements of “chapter3.htm” by the element recursion rule and to the creation of yet
another place holder fragment.

(3/html, 3/body, 3/h1, 3/h2, 3/a, 2/html, ...)

9.1. EXTRACTING DATA MODELS 207

Currently, there are two unprocessed reference elements in the fact base: 3/a and 2/a[2].
The former has been inserted last, so it is processed first and 5/html from “chapter5.htm” is
inserted (along with the creation of a place holder fragment), followed by the other elements from
this file. Then, 2/a[2] is processed and the elements of “chapter4.htm” are inserted into the fact
base, and a final place holder fragment is created.

(4/html, 4/body, 4/h1, 4/h2[1], 2/h2[2], 4/a, 5/html, 5/body, 5/h1, 3/html,

...)

Finally, 4/a with a link to “chapter5.htm” is processed. But since this file has already been
processed, no new elements are inserted and the fact base is complete.

(4/html, 4/body, 4/h1, 4/h2[1], 2/h2[2], 4/a, 5/html, 5/body, 5/h1, 3/html,

3/body, 3/h1, 3/h2, 3/a, 2/html, 2/body, 2/h1, 2/h2, 2/a[1], 2/a[2], 1/html,

1/body, 1/h1, 1/a)

This concludes the first phase of the processing, in which the fact base is populated. The
document model is still empty at this point except for its root fragment and the five place holder
fragments for the five files, and so is the stack of fragments that is maintained in the global context.
The five place holder fragments are arranged in the order in which they are reached through the
references, namely “index.htm” first, then “chapter2.htm”, “chapter3.htm”, “chapter5.htm” and
“chapter4.htm”. The semantic document model is now created in the second phase.

The first element in the fact base, 4/html matches against the file root rule, thereby creating
the first fragment of type “File” (denoted as 4/File). It replaces its place holder in the document
model and is pushed onto the (currently empty) stack:

4/File

The next element, 4/body, does not match any rule, but 4/h1 does: it matches the fragment
rule by virtue of the preferred label “h1” of the fragment concept in the “structure” ontology.
So a new fragment, denoted as 4/Chapter, is created. From the “styleFragment” mappings, we
learn that this fragment has the type “Chapter” because of its source style “h1”. After adding the
type to the fragment, we compare this type (“Chapter”) with the type of the top stack element
(“File”). When we consult the “documentStructure” knowledge base, we find that “Chapter” is
not a broader structural type than “File” (in fact, we find that the exact opposite is true). We
therefore leave 4/File on the stack, add 4/Chapter as a child fragment of 4/File in the document
model, and push 4/Chapter on top of the stack:

4/File 4/Chapter

But we are not done with 4/h1: it also matches the data annotation rule by virtue of a
label of the data concept in the “structure” knowledge base. Now, all XPath expressions from
the “data” data mappings are evaluated against the current element. Only the first expression,
.[node-name(.)="h1"]/text() yields a result: “Chapter 4”. This is added to the current top
stack element, 4/Chapter, as an annotation. The predicate title is specified in the data mapping.
Here it becomes clear why the order of the rules matters: if the data annotation rule had been
triggered before the fragment rule, the data would have been annotated to the wrong fragment!
Since JBoss Drools tries to match the rules in reverse order, last to first, the fragment rule must
be written after the data annotation rule.

208 CHAPTER 9. PROCESSING DOCUMENT MODELS

Next, the 4/h2[1] element matches first against the fragment rule, and then against the
data annotation rule. This works as before, resulting in a new fragment 4/Definition of type
“Paragraph” and “Definition” on top of the stack, with a term annotation “Binary Tree”.

4/File 4/Chapter 4/Definition

The next element, 4/h2[2], that also matches both rules is more interesting. In the fragment
rule, a new fragment 4/Illustration of type “Paragraph” and “Illustration” is created. But now we
find that a fragment of the same type “Paragraph” sits atop the stack. So before we do anything
else, we remove it. 4/Illustration is then added as a child of 4/Chapter and pushed onto the stack.

4/File 4/Chapter 4/Illustration

Now, 4/a is processed a second time, this time by the reference rule. Its target is evaluated to
“chapter5.htm” and the appropriate file is parsed into a DOM tree. Since no anchor tag, i.e., a
pointer to a specific element in the file like chapter5. htm# example , is provided, the reference
points to the root of the file. A new fragment 5/File is created for this location, and a reference

relationship with this fragment is added to 4/Illustration. Note that the targeted fragment may
not yet be in the document model’s hierarchical structure, i.e., be defined as a sub-fragment of
another fragment. Instead, it may be floating freely, only tied to the model by the reference from
chapter 4.

Incidentally, in this case 5/File already exists in its proper place in the document model,
namely as the place holder fragment for “chapter5.htm”. 5/html is processed next, triggering the
file root rule. Now 5/File is given its proper type, the stack is emptied, and the file fragment is
pushed onto it.

5/File

The other elements from “chapter5.htm” are processed in a similar manner, as are the ele-
ments from the other files afterwards.

Figure 9.2 shows part of the flat source files and the corresponding part of the semantic
document model, whose implementation is extracted from the files.

Example 9.1.11 (Drools Extraction Rules (4)). The generic rules from description 9.1.8 can
also be applied to the hierarchical file format from example 9.1.2.
The first phase, populating the fact base, yields the following result:

(4/html, 4/body, 4/div, 4/div/div[1], 4/div/div[2], 4/div/div[2]/span,

4/div/div[3], 4/div/div[3]/span, 4/div/a, 5/html, 5/body, 5/div,

5/div/div, 3/html, 3/body, 3/div, 3/div/div[1], 3/div/div[2],

3/div/div[2]/span, 3/div/a, 2/html, 2/body, 2/div, 2/div/div[1],

2/div/div[2], 2/div/div[2]/span, 2/div/a[1], 2/div/a[2], 1/html, 1/body,

1/div, 1/div/div, 1/div/a)

Using the background knowledge from example 9.1.7 and the “documentStructure” ontology
from example 9.1.10, this leads to the same document model as in example 9.1.7.

For example, when processing the seventh element from the fact base, 4/div/div[3], the
stack contains the following three fragments:

4/File 4/Chapter 4/Definition

chapter5.htm#example

9.1. EXTRACTING DATA MODELS 209

ro
o

t

3
/

Fi
le 4
/

Fi
le

re
fe

re
n

ce

p
ar

t

p
o

si
ti

o
n

ty
p

eti
tl

e

te
rm

2
/

C
h

ap
t

er

"C
h

ap
te

r"

2
/

Fi
le

3
/

C
h

ap
t

er 4
/

C
h

ap
t

er

3
/

Ex
am p
le 4
/

Ill
u

st
ra

ti
o

n2
/

D
ef

in
i

ti
o

n

4
/

D
ef

in
i

ti
o

n

p
ar

t

p
ar

t

p
ar

t

p
ar

t

p
ar

t
p

ar
t

p
ar

t

p
ar

t

p
ar

t

"F
ile

"

"F
ile

"

"F
ile

"

"2
"

"3
"

"5
"

"0
"

"1
"

p
o

si
ti

o
n

p
o

si
ti

o
n

p
o

si
ti

o
n

p
o

si
ti

o
n

"P
ar

ag
ra

p
h

"

"D
ef

in
it

io
n

"

"E
xa

m
p

le
"

"I
llu

st
ra

ti
o

n
"

"C
h

ap
te

r
2

"

"D
at

a
St

ru
ct

u
re

"

"B
in

ar
y

Tr
ee

"

"C
h

ap
te

r
3

"

"C
h

ap
te

r
4

"

"C
h

ap
te

r"

"C
h

ap
te

r"

"P
ar

ag
ra

p
h

"

"P
ar

ag
ra

p
h

"

"P
ar

ag
ra

p
h

"

"D
ef

in
it

io
n

"

ty
p

e

ty
p

e
ty

p
e

ty
p

e

ty
p

e

ty
p

e
ty

p
e

ty
p

e
ty

p
e

ty
p

e
ty

p
e

ty
p

e
ty

p
e

"D
at

a
St

ru
ct

u
re

"

"B
in

ar
y

Tr
ee

"

ti
tl

e

ti
tl

e

te
rm

te
rm

te
rm

re
fe

re
n

ce

<
!
-
-

c
h
a
p
t
e
r
2
.
h
t
m

-
-
>

<
h
t
m
l
>

<
b
o
d
y
>

<
h
1
>
C
h
a
p
t
e
r

2
<
/
h
1
>

<
h
2

c
l
a
s
s
=
"
d
e
f
i
n
i
t
i
o
n
"
>
D
a
t
a

S
t
r
u
c
t
u
r
e
<
/
h
2
>

<
a

h
r
e
f
=
"
c
h
a
p
t
e
r
3
.
h
t
m
"
>
L
i
n
k
<
/
a
>

<
a

h
r
e
f
=
"
c
h
a
p
t
e
r
4
.
h
t
m
"
>
L
i
n
k
<
/
a
>

<
/
b
o
d
y
>

<
/
h
t
m
l
>

<
!
-
-

c
h
a
p
t
e
r
3
.
h
t
m

-
-
>

<
h
t
m
l
>

<
b
o
d
y
>

<
h
1
>
C
h
a
p
t
e
r

3
<
/
h
1
>

<
h
2

c
l
a
s
s
=
"
e
x
a
m
p
l
e
"
>
D
a
t
a

S
t
r
u
c
t
u
r
e
<
/
h
2
>

<
a

h
r
e
f
=
"
c
h
a
p
t
e
r
5
.
h
t
m
"
>
L
i
n
k
<
/
a
>

<
/
b
o
d
y
>

<
/
h
t
m
l
>

<
!
-
-

c
h
a
p
t
e
r
4
.
h
t
m

-
-
>

<
h
t
m
l
>

<
b
o
d
y
>

<
h
1
>
C
h
a
p
t
e
r

4
<
/
h
1
>

<
h
2

c
l
a
s
s
=
"
d
e
f
i
n
i
t
i
o
n
"
>
B
i
n
a
r
y

T
r
e
e
<
/
h
2
>

<
h
2

c
l
a
s
s
=
"
i
l
l
u
s
t
r
a
t
i
o
n
"
>
B
i
n
a
r
y

T
r
e
e
<
/
h
2
>

<
a

h
r
e
f
=
"
c
h
a
p
t
e
r
5
.
h
t
m
"
>
L
i
n
k
<
/
a
>

<
/
b
o
d
y
>

<
/
h
t
m
l
>à

 2
/F

ile

à
 3

/F
ile

à
 4

/F
ile

à
 2

/C
h

ap
te

r

à
 3

/C
h

ap
te

r

à
 4

/C
h

ap
te

r

à
 2

/D
ef

in
it

io
n

à
 3

/E
xa

xm
p

le

à
 4

/D
ef

in
it

io
n

à
 4

/I
llu

st
ra

ti
o

n

à
 t

it
le

à
 t

er
m

à
 t

it
le

à
 t

it
le

à
 t

er
m

à
 t

er
m

à
 t

er
m

Figure 9.2: Flat source document and semantic document model

210 CHAPTER 9. PROCESSING DOCUMENT MODELS

The element triggers the fragment rule, and a new fragment 4/Illustration is created. Because
4/div/div[3] is a <div> element with a class attribute value of “illustration”, it matches
the background knowledge entry for the fragment concept in “structure”. It also matches the
div illustration source in “styleFragment”, so the fragment is typed as both “Paragraph” and
“Illustration”. Now, a “Paragraph” fragment is already on top of the stack, so that fragment is
removed from the stack and replaced by 4/Illustration, which is also added as a child to 4/Chapter.

The generic rules from description 9.1.8 can easily be applied to other documents by adapting
the three auxiliary functions and the background knowledge. Changes and additions to the rules
are necessary for special cases that cannot be formalised in the background knowledge.

The parsing specifics need to be changed for applying the rules to non-XML document
formats. However, it is often easier and more efficient to preprocess non-XML formats to an
XML format, because then a standard DOM parser can be used. We have successfully used this
technique for both Microsoft Word documents and for LATEX documents.

As stated before, include commands should be resolved in preprocessing, but they can also
be resolved in the rules during the recursive insertion of elements into the fact base.

Example 9.1.12 (Drools Extraction Rules (5)). As another example, let us regard a document
similar to the one above, but specified in LATEX format:

1 \begin{document}

2

3 \chapter{Introduction }\ label{chp:chapter _1}

4

5 Link~\ref{chp:chapter _2}

6

7

8 \chapter{Chapter 2}\ label{chp:chapter _2}

9

10 \begin{definition }{Data Structure}

11 \end{definition}

12

13 Link~\ref{chp:chapter _3}

14 Link~\ref{chp:chapter _4}

15

16

17 \chapter{Chapter 3}\ label{chp:chapter _3}

18

19 \begin{example }{Data Structure}

20 \end{example}

21

22 Link~\ref{chp:chapter _5}

23

24

25 \chapter{Chapter 4}\ label{chp:chapter _4}

26

27 \begin{definition }{ Binary Tree}

28 \end{definition}

29

30 \begin{illustration }{ Binary Tree}

31 \end{illustration}

32

33 Link~\ref{chp:chapter _5}

34

35

36 \chapter{Conclusion }\ label{chp:chapter _5}

37

38 \end{document}

9.1. EXTRACTING DATA MODELS 211

The simplest way to deal with such non-XML formats is to convert them into XML in a
preprocessing step as stated above. This not only allows us to use the vast array of tools and
libraries available for XML, but it also prevents us from having to define new context structures
(based on the GlobalContext and LocalContext interfaces) for every file format.

Using conversion software that we developed during the Verdikt project, the LATEX source
file can be preprocessed into a standardised XML format. The LATEX parser and converter is
available through the LaTeXDocumentAdapter class.

Every LATEX environment is converted into an <environment> element, with
<param> sub-elements for each parameter of the environment. For example,
a \begin{definition}{Data Structure} LATEX environment is converted into a
<environment name="definition"><param>Data Structure</param></environment>
XML element. Similarly, LATEX commands are converted into <command> elements. Command
parameters are handled in the same manner as parameters of environments.

The LATEX parser is not a full TEX processor, but it is restricted in several ways. For one,
it cannot expand macros, instead converting every command directly into XML. It also does not
recognise every syntactical variant allowed in TEX, such as command parameters that are not en-
closed in some kind of parentheses but that are separated from the command name by whitespace,
for instance. While this prevents many LATEX documents from being preprocessed entirely without
flaw and is thus unsuitable for commercial application, it is sufficient for evaluation purposes.

The following file content is obtained when applying the preprocessor to the LATEX source
above:

1 <environment name="document">

2

3 <command name="chapter">

4 <param >Introduction </param >

5 </command >

6 <command name="label">

7 <param >chp:chapter_1 </param >

8 </command >

9

10 Link

11 <command name="ref">

12 <param >chp:chapter_2 </param >

13 </command >

14

15

16 <command name="chapter">

17 <param >Chapter 2</param >

18 </command >

19 <command name="label">

20 <param >chp:chapter_2 </param >

21 </command >

22

23 <environment name="definition">

24 <param >Data Structure </param >

25 </environment >

26

27 Link

28 <command name="ref">

29 <param >chp:chapter_3 </param >

30 </command >

31 Link

32 <command name="ref">

33 <param >chp:chapter_4 </param >

34 </command >

35

212 CHAPTER 9. PROCESSING DOCUMENT MODELS

36

37 <command name="chapter">

38 <param >Chapter 3</param >

39 </command >

40 <command name="label">

41 <param >chp:chapter_3 </param >

42 </command >

43

44 <environment name="example">

45 <param >Data Structure </param >

46 </environment >

47

48 Link

49 <command name="ref">

50 <param >chp:chapter_5 </param >

51 </command >

52

53

54 <command name="chapter">

55 <param >Chapter 4</param >

56 </command >

57 <command name="label">

58 <param >chp:chapter_4 </param >

59 </command >

60

61 <environment name="definition">

62 <param >Binary Tree</param >

63 </environment >

64

65 <environment name="illustration">

66 <param >Binary Tree</param >

67 </environment >

68

69 Link

70 <command name="ref">

71 <param >chp:chapter_5 </param >

72 </command >

73

74

75 <command name="chapter">

76 <param >Conclusion </param >

77 </command >

78 <command name="label">

79 <param >chp:chapter_5 </param >

80 </command >

81

82 </environment >

The knowledge base “documentStructure” can be used as in example 9.1.11 without adaptation.

The knowledge base “structure” is adapted to the new file format as follows:

9.1. EXTRACTING DATA MODELS 213

vdk:fragment rdf:type skos:Concept ;

skos:prefLabel "command chapter" ;

skos:altLabel "environment definition" ;

skos:altLabel "environment example" ;

skos:altLabel "environment illustration" .

vdk:data rdf:type skos:Concept ;

skos:prefLabel "command chapter" ;

skos:altLabel "environment definition" ;

skos:altLabel "environment example" ;

skos:altLabel "environment illustration" .

vdk:reference rdf:type skos:Concept ;

skos:prefLabel "command ref" .

The “id” mappings are adapted as follows to match the first \label{} command after the current
node:
source target

./following::command[@name="label"][1]/param/text() id

The “idref” mappings are adapted in a similar manner:
source target

//*[./following::command[@name="label"][1]/param/text()="?"] idref

The “data” mappings are adapted as follows:
source target

.[@name="chapter"]/param/text() title

.[@name!="chapter"]/param/text() term

The “reference” mappings remain the same as in example 9.1.7:
source target

./param/text() reference

The “styleFragment” mappings are adapted as follows:
source target

command chapter Chapter

environment definition Definition

environment definition Paragraph

environment example Example

environment example Paragraph

environment illustration Illustration

environment illustration Paragraph

The “keywordFragment” mappings remain empty.

Of the auxiliary functions, only the getIndicators() function needs to be adapted to take
the names of commands and environments into account:

1 function String getIndicators(LocalContext lcontext) {

2 String result = lcontext.getNode ().getLocalName ();

3 if (lcontext.hasAttribute("name"))

4 result += "_" + lcontext.getAttributes ().get("name");

5 return result;

6 }

214 CHAPTER 9. PROCESSING DOCUMENT MODELS

Applying the extraction rules with the given background knowledge to the XML ver-
sion of the source file, we start with a fact base that contains only the root element
<environment name="document"> of this file, which we will denote as env/document:

(env/document)

This triggers the element recursion rule, leading the the insertion of all DOM elements into
the fact base:

(env/document, cmd/chapter[1], param[1], cmd/label[1], cmd/ref[1], param[2],

cmd/chapter[2], ...)

It also leads to the creation of a single placeholder fragment in the document model. Next,
the reference insertion rule is triggered by the five reference commands cmd/ref[1] through
cmd/ref[5]. This rule, however, does nothing as the references do not point to new files. The
fact base is now complete.

The first processing rule to be triggered after the fact base is complete is the file root rule.
A file fragment is created in the document model and replaces its placeholder there. It is also
pushed onto the stack:

File

Next, cmd/chapter[1] triggers the fragment rule. A Chapter[1] fragment is created, added as
a child of the File fragment, and pushed onto the stack.

File Chapter[1]

Then, param[1] triggers the data annotation rule, and cmd/ref[1] triggers the reference
rule. Using the background knowledge, the reference “chp:chapter2” is resolved to a fragment
Chapter[2] based on cmd/chapter[2]. When cmd/chapter[2] is processed next, the resulting
fragment Chapter[2] replaces Chapter[1] on top of the stack.

File Chapter[2]

Processing the remaining elements finally results in a document model similar to the one in
example 9.1.10.

Additional details on different extraction specifications can be found in chapter 10 and in
appendix B. They are also based on the generic rules introduced here, showing how transferable
they really are.

Conclusion

In this section, we have discussed the use of Java programs, XQuery programs, and Drools rule
specifications for defining the extraction logic for semantic document models from digital docu-
ments. We have shown that Java programs can quickly become too complex to be maintainable.
This is also true for XQuery programs. In contrast, rules can be applied efficiently and are easily
transferable across formats and domains.

While it is possible to write well-structured Java code that uses external background know-
ledge, thus eliminating the main drawback of this approach, it is easier to do so in a rule-based
language because the rule structure enforces (or at least suggests) a methodical structuring of the
extraction logic. It also makes it harder to use “implementation shortcuts” in the programming.

9.2. INFERENCE ON DOCUMENT MODELS 215

We therefore recommend using a rule language with external background knowledge for spe-
cifying the extraction logic. This approach moves everything that is not generic, i.e., that depends
on either the document format or on the application domain, out of the extraction logic and into
the background knowledge. This knowledge is then used as a parameter for the generic extraction
logic. Generic rules can be applied to (almost) arbitrary documents, because they are defined
on base document models instead of any specific file format, and (almost) all knowledge that is
specific to a format and a domain is externalised in the background knowledge.

9.2 Inference on Document Models

There are two primary relevant inference tasks on semantic document models:

1. Deduce new types for fragments. For example, if a fragment is known to be a Definition,
it can be deduced that it is also a Paragraph.

2. Deduce new topics and other role relationships for fragments

I based on terminological relationships (generalisation or relatedness of topics). For
example, if a topic ts is relevant for a fragment f , then a topic tg that is more general
than ts is also relevant for f .

I based on fragment relationships (part-of). For example, if a topic t is relevant for a
fragment fsub, then t is also relevant for a fragment fsuper that is a super-fragment of
fsub.

For many inference tasks on document models, description logics are an adequate formalism.
The inference services provided by most description logic languages can be applied directly to
a description logics-based implementation of a semantic document model. These inference ser-
vices have one important omission, however: generalisation relationships can only be defined on
(complex) concepts, not on individuals. Yet there are excellent reasons to specify generalisa-
tion relationships on individuals instead of concepts: individuals can be classified (via concept
assertions), and they can have arbitrary relationships with other individuals (via role assertions).

Remark 9.2.1. Note that using set constructors and concept subsumption does not
provide a loophole for specifying generalisation relationships on individuals: Let O =
(∅, ∅, {isub, isuper}, {{isub} v {isuper}} be an ontology. Then for every model IO of O: IO |=
(isub = isuper), which clearly is not the intended semantics.

One option for specifying a form of individual generalisation is to combine individuals with
a specific role and to generalise over the existence of role instances.

Definition 9.2.2 (Individual Generalisation Restricted to a Specific Role). For individuals isub,
isuper and a role R, ∃R.{isub} v ∃R.{isuper} is a generalisation on individuals restricted to R.

Example 9.2.3 (Individual Generalisation Restricted to a Specific Role). Let O = (C,R, I,X)
be an ontology with

C = {Fragment, Topic},
R = {hasTopic},
I = {f,Data Structure,Binary Tree}, and
X = {∃hasTopic.{Binary Tree} v ∃hasTopic.{Data Structure},

Fragment(f), Topic(Data Structure), Topic(Binary Tree),
hasTopic(f,Binary Tree)}.

216 CHAPTER 9. PROCESSING DOCUMENT MODELS

Then for every model IO of O: IO |= hasTopic(f,Data Structure).

This can be implemented in description logics or in OWL and a reasoner such as Pellet can
be used to deduce the additional assertion.

This approach is very specific, which may necessitate a large number of axioms. In the worst
case, for every distinct triple of two individuals and one role one axiom is required. On the other
hand, this allows for this approach to be used surgically: in some cases a generalisation is only
sensible in the context of a small number of roles.

Another less specific option is to use inference rules to generate the desired assertions. This
inference is based on role assertions that serve as a declaration of an intended generalisation.
In particular, the hasNarrower role and its relatives are well suited for this task. It should be
noted that for such a generalisation of individuals, an EER-like semantics replaces the usual
set-semantics for description logic generalisation, so that a more specialised individual can be
substituted in any place where a more general individual is used.

Description 9.2.4 (Inference Rules). We define two rules that interpret hasNarrower role
assertions as a generalisation on individuals:

1. for all t1, t2 with hasNarrower+(t1, t2) do:

I for all assertions C(t1) do: assert C(t2),

I for all assertions R(t1, x) do: assert R(t2, x), and

I for all assertions R(x, t1) do: assert R(x, t2),

where x is an individual, C is a concept, and R is a role with R 6∈
{sameAs, equals, hasNarrower} (sameAs is the OWL role that expresses individual equal-
ity).

2. for all t1, t2 with hasNarrower(t1, t2) ∧ hasNarrower(t2, t1) do:

I assert equals(t1, t2) or sameAs(t1, t2) (the latter carries stronger build-in semantics).

The restriction of R in point 1 is necessary to avoid undesired side effects by success-
ively adding new generalisations and equivalences. For example, two existing assertions
hasNarrower(Data Structure,Binary Tree) and hasNarrower(Data Structure,List) should not
lead to a new assertion hasNarrower(Binary Tree,List).

Example 9.2.5 (Inference Rules). Let O = (C,R, I,X) be an ontology with

9.2. INFERENCE ON DOCUMENT MODELS 217

C = {Fragment, Topic},
R = {hasTopic, hasNarrower},
I = {f1, f2, f3, f4,Computer Science,Data Base,Data Structure,List,

Tree,Binary Tree,BTree}, and
X = {Fragment(f1), Fragment(f2), Fragment(f3), Fragment(f4),

Topic(Computer Science),
Topic(Data Base), Topic(Data Structure),
Topic(List), Topic(Tree),
Topic(Binary Tree), Topic(BTree),
hasNarrower(Computer Science,Data Base),
hasNarrower(Computer Science,Data Structure),
hasNarrower(Data Base,BTree),
hasNarrower(Data Structure,List),
hasNarrower(Data Structure,Tree),
hasNarrower(Tree,Binary Tree),
hasNarrower(Tree,BTree),
hasTopic(f1,Data Structure),
hasTopic(f2,Computer Science),
hasTopic(f3,Tree),
hasTopic(f4,Data Base)}.

Then the inference rules from description 9.2.4 generate the following additional assertions
Xinf :

Xinf = {hasTopic(f1,List),
hasTopic(f1,Tree),
hasTopic(f1,Binary Tree),
hasTopic(f1,BTree),
hasTopic(f2,Data Structure),
hasTopic(f2,Data Base),
hasTopic(f2,List),
hasTopic(f2,Tree),
hasTopic(f2,Binary Tree),
hasTopic(f2,BTree),
hasTopic(f3,Binary Tree),
hasTopic(f3,BTree),
hasTopic(f4,BTree)}.

Example 9.2.6 (Inference Rules (2)). With very little adaptation of the fact base, the inference
rules from description 9.2.4 can also be applied to the has-part relationships between fragments.

Let O = (C,R, I,X) be the ontology from example 9.2.5. Let O′ = (C,R′, I,X ′) be an
extended ontology with

R′ = R ∪ {hasPart}, and
X ′ = X ∪ {hasPart v hasNarrower, hasPart(f3, f4)}.

Note, in particular, how the hasPart role has been defined as a specialisation of the
hasNarrower role.
Then the inference rules from description 9.2.4 generate the following additional assertions

X ′inf = Xinf ∪ {hasTopic(f4,Tree), hasTopic(f4,Binary Tree)}.

The inference rules stated above are not a full substitute for concept subsumption on indi-
viduals, however, because they do not allow for complex modelling. For example, generalisations

218 CHAPTER 9. PROCESSING DOCUMENT MODELS

like Person t Organisation v Creator cannot be expressed with the hasNarrower role alone.
While it might be possible to introduce new roles and new inference rules to capture some of the
necessary semantic complexity, we will leave this for future work.

It is often desirable to restrict inference tasks to some of the ontologies relevant for a semantic
document model. For example, the conclusions drawn from hasNarrower role assertions differ
across domains because the semantics of this role are wide and can be interpreted differently in
different settings. While it may be sensible to use the hasNarrower role for inference on the
terminological ontology of a document model as shown in the examples above, it is usually less
sensible to use it on the structural ontology. In the terminological ontology, the hasNarrower

role is often used to model is-a relations, while in the structural ontology it is used to model
has-part relations. The former use is compatible with a generalisation semantics, while the latter
is not.

Inference on Large Ontologies

Executing inference tasks on large and complex document models or on very large and complex
background knowledge requires a lot of processing power. While the specific complexity varies
with the complexity of the description logic language used [BCM+03], description logic reasoning
is generally exponential in the size of the knowledge base. Attempts to push some of the reasoning
itself into a database [Har05, Dok06, ECTOO09] and using efficient query techniques cannot
address this fundamental problem. We posit that reducing instead the number of entities to
reason on, even at the cost of limiting the expressive power of inference services, can be a viable
compromise.

It is possible to make a horizontal cut through a knowledge base, keeping the TBox and all
assertions from the ABox in a (main memory based) ontology and moving the rest of the ABox
into a database. Since the actual reasoning semantics are kept in the TBox, the database simply
acts as a data supplier and the whole open world/closed world issue does not apply. There is,
however, little advantage in only keeping the list of individuals (in OWL: a list of URIs) in a
database and using database identifiers in the TBox, because it does not limit the overall number
of entities. The situation improves if some of the assertions from the ABox can be moved into the
database, and thus be excluded from any reasoning. Good candidates are role assertions with
literal objects and assertions on concepts and roles that are not part of any other complex axioms.
Examples include roles like rdfs:label, skos:prefLabel, skos:altLabel, and vdk:id, which
are used frequently but are only a hindrance to reasoners.

Another possibility depends on precise knowledge of the ontology schema and the application
domain. If it is possible to determine all the entities required for an inference task, then these
entities can be taken out of the complete database (vertical cut) and the reasoning can be
executed on this smaller subset. Any newly inferred assertions can then be inserted into the
original database. The decreased cost of the reasoning can offset the cost of extracting the
required data. For example, calculating the transitive closure of the hasNarrower role on topics
only requires all individuals of type Topic and all hasNarrower assertions. With proper database
indices, retrieving them and running the reasoning task externally can be done with considerable
efficiency.

We will revisit this topic briefly in section 11.5.

9.3. VIEWS ON A DOCUMENT MODEL 219

9.3 Views on a Document Model

As indicated earlier, obtaining a semantic document model of a document is rarely its own reward.
Instead, it is usually a stepping stone toward some other goal, like verifying content consistency
criteria on a document, like making structural and content-related comparisons between docu-
ments, or like creating an inverted structural document index that not only contains the position
of terms, but also their affiliation in the document hierarchy. For each of these applications, the
data of a semantic document model needs to be transformed into a new form. Borrowing a term
from the domain of data bases, this form can be understood as a (usually materialised) view .

Yet not only different types of views for different applications are required, because in some
instances multiple different views are needed for one and the same application. For document
verification, for example, the hierarchical graph of the semantic document model is mapped onto
the flat graph of a temporal model. This mapping is not unique, however, but can lead to a
different result for each structural level of the document model. This in turn can lead to different
verification results as shown in examples 9.3.1 and 9.3.2. So not only is it necessary to find the
correct formula for a verification criterion, but for each formula the appropriate view has to be
determined.

Example 9.3.1 (Verification Model from Semantic Document Model (1): Chapter Level). Re-
call the semantic document model D from example 4.2.15 on page 83. Then the ALCCTL
temporal model from example 3.5.17 (page 55) is a view on D on the level of chapters, i.e.,
each chapter-fragment from D is represented by a state in the temporal model. Note that the
view does not contain information about an illustration, only about examples. Using the axiom
Illustration v Example, it can be inferred that the illustration of binary trees in chapter 4 is
also an example. See below for more information on how to specify which data is represented
in the view, and which data is not. A version of this ALCCTL model that is extended by the
specialisation relationship between binary trees and data structures is shown in figure 9.3.

Now imagine a criterion that specifies that after every definition, there must be an example
with the same topic in the next state, no matter which path the reader follows (i.e., in all successor
states). Formally: Definition v AXExample. Note that this criterion is stricter than the
similar criterion in example 3.5.15. In this view, the criterion is not satisfied. Even if binary
trees are recognised as special data structures, so that the example in s4 can be used to satisfy
the definition in s2, there is no example for the definition in s4! The appropriate example is in
the same state and is therefore not recognised, and there is no example in s5.

Example 9.3.2 (Verification Model from Semantic Document Model (1): Paragraph Level).
Again, recall the semantic document model D from example 4.2.15.
Let S = {s1, s2, s3, s41, s42, s5} be a set of states.
Let R = {(s1, s2), (s2, s3), (s2, s41), (s41, s42), (s42, s5), (s3, s5), (s5, s5)} be a successor relation on
S that represents the links between them.
Let ∆I = {Data Structure,Binary Tree}.
Let I = {(s1, (∆I , ()

I(s1))), (s2, (∆
I , ()

I(s2))), (s3, (∆
I , ()

I(s3))),

(s41, (∆
I , ()

I(s41))), (s42, (∆
I , ()

I(s42))), (s5, (∆
I , ()

I(s5)))} be a function that can be used to rep-
resent the topics of definitions and examples in each state.

Let DefinitionI(s2) = {Data Structure}, ExampleI(s3) = {Data Structure},
DefinitionI(s41) = {Binary Tree,Data Structure}, and ExampleI(s42) =
{Binary Tree,Data Structure}.

Then the ALCCTL temporal model M = (S,R, I) is a view on D on the level of paragraphs,
i.e., each paragraph-fragment from D is represented by a state in the temporal model. Note that

220 CHAPTER 9. PROCESSING DOCUMENT MODELS

successor

successor

successor

successor

successor

s1

s2

s3 s5

s4

Definition
I
 =

{Binary Tree, Data Structure}

Example
I
 =

{Binary Tree, Data Structure}

Definition
I
 =

{Data Structure}

Example
I
 =

{Data Structure}

Figure 9.3: Chapter-level view on a semantic document model

whenever a chapter does not have a paragraph sub-fragment, the chapter itself is represented by
a state in the temporal model. This model is shown in figure 9.4.

If we apply the criterion from example 9.3.1 (Definition v AXExample) to this view, it
will be satisfied provided that binary trees are recognised as special data structures. The finer
granularity of the structure is the crucial difference here.

successor

successor

successor

successor

successor

s1

s2

s3 s5

s42
Example

I
 =

{Binary Tree, Data Structure}

Definition
I
 =

{Data Structure}

Example
I
 =

{Data Structure}

s41

successor

Definition
I
 =

{Binary Tree, Data Structure}

Figure 9.4: Paragraph-level view on a semantic document model

The required structural level depends on the criterion, however. It is not sufficient to simply
choose the most detailed structure, i.e., the lowest level in the hierarchy. This is illustrated in
example 9.3.3.

Example 9.3.3 (Verification Model from Semantic Document Model (2)). Let D be a semantic
document model similar to the familiar model from example 4.2.15. In chapters 2 and 4 there
are learning objectives defined for data structures and for binary trees, respectively. Now ima-
gine a criterion that requires that all learning objectives for each chapter must be covered by an
appropriate definition. Formally: LearningObjective v Definition.

A verification model with a fine granularity will not satisfy the criterion, because chapter 4
is split into two paragraphs and the second paragraph does not contain a definition. A coarser
granularity is necessary here to retain the chapter cohesion.

9.3. VIEWS ON A DOCUMENT MODEL 221

The easiest way to specify views on semantic document models is by defining a number of
queries on the model to collect the required data points, and a function to combine these sets of
data. Since XQuery evaluation is NExpTime-hard in general [Koc06], while SPARQL evaluation
is “only” PSpace-complete, we recommend using SPARQL for specifying the queries. In fact,
for queries that do not use the UNION and FILTER constructs, SPARQL evaluation is linear.
Evaluation of queries that do not use the OPTIONAL construct is NP-complete. [PAG09]

However, SPARQL misses one crucial capability: the ability to formulate recursive queries.
This is necessary for determining for example the topics of all sub-fragments of a particular
fragment. In some cases, transitive roles can be used to compensate for this limitation. Whenever
the distance from the start of the recursion is relevant, however, transitive roles cannot be used.
The distance is relevant when limiting the retrieval to a certain maximum distance, or when
calculating some kind of cost function. We will discuss some options for SPARQL recursion
below.

For state-transition systems, at least three queries are necessary to gather all required in-
formation: one to determine the states, one to determine the successor relationships, and one to
determine the starting state. For models in temporal (propositional) logic, an additional query
is required for each proposition, to determine its interpretations. For models in temporal de-
scription logic, additional queries are required for each concept and for each role to determine
their interpretations.

Example 9.3.4 (View Definition: ALCCTL Model). Let D again be the semantic document
model from example 4.2.15. Consider the following set of SPARQL queries:

1. states

1 SELECT ?d

2 WHERE {

3 ?s rdf:type vdk:Chapter .

4 ?s vdk:id ?d

5 }

2. starting state

1 SELECT ?d

2 WHERE {

3 ?s vdk:id "$state" .

4 ?s vdk:id ?d .

5 OPTIONAL { ?p ref:successor ?s }

6 FILTER (! bound($p))

7 }

3. successor relation

1 SELECT ?d

2 WHERE {

3 ?s vdk:id "$state" .

4 ?s ref:partTransitive ?p .

5 {

6 s ref:reference ?r

7 } UNION {

8 ?p ref:reference ?r

9 } .

10 {

222 CHAPTER 9. PROCESSING DOCUMENT MODELS

11 ?r ref:partTransitive ?t

12 } UNION {

13 ?t ref:partTransitive ?r

14 } .

15 ?t rdf:type vdk:Chapter .

16 ?t vdk:id ?d

17 }

4. concepts

(a) Topic

1 SELECT ?d

2 WHERE {

3 ?s vdk:id "$state" .

4 ?s ref:partTransitive ?p .

5 {

6 ?s dc:subject ?d

7 } UNION {

8 ?p dc:subject ?d

9 }

10 }

(b) Fragment

1 SELECT ?d

2 WHERE {

3 ?s vdk:id "$state" .

4 ?s ref:partTransitive ?p .

5 {

6 ?s vdk:id ?d

7 } UNION {

8 ?p vdk:id ?d

9 }

10 }

5. roles

(a) hasTopic

i. base

1 SELECT ?d

2 WHERE {

3 {

4 ?s vdk:id "$state" .

5 ?s vdk:id ?d

6 } UNION {

7 ?s vdk:id "$state" .

8 ?s ref:partTransitive ?p .

9 ?p vdk:id ?d

10 }

11 }

9.3. VIEWS ON A DOCUMENT MODEL 223

ii. left hand side

1 SELECT ?d

2 WHERE {

3 ?s vdk:id "$base" .

4 ?s vdk:id ?d

5 }

iii. right hand side

1 SELECT ?d

2 WHERE {

3 ?s vdk:id "$base" .

4 ?s dc:subject ?d

5 }

Item 1 lists the query that determines the states of the temporal model. It simply matches
any fragment of type “chapter” and returns its identifier.

The query in item 2 determines the starting state from this set. The “$state” expression
is iteratively replaced with the ids obtained in the first query, thus matching all fragments that
represent states in the temporal model. The query returns only the id of fragments with no
predecessor.

Item 3 shows the successor query. It iterates over all states (again by successively replacing the
“$state” expression with each id) and collects all outgoing references from the state fragment
and all its sub-fragments (first UNION clause). It then finds the sub- or super-fragment of the
referenced fragment (second UNION clause) that has the correct type for a state and returns its id.

Item 4 contains the listings for two concepts: the Topic concept query (item 4a) finds all sub-
fragments of a state fragment and returns their topics, including the topics of the state fragment
itself. The Fragment concept query (item 4b) works in a similar manner, only returning the
identifiers of the fragments instead of their topics.

A role specification is shown in item 5a. It consists of three queries: the first query determines
the base (item 5(a)i). The other two queries are evaluated relative to this base. Here, the base
query simply finds all sub-fragments of the state fragment. The second query in item 5(a)ii
determines the left hand side of the role (in this case: the id of the fragment identified by the
“$base” expression), and the third query (item 5(a)iii) determines the right hand side. For each
base, all results of the left hand side query are put in a role relationship with all results of the
right hand side query.

The combiner function is a Java program that puts the pieces together and creates an ALCCTL
model in an appropriate formal description language. Applied to the document model D, this
results in the following verification model:

1 <model >

2 <state name="ID0001" startingState="yes">

3 <successor name="ID0002"/>

4 <concept name="Fragment">

5 <interpretation value="ID0001"/>

6 </concept >

7 </state>

8 <state name="ID0002" startingState="no">

9 <successor name="ID0003"/>

10 <successor name="ID0004"/>

11 <concept name="Topic">

224 CHAPTER 9. PROCESSING DOCUMENT MODELS

12 <interpretation value="Data Structure"/>

13 </concept >

14 <concept name="Fragment">

15 <interpretation value="ID0002"/>

16 <interpretation value="ID00021"/>

17 </concept >

18 <role name="hasTopic">

19 <interpretation left="ID00021" right="Data Structure"/>

20 </role>

21 </state>

22 <state name="ID0003" startingState="no">

23 <successor name="ID0005"/>

24 <concept name="Topic">

25 <interpretation value="Data Structure"/>

26 </concept >

27 <concept name="Fragment">

28 <interpretation value="ID0003"/>

29 <interpretation value="ID00031"/>

30 </concept >

31 <role name="hasTopic">

32 <interpretation left="ID00031" right="Data Structure"/>

33 </role>

34 </state>

35 <state name="ID0004" startingState="no">

36 <successor name="ID0005"/>

37 <concept name="Topic">

38 <interpretation value="Binary Tree"/>

39 </concept >

40 <concept name="Fragment">

41 <interpretation value="ID0004"/>

42 <interpretation value="ID00041"/>

43 <interpretation value="ID00042"/>

44 </concept >

45 <role name="hasTopic">

46 <interpretation left="ID00041" right="Binary Tree"/>

47 <interpretation left="ID00042" right="Binary Tree"/>

48 </role>

49 </state>

50 <state name="ID0005" startingState="no">

51 <concept name="Fragment">

52 <interpretation value="ID0005"/>

53 </concept >

54 </state>

55 </model >

The SPARQL queries above can be encapsulated in a VMSpecification object in the imple-
mentation (cf. section 7.4).

Another advantage of having multiple views on a single document model is that different
inference services can be applied to each view. For example, one view can incorporate topic
specialisations by adding all generalisations of a topic to any fragment that deals with that
topic, while another view is more strict and only contains the original topics.

SPARQL Recursion

As mentioned above, recursion is an important feature that SPARQL does not support “out of
the box” in version 1.0. On the other hand, SPARQL 1.1, which does support recursion through
so-called property paths, is not widely supported yet [HS12]. There exist approaches that use a

9.3. VIEWS ON A DOCUMENT MODEL 225

language extension to address this limitation [Ope], but they require a SPARQL query evaluator
that understands these extensions. If the maximum recursion depth is limited, it is also possible
to achieve this goal via a re-formulation of the query that is entirely conforming to the SPARQL
specification. If the maximum recursion depth is not known, and if none of the existing language
extensions is available, then using transitive roles might still be an option.

Description 9.3.5 (SPARQL Recursion by Reformulation). SPARQL patterns of the custom
form { ?a ?b[min:max] ?c . ?c ?d ?e }, where min and max represent the minimum and
maximum recursion depths, respectively, can be reformulated in standard SPARQL using cascad-
ing UNION expressions that make the recursion explicit.

For example, the query { ?s ref:part[0:2] ?p . ?p vdk:id ?d } can be re-formulated as

1 {

2 ?s vdk:id ?d

3 } UNION {

4 ?s ref:part ?p1 .

5 ?p1 vdk:id ?d

6 } UNION {

7 ?s ref:part ?p2 .

8 ?p2 ref:part ?p3 .

9 ?p3 vdk:id ?d

10 }

Using this syntax, the query for the Topic concept in example 9.3.4 can be simply written as

1 SELECT ?d

2 WHERE {

3 ?s vdk:id "$state" .

4 { ?s ref:part [0:3] ?p . ?p dc:subject ?d }

5 }

SPARQL Optimisation

There exist several approaches to optimising SPARQL query evaluation in the literature.

ρDF is an attempt to minimise the semantics of RDF by removing unnecessary predicates
and keywords, while preserving the primary semantics. A sound and complete deductive system
for ρDF has been proposed, and it was showsn that entailment of ground terms in the defined
language fragment has a worst case complexity bound of O(n log n). [MnPG07]

[VRL+10] optimises SPARQL queries with a focus on group patterns with a single shared
variable, so-called star patterns. A cost function for query execution plans has been developed,
and a simulated annealing randomized algorithm is used to find the global optimum.

A mapping of SPARQL onto Datalog is proposed in [Sch07], which can be used as a basis for
further optimisation.

Multiple approaches attempt to map SPARQL onto SQL. [Cyg05] provides a partial mapping
onto the relational algebra, and [Har05] shows an early approach for evaluating SPARQL queries
using database systems. Another early attempt uses caching [Dok06].

An efficient translation of SPARQL into SQL that covers all SPARQL language expressions is
proposed in [ECTOO09]. It creates an abstract query model to obtain a flat SQL query instead
of cascading queries as many other approaches do.

226 CHAPTER 9. PROCESSING DOCUMENT MODELS

Join-Order Optimisation [SMK97]

SPARQL evaluation on a relational database requires a large number of joins, especially if a
triple-table based database schema is employed. It is therefore important to optimise the order
of these join operations so that their overall execution becomes as efficient as possible. [SMK97]
have conducted a survey over various optimisation techniques and found that both randomised
and genetic algorithms provide the best combination result quality and runtime performance.
These approaches regard the entire solution space, instead of relying on heuristics like minimum
selectivity [SKS06].

Randomised algorithms randomly traverse the solution space, moving only between solutions
that differ in a single step. They terminate after a predefined number of steps or when they
become stuck, and return the best solution found during the traversal. Genetic algorithms require
little specific knowledge about a problem and can be applied to a wide range of optimisation
problems. Starting with a random subset of the solution space, a genetic algorithm retains the
best elements of the current set and makes random changes to some, to produce a new set. This
is repeated for a fixed number of iterations. The best element of the final set is returned.

A genetic algorithm requires a literal encoding schema for a solution, a cost function, a
selection operation, a crossover operation, and a mutation operation. The encoding schema is
used by the operators. For join-order optimisation, it can be based on a numbering of relations in
the join, so that a solution is encoded as a sequence of numbers in the join order as described by
the solution. For example, if the relations numbered 1 and 2 are joined first, then the encoding
sequence starts with “12”.
The selection operation selects for good solutions based on the cost function (in the evolutionary
sense). Better (“fitter”) solutions are retained with a higher probability than less adequate
solutions.
The crossover operation combines existing solutions to obtain a new one, with the goal that the
new solution should be better than its ancestors (again, based on the cost function). One way
to attempt this for join-order optimisation is to select a sub-sequence of join operations from
each parent, where each sub-sequence is of equal length and affects the same relations (albeit in
a different order). These sub-sequences are then inserted into one of the other parents to obtain
new solutions.
The mutation operation introduces new and random elements into an existing solution. In this
case, randomly swapping the order of two join operations in a solution is sufficient.
The genetic algorithm produces an adequate solution in a short time.

There are several randomised algorithms worth considering for join-order optimisation [SMK97].
Iterative improvement begins by selecting a starting point at random. It then selects neigh-

bours at random until one is found that is better then the current solution. If a better candidate
is found within a fixed number of tries, this neighbour becomes the new current solution and its
neighbours are examined in turn. Otherwise the current solution is declared a (local) minimum.
This process is repeated several times for different staring points, and the best local minimum is
returned. The approach produces an adequate solution in a short time.

Simulated annealing works in similar way, but also accepts new solutions that are worse than
the current one. This acceptance depends on a continually decreasing probability. The algorithm
therefore has the potential to “escape” local minima. It produces similar results to two-phase
optimisation (see below), but has a much higher runtime cost.

Two-phase optimisation uses iterative improvement to find a number of local minima, then
uses simulated annealing on the best of these minima. It produces the best solution in adequate
time.

Toured simulated annealing selects several starting points based on a heuristic, then starts

9.3. VIEWS ON A DOCUMENT MODEL 227

simulated annealing in each. It produces results similar to two-phase optimisation.
Random sampling takes a truly random sample from the solution space and selects the op-

timum from this sample. This algorithm is based on the analysis result that a large number of
solutions in the solution space is close to the optimum, which should then also be the case for
the sample set. The algorithm is a good choice when adequate solutions need to be found very
fast.

Conclusion

In this chapter, we have examined several practical options of obtaining a semantic document
model from a document. We have developed a set of extraction rules for this purpose, based on
the abstract transformation rules shown in chapter 5. We have shown that these rules can be
easily adapted with new background knowledge to other document types and domains.

We have also regarded inference procedures for document models, and have proposed a
method for implementing generalisation semantics on individuals in description logics.

The possibilities and the implementation of obtaining other models from a semantic document
model by specifying and materialising views on the document model were discussed.
Finally, we gave a brief overview on optimisation options for SPARQL query evaluation.

228 CHAPTER 9. PROCESSING DOCUMENT MODELS

Chapter 10

Use Cases

In this chapter, we will discuss several use cases that we applied our implemented approach to.
Further details on some of the documents, the background knowledge used, and the extraction
rules can be found in appendix B. Details on how much (if at all) the extraction rules had to be
adapted to the new domain can be found in section 11.4.

10.1 Document Verification

Verification of content consistency criteria for documents was the primary goal of the Verdikt
research project [FWJS08]. Consistency criteria can specify both the relative order along a
reading path within a document and the coherence of the content of different parts of a document.

For example, the criterion “After every definition, there must be an example with the same
topic” specifies a relative order (first the definition, then the example), it specifies the content
types (definition and example), and it specifies the coherence of the content (same topic).

We applied the approach proposed in this thesis to documents from different domains, with
the aim of using formal verification techniques on non-formal documents.

10.1.1 Realistic Technical Documentation Use Case

The first domain is that of technical documentation. We created several documents, implemented
in HTML, for fictional devices that were nonetheless modelled after real-world documentations.
[SWJF09, SWF11]

Figures 10.1 and 10.2 show outlines of documentations for digital cameras, called VDK 1501
and VDK 1109, respectively. Both documentations have been modelled after actual documenta-
tions for consumer-type cameras. Figure 10.3 shows the outline of a documentation for a digital
satellite receiver called VDK 1108. The latter is based on an actual document in PDF format of
80 pages, grouped into 24 chapters. It has been converted to HTML for easier technical access,
and any names and other identifying features have been changed to protect the identity of the
original manufacturer.

It has been our observation that many technical documentations have a similar structure: a
linear primary reading path, some cross references, and a few hubs with (sometimes bidirectional)
references to most of the other parts of the document (like the table of contents or an index).
In general, the number of references is low, which is reflected in a relatively low node-degree
(generally below 10) in the RDF/OWL implementation of the semantic document model. The
out-degree is dominated by statements with literal values.

229

230 CHAPTER 10. USE CASES

Ti
tl

e
Pa

ge
Ta

b
le

 o
f

C
on

te
n

ts

C
he

ck
in

g
th

e
P

ac
ka

ge

C
on

te
n

t
C

om
p

on
en

t
O

ve
rv

ie
w

Im
p

or
ta

n
t

N
o

te
s

Pr
ep

ar
at

io
ns

R
ec

o
rd

in
g

P
ho

to
s

(A
U

TO

m
o

de
)

Sh
ow

in
g

Ph
o

to
s

R
ec

o
rd

in
g

V
id

eo
s

(S
ta

n
da

rd
 M

o
de

)
Sh

ow
in

g
V

id
eo

s
D

el
et

in
g

P
ri

nt
in

g

In
de

x

Figure 10.1: VDK 1501 document. The primary reading path is shown in black, references from
the Table of Contents are shown in blue, and references from the Index are shown in red.

10.1. DOCUMENT VERIFICATION 231

Videos

Recording Videos

Viewing Videos

Deleting Videos

Photography

Auto Mode

Program Mode

Viewing Photos

Deleting Photos

Note: Flash

Title Page

Table of Contents

Safty Notes

Camera Overview

Connecting to a Computer

Menus and Preferences

Glossary

Figure 10.2: VDK 1109 document. The primary reading path is shown in black, references to
and from the Table of Contents are shown in blue, and cross references between sections are
shown in green.

232 CHAPTER 10. USE CASES

Title Page

Preface

Notes

Package Content

Table of Contents

Safety Instructions

Components

Setup

Remote Control

Usage Instructions

First-Time Setup

On Screen Display

Electronic Program Guide

Common Interface

Video Text

Station Finder

Edit Station List

Child Protection

Configuration

Service Menue

Connections

Usage

Technical Appendix

Technical Lexicon

Troubleshooting

Figure 10.3: VDK 1108 document. The primary reading path is shown in black. Every section
except the Title Page has a bidirectional reference to and from the Table of Contents (not shown).

10.1. DOCUMENT VERIFICATION 233

For obtaining the semantic document models of these documents, we used the default rules
as defined in description 9.1.8 and background knowledge about the formatting, about keywords
(such as “side note”), about relevant terms (such as “memory card” or “lens”), about equivalent
terms (such as “standby” and “stand-by”), and about abbreviations (such as “HDMI”, “VHS”,
or “YUV”).

A single view on the level of chapters was created for each document. The views are ALCCTL
models containing several concepts and roles.
On the first document (VDK 1501), we checked the following six criteria:

1. Every component named in the Overview must be referred to later, but before the Index.

2. There must be no reading path that skips the Important Notes.

3. Every term in the Index must be described somewhere before in the document.

4. Every term described somewhere in the document must be listed in the Index.

5. All images must by available in either JPEG or PNG format.

6. The chapter Checking the Package Content must follow immediately after the Table of
Contents.

On the second and third document (VDK 1108 and VDK 1109), we checked the following nine
criteria:

1. Every abbreviation has to be explained later in the Glossary.

2. Every technical term has to be explained later in the Glossary.

3. The topic of side notes is related to the topic of their referring content units.

4. No warning may exist only inside of an excursion/side note.

5. There must not be any path that skips even a single warning.

6. All components listed in the Overview must be discussed before the Glossary.

7. Sections with related topics must reference each other.

8. The targets of all cross references must have at least one topic in common with their
referrers.

9. The targets of all cross references must have at least one topic that is related to at least
one topic of their referrers.

Unsurprisingly, most of the criteria were not satisfied.

The software developed during the Verdikt project provides an end user with an error report
about which criteria failed, and why they failed. Formally, the report contains counterexamples
for the ALCCTL formulae.

Including location data in the semantic document model and in the ALCCTL view allows us
to provide a link for each counterexample that, when clicked, leads the user to the section of the
original document where the error is located. In some cases it is even possible to highlight the
error. This location data is annotated to every fragment in the semantic document model, and
to every state in the ALCCTL model (not shown in previous examples). It consists of an XPath

234 CHAPTER 10. USE CASES

expression that identifies the location in the source file represented by a media object in the base
document model. [SWF11]

The documents in this domain have an extra benefit: they can be used to showcase some of
the principles of our research to the general public. Many people have had negative experiences
with sub-par technical documentations and can therefore relate to the use case. This expectation
was confirmed at a university open house presentation.

10.1.2 Real E-Learning Use Case

The second domain we regarded is the e-learning domain [SJWF09]. We examined over 100
e-learning documents from the WWR project [WWR04], encoded in a specialised XML format
called ML3 [TLV03]. Figure 10.4 shows a glimpse of one of these documents (in German).

These documents have a very complex structure. There are many cross references, in partic-
ular links to related topics and to side notes. In addition, there are three so-called “dimensions”:
the target medium, the target audience and the level of difficulty, also called intensity. Possible
target media are print (for offline review), screen (for online review) and presentation (slides
for use in a lecture). Target audiences are student and teacher. Intensities are basic (which
includes only the most basic material), advanced (which includes more advanced topics), and
expert (which includes the most complex topics). All content is classified along all dimensions,
with multiple classifications possible. For example, one document fragment may be classified as
suitable for advanced and expert students, to be perused on- and offline. Another fragment may
be intended for teachers of all levels to be viewed online, because it contains notes for a lecture
and a video clip that is not suitable for printing.

The RDF/OWL implementations of the semantic document models for these e-learning doc-
uments reflect this complexity. While the documents vary widely in size (between 300 and 10.000
statements per document, and between 100 and 1.000 individual nodes per document), the node
degree remains almost uniformly high (averaging between 7 and 12). While they also contain
many literal-valued statements, the e-learning documents clearly have a far more complex struc-
ture than the technical documentations.

In the verification process, the best way to handle the complexity caused by the different di-
mensions is to create a separate view for each combination, by filtering the appropriate fragments
from the document model. This can be easily done in the SPARQL queries used to specify such
views. It results in 18 distinct views to which verification criteria can be applied, not counting
additional views for different structural levels.

A different approach to creating multiple verification models is to create multiple formulae.
For example, the formula for the criterion “after every definition, there is an example with the
same topic in each of its direct successors” is Definition v AXExample. To ensure that the
intensity is consistent, i.e., that both the definition and the example have the same intensity, the
following formula can be used (analogue for medium and audience):

AG((Definition v AXExample) ∧ (Intensity ≡ AXIntensity)).

However, this significantly increases the complexity of the formulae, which are already too com-
plex for laypersons to handle. Worse, it is only possible in special cases. For different temporal
operators, like AF, EX or EF instead of AX, it cannot be guaranteed that the state containing
the example is the same state that also contains the appropriate intensity, i.e., EFExample and
EFIntensity may not be evaluated in the same state. ALCCTL does not allow two description
logic subsumptions on a single pair of states.

We applied several verification criteria to these documents, among them the following:

10.1. DOCUMENT VERIFICATION 235

Figure 10.4: Sample of a WWR e-learning document (German)

236 CHAPTER 10. USE CASES

1. After every definition, there is an example with the same topic.

2. Every learning objective for a chapter is covered in the same chapter.

3. All relevant terms must also be the topics of a fragment.

While not all of these criteria were satisfied, the results were noticeably better than for
the technical documentations. Without terminological background knowledge, the number of
formula violations increases sharply because different dictions of the same term are no longer
recognised.

Note that a formula violation does not necessarily mean that there is an error in the document.
There could instead also be an error or an omission in the background knowledge, there could
be an error in the document model, there could be an imprecision in the formula, or there could
simply be an exception to the rule. Formula violations merely give an indication to a human
author or editor that there might be an error in the document.

We also used the e-learning documents to obtain background knowledge from them, as dis-
cussed in section 6.2.

10.1.3 Real Lecture Notes Use Case

As an additional domain, we investigated university lecture notes, written in LATEX. Their
handling was challenging on a technical level, since LATEX is a very complex format. Otherwise,
they proved to be very similar to the e-learning documents, which may not be entirely surprising.

We used a preprocessor to obtain XML code from the source files, so that we were able to use
the same processing workflow as in the other domains. Since existing LATEX to XML convert-
ers focus on (X)HTML and on reproducing the original visual output, thus loosing structural
information like “section” commands, we created our own parser. Its functionality is reduced
to converting commands and environments, while it ignores mathematical formulae and other
things that are not relevant for our purpose.

To increase its precision, in particular regarding the correct recognition of parameters, we
compiled a list of LATEX commands and parameters that were frequently used in the lecture
notes. This list was also used as background knowledge on structural indicators.

The verification criteria and verification results were similar to those of the e-learning docu-
ments.

10.2 Process Verification

Next to document verification, we decided to try and use the same techniques for a different
purpose: the verification of consistency criteria on processes. As we have explored in section 4.2.2,
processes can be seen and modelled in a way that is very similar to documents. We indeed
managed to show that the same approach that we developed for documents can be applied to
processes with very little adaptation.

We obtained a collection of documents that describe software engineering processes from
the German Aerospace Center (DLR). They specify one “entity” (a super-process, if you will),
consisting of 18 individual processes. These documents do not contain a formal specification of
the processes, however, but rather a semi-formalised specification written in Microsoft Word,
using lists, tables, and formatted text. Each process is described in a single file, an obfuscated
excerpt can be seen in figure 10.5. Because of the documents’ confidentiality, formalised in a
non-disclosure agreement, we cannot show the actual content here.

10.2. PROCESS VERIFICATION 237

Figure 10.5: DLR document layout

238 CHAPTER 10. USE CASES

After writing a preprocessor that transformed the Word documents into suitable XML files, we
were able to employ the methodology developed for documents. We used background knowledge
about the documents’ structure, formatting and keywords, and we used the extraction rules
defined above to obtain a formal process model from these files. A small part of this model is
shown in figure 10.6.

Note that the preprocessor uses the Word documents in docx format. A previous version
based on the Visual Studio Tools for Office (VSTO) that used the documents in the older doc

format proved to be unsuitable due to the inefficiency and instability of the VSTO.

E1
E.xxx

name

P1

I1

O1

P2

I2

O2

Feasibility Study

SW Req. & Arch.

User requirements

Feasibility study doc.

System requirements

Legal requirements

Product Out of
Feasibility Study

Design study

part

part
part

part

part

part

name

name

productin

productin

productout

productin

productin

productout

System requirementsentityin

type

Entity

Process

ProductIn

ProductOut

Process

ProductIn

ProductOut

type

type

type

type

type

type

successor successor

successor

Figure 10.6: DLR process model (excerpt)

We found that the concept of views is particularly useful for processes, because it enables us
to check process structures without necessarily knowing every detail of every sub-process. This
is illustrated in figure 10.7, which shows two views on the same set of processes. The first view
shows each process separately, and the second view shows the processes aggregated by entity.

One of the criteria we used, namely that “every manager is part of the active personnel” (see
below), uses background knowledge about current employment records that is integrated directly
into the view in the form of concept interpretations.

The RDF/OWL implementation of the semantic process model consists of approximately 2000
statements and 200 distinct RDF nodes for the entire set of processes. It has an average node
degree of 10, which is high in relation to the other models we encountered. This characteristic
is reinforced by the low number if literal statements, meaning that the process structure is
remarkably complex.

In process verification, criteria can often be classified as those dealing with the control flow,
such as “there must be a test before deployment”, and those dealing with the data flow, such as

10.2. PROCESS VERIFICATION 239

E1 { User requirements,
 System requirements,
 Feasibility study doc.,
 Legal requirements, }

{ Feasibility study doc.,
 Design study, }

{ System requirements }
EntityProductIn

ProductIn

ProductOut

(b) View 2: entities

P1

P2

{ User requirements,
 System requirements }

{ Feasibility study doc. }

{ Feasibility study doc.,
 Legal requirements }

{ Design study }

EntityProductIn

{ System requirements }EntityProductIn

ProductIn

ProductIn

ProductOut

ProductOut

{ (Alice, P1) }

managerOf

...

managerOf

(a) View 1: processes

{ (Alice, E1), (,), ... }

managerOf

{ System requirements }

... ...

Figure 10.7: Views on the DLR process model

“all data needed by any process step must be created by an earlier process step”. The latter is
only rarely supported by verification systems [TvdAS09]. However, we were able to pursue both
types of criteria. The following criteria were developed in consultation with domain experts from
the DLR:

1. All “product in” are either produced by at least one entity process (“product out”) or are
part of the “entity product in”.

2. All “product out” are either consumed by at least one entity process (“product in”) or are
part of the “entity product out”.

3. Every process has a manager.

4. Every manager is part of the active personnel.

5. No process has different managers in different locations.

6. There is an entry in the document change record about the current process version.

7. No process is reviewed by its own manager.

8. No process is approved by its own manager.

9. No process is released by its own manager.

10. Every process is prepared by its own manager.

11. Every process is prepared by someone.

12. Every process is reviewed by someone.

13. Every process is approved by someone.

14. Every process is released by someone.

240 CHAPTER 10. USE CASES

Only the first two criteria were violated, speaking either for the high quality of the process
specification or for the omission of an important criterion (or both).

The efficiency and runtime performance of the entire process, from reading the document
models to verifying the criteria, is suitable for direct interaction with the system instead of
overnight processing.

ALCCTL Formula Parametrisation

The criterion that “no process has different managers in different locations” requires a
statement about two distinct entities, i.e., an ALCCTL formula with two variables. This
is, however, not supported by the semantics of ALCCTL. The corresponding formula
AG(AG∀managerOf.Process v ∀managerOf.Process) ensures that the managers on the left
and right hand side of the ⊆ are the same, but there is no guarantee that the processes are also
the same. We solved this problem by introducing the parametrisation of ALCCTL formulae:

AG(AG∀managerOf.{$Process} v ∀managerOf.{$Process})

The parameters are resolved in three steps:

1. collect the names of all parameters;

2. for every ALCCTL concept named like on of the parameters: expand the values of its
interpretation to a set of new concepts, with one concept for each value; and

3. replace a formula with a parameter that refers to a concept with a set of formulae, where
each formula uses a different one of these new concepts instead of the parameter or the
original concept.

This is done successively until all parameters have been replaced. Note that resolving the para-
meters not only changes the formula and generates new formulae, but it also changes the verific-
ation model by adding new concept interpretations. Also note that the parameters can only be
resolved against an existing ALCCTL model. Resolving them against different models will yield
different results.

Description 10.2.1 (Resolving ALCCTL Formula Parameters). The following pseudo-code
shows the algorithm for resolving parameters in an ALCCTL formula against an ALCCTL model.

1 public List <String > resolveParameters(String formula , ALCCTLModel model) {

2 Set <String > parameters =

3 /* get the names of all parameters from the formula */

4 List <String > formulae = new ArrayList <>();

5 for (String parameter: parameters) {

6 Set <String > values =

7 /* get all concept interpretations from all states

8 for the concept named as the parameter */

9 for (State state: model.getStates ())

10 for (String value: values)

11 /* add a new concept interpretation to the state ,

12 with ‘"Param_" + value’ as the concept name ,

13 and ‘value’ as its sole value */

14 List <String > newFormulae = new ArrayList <>();

15 for (String formula: formulae)

16 for (String value: values)

17 /* add a new formula to newFormulae where every

18 usage of ‘parameter ’ is replaced by

19 ‘"Param_" + value ’ */

10.3. OTHER USE CASES 241

20 formulae = newFormulae;

21 }

22 return formulae;

23 }

Example 10.2.2 (Resolving ALCCTL Formula Parameters). Recall the formula f from above:

AG(AG∀managerOf.{$Process} v ∀managerOf.{$Process})

Let M = (S,R, I) be an ALCCTL temporal model, with S = {s1, s2, s3},
R = {(s1, s2), (s2, s3), (s1, s3)}, ∆I = {P1,P2,P3}, I = {(s1, (∆I , ()

I(s1))), (s2, (∆
I ,

()
I(s2))), (s3, (∆

I , ()
I(s3)))}, ProcessI(s1) = {P1}, ProcessI(s2) = {P2}, and ProcessI(s3) =

{P3}.
Resolving f against M yields the set of formulae f ′ = {
AG(AG∀managerOf.Param P1 v ∀managerOf.Param P1),
AG(AG∀managerOf.Param P2 v ∀managerOf.Param P2),
AG(AG∀managerOf.Param P3 v ∀managerOf.Param P3)}.
M is extended with Param P1I(s1) = {P1}, Param P2I(s2) = {P2}, and Param P3I(s3) = {P3}.

This approach can increase the number of formulae (and thus the complexity of model check-
ing) significantly: the factor of this increase is in O(|P | · |∆I |), where |P | is the number of
parameters and |∆I | is the size of the interpretation domain. However, it also increases the ex-
pressive power of an ALCCTL formula, which can make the additional cost worthwhile in some
circumstances.
Note that usually |P | = 1 and that only a small subset of ∆I is required.

10.3 Other Use Cases

To prove the concept, we tested other domains and document formats. In the e-learning domain,
we also applied the approach to documents in LMML format [SF99], with results similar to those
for ML3 documents. For technical documentations, we also successfully tested the DocBook
[Wal09] and DITA [DEAJ10] formats [Pre08], using real-world documentations for various Linux
systems and components. We checked the criterion “Every technical term has to be explained
later in the Glossary” and found it largely unsatisfied.

In addition, we used formal process specifications written in BPMN [All10] and other formats,
courtesy of the German National Process Library [Ahr12], to show the applicability of our ap-
proach to formal specifications of different domains. We even successfully obtained a formal
process model from a purely graphical process description in Microsoft Visio format. Additional
details can be found in section 11.2 and in appendix B.

Conclusion

In this chapter, we have shown the formal verification of consistency criteria on documents from
different domains as a use-case for our approach. We have also shown that the techniques can
be transferred to the validation of processes.

Furthermore, we have extended the expressive power of ALCCTL in such a way that for a
known model, it is possible to specify formulae over more than a single distinct variable. We
have given an upper bound for the increase of complexity of model checking such formulae.

242 CHAPTER 10. USE CASES

Part IV

Evaluation

Chapter 11

Quantitative Evaluation

In this chapter, we will evaluate the implementation of the proposed approach according to
quantitative criteria. The evaluation system on which all measurements were made is detailed
in description 11.0.1. All measurements were made five times in direct succession. The results
presented here are the average values of the final three measurements to minimise the influence
of external factors like system caching.

Description 11.0.1 (Configuration of the Evaluation System). The evaluation system has been
configured with the following hard- and software components:

I Intel(R) Core(TM) i7 Q720, 1.6 GHz

I 8 GB RAM

I 256 GB SSD (system, applications)

I 500 GB SATA-II HDD 7200rpm (database, data)

I Microsoft Windows 8 64-bit

I Microsoft SQL Server 2012 64-bit

I Java 1.7

11.1 Generated Documents

In this section, we will describe how the processing times of various processing steps scale in
relation to increased document sizes, increased number of processing rules, or increased amount
of background knowledge.
We will use the following abbreviations when referring to different processing steps:

R.Comp. compilation of the processing rules
L.XML loading the XML files into main memory
Prep. preprocessing
R.Exec. executing the processing rules to obtain a document model
V:XML generating an XML-based view on the document model
V:ALCCTL generating a view for ALCCTL verification
V:BGK generating a view containing background knowledge
Verif. running the ALCCTL verification

245

246 CHAPTER 11. QUANTITATIVE EVALUATION

Note that the processing rules only need to be re-compiled (R.Comp.) whenever the rule set
changes, which usually happens only rarely. Most changes to the background knowledge do not
require changes to the rule set, and thus no re-compilation.

First, we regarded how the processing times scale with the size of the source document. We
used a set of three processing rules, and background knowledge with ten different indicators
each for fragment elements and for data elements. The source documents contained increasing
numbers of XML elements, but only ten different element names to match the indicators in the
background knowledge. We created documents of increasing size and measured the processing
times for each document, as shown in figure 11.1.

Since the rule set remains unchanged, the rule compilation time stays virtually the same.
Loading the XML files scales roughly in linear time, as is to be expected. The same holds true
for creating the XML-based view from the document model. Executing the rule set to obtain the
document model from the source document, however, requires time that grows polynomially in
the number of XML nodes (about |N |1.35, where N is the number of nodes; |N |1.6 on a different
test machine). Since the Drools rule engine is based on the RETE algorithm which in general
scales polynomially in the size of the data set, this too is not unexpected. The absolute values
(about 16 seconds for processing 1,000 nodes) are still in the realm of usefulness. Similar results
were obtained on a set of generated HTML documents in a separate experiment.

10 30 100 300 1000

100

101

102

103

104

Number of XML nodes

T
im

e
in

m
s

R.Comp.
L.XML
R.Exec.
V:XML

Figure 11.1: Time measurements for the processing time of documents with a varying number
of XML nodes

Next, we investigated how the processing times scale with the number of processing rules. To
this end, we removed the background knowledge that contained the indicators for fragments and

11.1. GENERATED DOCUMENTS 247

data elements, and wrote this information directly into the rules. One rule was required for the
element recursion, and one rule each for every fragment indicator and for every data indicator.
Ten different elements in the source file thus lead to 1 + 2 · 10 = 21 rules. We created rule sets
for increasing numbers of different elements in the source documents, while the total number of
elements remained constant (1,000).

Here, the compile times for the rules sets (as shown in figure 11.2) grow polynomially with
the number of rules. Since rule sets only rarely need to be compiled, this is not overly worrisome.
Disregarding some caching effects, the times for loading the XML files and for creating the XML
views are constant, as expected for documents of constant size. The rule execution times start at
about the same value where they were for a document of the same size in figure 11.1, and grow
in a linear manner because the time required to find a matching rule increases with the number
of rules.

10 30 100 300 1000

101

102

103

104

105

106

≈ 1
2 number of processing rules

T
im

e
in

m
s

R.Comp.
L.XML
R.Exec.
V:XML

Figure 11.2: Time measurements for the processing time of documents with varying number of
processing rules

Finally, we restored the rule set to the original set of three, but we kept the increasing number
of different elements in the source files (as well as the total of 1,000 elements), moving the growing
number of indicators into the background knowledge. The results are shown in figure 11.3.

Using background knowledge instead of fixed rules scales very similar to increasing the number
of rules. Since the expressive power remains completely identical, this result was expected. In
real use cases, there are usually no more than 20 indicators, so even a runtime of about 10
minutes for 1,000 indicators does not have any practical impact.

248 CHAPTER 11. QUANTITATIVE EVALUATION

10 30 100 300 1000

101

102

103

104

105

106

Number of data/fragment indicators

T
im

e
in

m
s

R.Comp.
L.XML
R.Exec.
V:XML

Figure 11.3: Time measurements for the processing time of documents with varying number of
data and fragment indicators in the background knowledge

11.2. REAL DOCUMENTS FROM DIFFERENT DOMAINS 249

11.2 Real Documents from Different Domains

In the following sections we will list the size (according to different measures) of all documents
and of all document models that were regarded in the evaluation, followed by the processing
times of obtaining document model from the documents, and of obtaining (and materialising)
views on these models. We will analyse what causes the different characterising properties of the
documents and document models, as well as the extraction times.

In the tables in this section, we will use the following abbreviations with respect to a single
XML-based document or a single RDF-based document model:

|N | total number of XML/RDF nodes
|T | total number of XML text nodes
min(A) minimum number of attributes found in an XML node
max(A) maximum number of attributes found in an XML node
avg(A) average number of attributes found in an XML node
mean(A) mean number of attributes found in an XML node
min(C) minimum number of child nodes found in an XML node
max(C) maximum number of child nodes found in an XML node
avg(C) average number of child nodes found in an XML node
mean(C) mean number of child nodes found in an XML node
|S| total number of RDF statements
|R| total number of distinct RDF resources
|L| total number of distinct RDF literals
min(D) minimum node degree found in any RDF node
max(D) maximum node degree found in any RDF node
avg(D) average node degree found in any RDF node
min(I) minimum node in-degree found in any RDF node
max(I) maximum node in-degree found in any RDF node
avg(I) average node in-degree found in any RDF node
min(O) minimum node out-degree found in any RDF node
max(O) maximum node out-degree found in any RDF node
avg(O) average node out-degree found in any RDF node
|F | total number of fragments in the document model

Since min(A), min(C), min(D), min(I), and min(O) always equal zero in the documents and
document models regarded here, they have been omitted from the tables below. For the XML
documents, the existence of empty nodes or nodes with no attributes is unsurprising because
of the size of the documents. For the RDF-based document models, a minimal node-degree of
zero is caused by classes or properties that are defined in the schema, but that are not used in
the model. In addition, every root node has an in-degree of zero, and every literal node has an
out-degree of zero. The corresponding max values have also been omitted, because they carry
little relevant information.

We will use the following abbreviations with respect to all documents or to all document
models:

sum the sum total of all values
avg the average of all values
mean the mean of all values
min the minimum of all values
max the maximum of all values
md. the mean deviation of all values
msd. the mean square deviation of all values

250 CHAPTER 11. QUANTITATIVE EVALUATION

For example, in table 11.1, the value for sum:avg(A) in row one, column four is the sum over
the average number of attributes in each XML document. The value for avg :mean(C) in row
two, column six is the average over all maximum numbers of child nodes. Finally, the value for
md.:|N | in row six, column one is the mean deviation for the number of nodes in each document.

Remark 11.2.1. The average of a set of values is obtained by calculating the sum of all values
divided by the number of values.

The mean of a set of values is obtained by putting all values into an ordered list and by
selecting the centre value from this list.

11.2.1 E-Learning Documents

In the e-learning domain we regarded a total of 125 documents in the ML3 format. Table 11.1
shows the sizes of the XML documents. The large value of |N | is caused by the large corpus
with many documents. Since the document sizes vary widely, with some very small and some
very large documents (cf. min and max |N |), the mean deviation is also very large. There
is a large difference between the average and the mean values of |T |, because there is a small
number of documents with many text nodes (as supported by the large value of max). The
number of attributes per node is small, because often text nodes are used instead of attributes,
while attributes mostly carry metainformation (such as IDs, target group, or difficulty). Many of
these values are passed down to child elements, which therefore need fewer attributes themselves.
The mean number of child nodes is dominated by the large number of leaf nodes which have no
children, resulting in a mean value of zero.

Table 11.2 shows the sizes of the RDF implementations of the document models. The large
deviation in the number of statements follows directly from the large deviation in the number
of nodes in the source documents. Yet both the sum total and the average values of |R| are
smaller than the corresponding values of |N |, because not every XML element is represented as
a document fragment. On the other hand, the sum and average values of |L| are larger than
the values of |T |: this is due to attributes that are represented as literals as well (in addition
to text nodes). In addition, many literals are newly created for the document model and carry
metainformation such as IDs, ordering information, or references to the source document. Note,
however, that duplicate uses of a literal do not count towards |L|. The node degree is dominated
by outgoing edges, which are mostly statements with a literal value. This is consistent with the
average in- and out-degree, which is roughly in the same proportion as |R| and |L|, namely about
1:3.

The processing times are shown in table 11.3. Since there is only one rule set to compile,
the compilation times are all equal, with no deviation. A small number of very large documents
exists, which causes a relatively large max value for the XML loading times.

The preprocessing step is complex because include-commands need to be resolved and inher-
ited attributes need to be made explicit to make the subsequent processing easier. This results
in a relatively long preprocessing time. The rule processing takes a similar amount of time. It is
obviously the main part of obtaining a document model from a source document.

Yet all other processing times are dwarfed by the time required for creating the ALCCTL
view. This is caused by a complex document model (cf. table 11.2), on which 3 + 5 · |SALCCTL|
(where |SALCCTL| is the number of states in the resulting ALCCTL model) complex and recursive
SPARQL queries need to be evaluated to build the ALCCTL model. In contrast, only three non-
recursive SPARQL queries are necessary for the background knowledge view. But a large and
diverse ALCCTL model is required to verify the large number of criteria for the ML3 documents.

An average of about six seconds (mean: five seconds) for a complete processing cycle for
one document is adequate for live verification, especially considering that the rule compilation

11.2. REAL DOCUMENTS FROM DIFFERENT DOMAINS 251

|N | |T | avg(A) mean(A) avg(C) mean(C)
sum 93,695.00 41,695.00 125.32 93.00 124.30 0.00
avg 749.00 333.00 1.00 0.00 0.99 0.00
mean 241.00 29.00 0.88 1.00 1.00 0.00
min 41.00 3.00 0.32 0.00 0.98 0.00
max 7,841.00 4,809.00 2.79 4.00 1.00 0.00
md. 862.39 501.84 0.32 0.71 0.00 0.00
msd. 1,408.14 848.20 0.45 0.88 0.00 0.00

Table 11.1: E-learning documents: XML document sizes (across 125 documents).

|S| |R| |L| avg(D) avg(I) avg(O) |F |
sum 349,617.00 57,296.00 157,316.00 963.06 232.42 730.64 54,687.00
avg 2,796.00 458.00 1,258.00 7.70 1.86 5.85 437.00
mean 2,359.00 418.00 1,102.00 7.61 1.90 5.70 395.00
min 307.00 68.00 155.00 5.96 1.44 4.51 50.00
max 10,507.00 1,370.00 4,056.00 10.58 1.97 8.61 1,349.00
md. 1,529.57 227.39 652.71 0.51 0.07 0.46 226.12
msd. 1,972.74 287.82 834.59 0.73 0.10 0.66 286.57

Table 11.2: E-learning documents: document model sizes (across 125 document models).

and the generation of the XML view is not necessary in every cycle, and the generation of the
background knowledge view is mainly useful when the document in question is not otherwise
part of the verification process (cf. section 6.2). This reduces the total average for a processing
cycle to five seconds (mean: three seconds).

11.2.2 Technical Documentation

In the technical documentation domain we regarded seven documents in DocBook format.
Table 11.4 shows the sizes of the XML documents. Note that we removed from each of the
source files the document type definition (DTD) declaration that referred to an external DTD
available online. This allows for a better comparison of the XML load times. Since this corpus is
smaller than the e-learning corpus, the total sum of |N | is smaller as well. Yet the average and
mean value of |N | are both considerably larger, because most documents are considerably larger
as well. The ratio of XML nodes versus text nodes is very balanced, in contrast to the ML3
documents, where |N | > |T |. The reason is that the document structure here is far less complex,
with more actual content per structural element. At the same time, the average and mean val-
ues for the number of attributes are lower than in the ML3 documents, because there are fewer

R.Comp. L.XML Prep. R.Exec. V:XML V:ALCCTL V:BGK Verif. Total
sum 1.404 0.484 10.609 11.668 3.304 569.184 3.737 7.006 607.397
avg 1.404 0.004 0.085 0.093 0.026 4.553 0.030 0.056 6.252
mean 1.404 0.001 0.048 0.080 0.017 3.039 0.027 0.022 4.638
min 1.404 0.001 0.006 0.029 0.003 0.151 0.023 0.001 1.617
max 1.404 0.084 0.853 0.306 0.204 27.563 0.067 0.563 31.045
md. 0.000 0.004 0.069 0.040 0.019 3.631 0.005 0.056 3.825
msd. 0.000 0.012 0.105 0.054 0.031 5.153 0.008 0.092 5.456

Table 11.3: E-learning documents: processing times in seconds (for 125 documents/document
models).

252 CHAPTER 11. QUANTITATIVE EVALUATION

|N | |T | avg(A) mean(A) avg(C) mean(C)
sum 31,016.00 32,923.00 1.06 0.00 6.99 0.00
avg 4,430.00 4,703.00 0.15 0.00 1.00 0.00
mean 3,604.00 3,040.00 0.15 0.00 1.00 0.00
min 220.00 186.00 0.13 0.00 1.00 0.00
max 10,596.00 13,580.00 0.20 0.00 1.00 0.00
md. 3,473.84 4,064.61 0.02 0.00 0.00 0.00
msd. 3,971.45 4,666.07 0.02 0.00 0.00 0.00

Table 11.4: Technical documentation documents: XML document sizes (across seven documents).

|S| |R| |L| avg(D) avg(I) avg(O) |F |
sum 37,904.00 8,558.00 11,161.00 43.37 13.82 29.55 8,374.00
avg 5,414.00 1,222.00 1,594.00 6.20 1.97 4.22 1,196.00
mean 4,227.00 1,005.00 1,232.00 6.20 1.99 4.21 985.00
min 410.00 110.00 141.00 5.50 1.75 3.73 96.00
max 13,266.00 3,039.00 3,540.00 6.84 2.21 4.86 2,954.00
md. 4,213.27 920.08 1,227.92 0.36 0.12 0.25 909.18
msd. 4,641.94 1,028.81 1,341.01 0.45 0.15 0.34 1,011.56

Table 11.5: Technical documentation: document model sizes (across seven document models).

metadata than in the e-learning documents (e.g., no target group or difficulty information).
Table 11.5 shows the sizes of the RDF implementations of the document models. The average

proportion of |R| to |N | is similar to the e-learning domain: the document structure is less
complex (as noted above), therefore there are fewer document fragments in total, but there is
a similar number of document fragments per XML node (as supported by the respective values
for |F |). On the other hand, the proportion of the average values of |R| to |L| is greater than
in ML3: as noted above, the technical documentations contain fewer metadata, which requires
fewer literals to represent them. The average node-degree is slightly lower when compared with
the ML3 documents. This is caused by the out-degree, because while the in-degree is similar to
above, the out-degree is lower. This, in turn, is caused by the lower number of literals per RDF
node.

The processing times are shown in table 11.6. Again, the R.Comp values are all equal:
as with ML3, there is only one rule set to compile. The rule execution times are even more
prominent than before, because the rule processing is the main part of obtaining a document
model from a source document. The average rule execution time is larger than above, reflecting
the larger average document size. But the sum total of the execution time is also higher than
for the e-learning documents or for the NPB corpus (see below), even though the document
corpus itself is smaller. This is caused by the more complex XPath expressions used in the
background knowledge. Replacing them with less complex (albeit less effective) expressions
significantly reduces the processing time. The time requirements for creating the ALCCTL views
is considerably smaller than for the ML3 documents, because there are fewer verification criteria,
and therefore a far simpler ALCCTL model (3+3·|SALCCTL| SPARQL queries are necessary here).
The average total processing time minus rule compilation of less than half a minute (10 seconds
mean) is still (barely) adequate for live processing.

11.2.3 Process Descriptions (NPB)

In the process description domain we regarded four documents obtained from the National Pro-
cess Library (NPB) in three different formats (BPMN, Visio, and a proprietary XML format).

11.2. REAL DOCUMENTS FROM DIFFERENT DOMAINS 253

R.Comp. L.XML R.Exec. V:XML V:ALCCTL V:BGK Verif. Total
sum 0.330 1.475 180.353 0.868 2.640 0.240 0.003 185.909
avg 0.330 0.211 25.765 0.124 0.377 0.034 0.000 26.841
mean 0.330 0.078 10.170 0.066 0.248 0.034 0.000 10.926
min 0.330 0.052 0.219 0.005 0.032 0.028 0.000 0.666
max 0.330 0.633 83.738 0.422 0.923 0.043 0.001 86.090
md. 0.000 0.169 26.646 0.110 0.319 0.004 0.000 27.247
msd. 0.000 0.200 31.005 0.137 0.364 0.005 0.000 31.712

Table 11.6: Technical documentation documents: processing times in seconds (for seven docu-
ments/document models).

|N | |T | avg(A) mean(A) avg(C) mean(C)
sum 36,365.00 19,402.00 4.85 4.00 3.99 1.00
avg 9,091.00 4,850.00 1.21 1.00 1.00 0.00
mean 15,186.00 9,054.00 2.25 2.00 1.00 0.00
min 199.00 0.00 0.15 0.00 0.99 0.00
max 16,234.00 10,160.00 2.25 2.00 1.00 1.00
md. 6,618.75 4,756.50 1.03 1.00 0.00 0.38
msd. 6,821.26 4,773.01 1.03 1.00 0.00 0.43

Table 11.7: Process description documents (NPB): XML document sizes (across four documents).

The Visio document is depicted in figure B.1 in appendix B.3. Table 11.7 shows the sizes of the
XML documents. The average value of |N | is very large, which is caused by the Visio document
that contains a lot of graphical data in addition to the pure process description, and by the
documents in proprietary XML format that are very verbose. The document in BPMN format
is considerably smaller, as indicated by the min and mean deviation values. The proportion of
|N | to |T | is similar to that of the ML3 documents, which have a similarly complex structure.

Table 11.8 shows the sizes of the RDF implementations of the document models. The average
node degrees (D, O, and I) are similar to the technical documentations, as is the lower ratio
of |L| to |R|. However, the average values of |S|, |R|, and |L| are far smaller than in either
the ML3 documents or the technical documentations: the structure of the described processes is
considerably simpler than the structure of the documents. This can also be seen in the relatively
low average number of process fragments.

The processing times are shown in table 11.9. Even though there are three different rule sets
for the documents now, they are all very similar with only a few deviations from the default rule
set, resulting in a low mean deviation for R.Comp. In contrast, the mean deviation for the rule
execution is relatively large. This is caused by the widely diverging document sizes (as evidenced
by the mean deviations of |N |), upon which the rule execution time largely depends.

11.2.4 Process Descriptions (DLR)

In the process description domain domain we regarded another 20 documents obtained from the
German Aerospace Center (DLR) in Word format. Table 11.10 shows the sizes of the XML
documents. Each document follows a similar standardised pattern, thus the deviations w.r.t. the
document size are small. All text is contained in attributes, as reflected by the average number
of attributes and the absence of any text nodes.

Table 11.11 shows the sizes of the RDF implementations of the document models. Since there
is only a single process model, the mean deviation on |S| is zero. Both |S| and |L| are relatively
large, while |R| is small, because there are many attributes (such as topics, descriptions, or

254 CHAPTER 11. QUANTITATIVE EVALUATION

|S| |R| |L| avg(D) avg(I) avg(O) |F |
sum 631.00 203.00 322.00 15.85 4.13 11.72 95.00
avg 157.00 50.00 80.00 3.96 1.03 2.93 23.00
mean 147.00 62.00 74.00 5.05 1.50 3.55 21.00
min 30.00 29.00 25.00 1.17 0.14 1.03 3.00
max 319.00 74.00 150.00 7.10 1.95 5.15 51.00
md. 80.63 17.25 34.75 2.11 0.69 1.42 13.63
msd. 103.63 18.05 44.75 2.28 0.73 1.56 17.28

Table 11.8: Process description documents (NPB): document model sizes (across four document
models).

R.Comp. L.XML R.Exec. V:XML Total
sum 0.973 0.517 1.958 0.014 3.462
avg 0.324 0.129 0.490 0.003 0.946
mean 0.357 0.071 0.484 0.002 0.915
min 0.256 0.013 0.154 0.001 0.424
max 0.359 0.387 0.923 0.009 1.679
md. 0.045 0.129 0.217 0.003 0.394
msd. 0.048 0.150 0.278 0.003 0.480

Table 11.9: Process description documents (NPB): processing times in seconds (for four docu-
ments/document models).

associated persons) per fragment, also shown in the high average out-degree. The (average) |F |
is larger than for the NPB models: while there is only a single process model here, it is also more
complex than the other process models.

The processing times are shown in table 11.12. The preprocessing only combines the separate
Word documents into a single file and is therefore rather fast and only executed once for all
documents (hence the equality of the sum and average values). The rule execution time is very
large because of two contributing factors: first, the large number of XML nodes that are all
processed at once, and second the complex XPath expressions in the background knowledge.
To a lesser degree, we already observed this effect earlier. The time required for the ALCCTL
view is small because of the small process model (compared to the document models above) and
because the SPARQL queries required are all very simple, non-recursive queries (even though
3 + 19 · |SALCCTL| queries are necessary).

The total processing time is longer than two minutes, and thus unsuitable for live processing.
It is, however, possible to employ the entire verification process as a recurring background task.

|N | |T | avg(A) mean(A) avg(C) mean(C)
sum 6,791.00 0.00 58.86 42.00 19.94 0.00
avg 339.00 0.00 2.94 2.00 1.00 0.00
mean 322.00 0.00 2.99 2.00 1.00 0.00
min 176.00 0.00 2.60 2.00 0.99 0.00
max 682.00 0.00 3.22 3.00 1.00 0.00
md. 82.72 0.00 0.13 0.18 0.00 0.00
msd. 115.64 0.00 0.17 0.30 0.00 0.00

Table 11.10: Process description documents (DLR): XML document sizes (across 20 documents).

11.2. REAL DOCUMENTS FROM DIFFERENT DOMAINS 255

|S| |R| |L| avg(D) avg(I) avg(O) |F |
sum 1,613.00 126.00 1,010.00 14.33 1.52 12.80 97.00
avg 1,613.00 126.00 1,010.00 14.33 1.52 12.80 97.00
mean 1,613.00 126.00 1,010.00 14.33 1.52 12.80 97.00
min 1,613.00 126.00 1,010.00 14.33 1.52 12.80 97.00
max 1,613.00 126.00 1,010.00 14.33 1.52 12.80 97.00
md. 0.00 0.00 0.00 0.00 0.00 0.00 0.00
msd. 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 11.11: Process description documents (DLR): document model sizes (for one document
model).

R.Comp. L.XML Prep. R.Exec. V:XML V:ALCCTL V:BGK Verif. Total
sum 0.302 0.343 0.031 240.675 0.022 0.326 0.085 0.108 241.892
avg 0.302 0.017 0.031 240.675 0.022 0.326 0.085 0.008 241.465
mean 0.302 0.015 0.031 240.675 0.022 0.326 0.085 0.005 241.460
min 0.302 0.008 0.031 240.675 0.022 0.326 0.085 0.003 241.452
max 0.302 0.059 0.031 240.675 0.022 0.326 0.085 0.040 241.540
md. 0.000 0.007 0.000 0.000 0.000 0.000 0.000 0.006 0.013
msd. 0.000 0.011 0.000 0.000 0.000 0.000 0.000 0.009 0.021

Table 11.12: Process description documents (DLR): processing times in seconds (for 20 docu-
ments/one document model).

Conclusion

Figure 11.4 shows an overview of the total processing times for documents from the four domains.
Unsurprisingly, the high similarity of the rule sets leads to very similar rule compilation times for
all domains. Loading times for the XML files are generally low across the domains. Only the ML3
and the DLR documents require preprocessing steps, where the one for ML3 is considerably more
complex because it must aggregate and pass down various attributes, as well as create different
branches for different content intensity levels. The rule execution times vary widely, based on the
different numbers of documents, different document sizes, and different complexity of the XPath
expressions in the background knowledge. The time for creating the XML views is dominated
by the size and number of the documents, while the time for creating the ALCCTL views is
mostly determined by the number and complexity of the SPARQL queries that define the views.
Creating the background knowledge view takes time proportional to the total document size.
The time for the verification depends mostly on the number of documents and on the number of
formulae.

The average processing times for document from the four domains are presented in figure 11.5.
The average compilation time for the NPB rules is slightly lower than for the other rules, even
though their general structure is the same. The loading times for ML3 files are generally lower
than for the other domains, because the average document size there is considerably smaller.
For the average preprocessing time, this smaller size is counteracted by the more complex pre-
processing procedure, resulting in a similar average as for the DLR documents. As noted and
explained above, rule execution times for the technical documentations and, even more so, for the
DLR documents are rather high. When creating the XML views, the smaller document size of
the ML3 documents compared to the NPB documents is offset by the far less complex structure
of the NPB models. As stated above, times for creating the ALCCTL views are dependent on
their specification, in particular on the complexity of the SPARQL queries involved.

The processing time is generally dominated by the number of objects that are processed

256 CHAPTER 11. QUANTITATIVE EVALUATION

and by the complexity of the XPath expressions used in the background knowledge. Therefore,
assuming fixed document sizes, the best way to minimise processing times is to use XPath
expressions that are as simple as possible, or to use a more efficient XPath evaluator. We used
the Xerces XPath evaluator, which to the best of our knowledge is one of the fastest evaluators
available for Java.

R.Comp. L.XML Prep. R.Exec. V:XML V:ALCCTL V:BGK Verif.

100

101

102

103

104

105

106

D
u

ra
ti

on
in

m
s

E-learning
Tech. doc.

Proc. (NPB)

Proc. (DLR)

Figure 11.4: Time measurements for the total processing time of documents from different do-
mains

To summarise, we have shown that it is possible to create and use semantic document models
in a reasonable amount of time for real documents in different domains and formats and even
for process descriptions.

11.3 Comparison with Alternative Methods

We will now compare the efficiency of our implementation with alternative methods. In partic-
ular, we will compare the Drools implementation of the transformation rules with an XQuery
implementation, and the SPARQL implementation of the view instantiation with an XQuery

11.3. COMPARISON WITH ALTERNATIVE METHODS 257

R.Comp. L.XML Prep. R.Exec. V:XML V:ALCCTL V:BGK Verif.
100

101

102

103

104

105

D
u

ra
ti

on
in

m
s

E-learning
Tech. doc.

Proc. (NPB)

Proc. (DLR)

Figure 11.5: Time measurements for the average processing time of documents from different
domains

258 CHAPTER 11. QUANTITATIVE EVALUATION

implementation as well. Note that for the latter, we transform the RDF/OWL-based implement-
ation of the semantic document model into a suitable XML representation first. This evaluation
complements the discussion of alternate methods from chapter 9. Rule-base inference as an al-
ternative to inference by an OWL reasoner for processing document models will be discussed in
section 11.5.

For the transformation rules, we expect the XQuery implementation to be slightly more
efficient than the Drools implementation, because the RETE algorithm, on which Drools is based,
must check all objects against all rules, while an XQuery program can move more purposefully
through the data by filtering the objects that must be processed. This supposition is confirmed
by the data, as shown in figures 11.6 and 11.7. The first figure shows the results for a set of
generated HTML documents scaled by document size (between 100 and 1,000 files per document,
shown on the left hand side) and by number of references (averaging between 4 and 64 references
per file with 500 files per documents, shown on the right hand side). It can be seen that the
processing times scale similarly for both methods, with XQuery in the lead performance-wise
with a constant factor of about 2.5. The second figure shows the results for a set of DocBook
documents. Here, the relative performance results differ widely, with factors between 5 and 250
depending on the complexity of the source document, but the greater efficiency of the XQuery
implementation is evident.

However, this advantage is bought at the cost of flexibility: XQuery is harder to write domain-
independently, and it is harder to integrate background knowledge. For applications where this
trade-off is worthwhile, we recommend using a specialised implementation in either XQuery or
Java (which, in our experiments, performed even better than XQuery), instead of relying on the
more general, yet less efficient, Drools-based approach. Yet many things that are easy to achieve
in Drools or directly in Java are hard to do in XQuery because the language simply is not meant
for them, such as removing duplicates from a list, formatting string values, or prompting the
user for confirmation.

For the view instantiation, we expect a slightly different outcome. XQuery even without
recursion is NExpTime-hard, while SPARQL (which does not support recursion) is only PSpace-
complete. We therefore expect the SPARQL implementation to handily beat the XQuery pro-
gram. Figure 11.8 shows the processing times for document models based on the set of generated
HTML documents (see above). Contrary to our initial assumption, it can be seen that for the
large, but very simple (i.e., with a very shallow XML hierarchy) HTML documents, the SPARQL
implementation cannot outperform the XQuery implementation – the performance is very sim-
ilar, with XQuery actually a bit faster in most cases. For the more complex DocBook documents
however, this picture changes (cf. figure 11.9). With two exceptions, SPARQL now actually per-
forms somewhat better than XQuery. For the very complex PyGTKTutorial document model,
SPARQL even performs significantly better then the XQuery implementation. We conclude
that for simple document models, the theoretical complexity of XQuery has little effect because
no complex path expressions or similar operations are required. Additional experiments with
e-learning documents in ML3 format confirm these observations.

An interesting future experiment is the use of a graph database such as Neo4j as an alternative
to the Jena-based RDF/OWL implementation of document models, including Jena’s SPARQL
implementation. However, most graph databases are optimised for typical graph-related tasks
like shortest path or minimum spanning tree, but not for the subgraph matching task required
for SPARQL evaluation. This is evident in the operations that are supported by many of these
databases – or, more to the point, in the operations that are not supported. Therefore, consider-
able development effort is required to implement our document model framework on top of such
a graph database.
There exists however a bridge between the Sesame RDF framework and the Neo4j graph data-

11.3. COMPARISON WITH ALTERNATIVE METHODS 259

10
0/

2

20
0/

2

30
0/

2

40
0/

2

50
0/

2

60
0/

2

70
0/

2

80
0/

2

90
0/

2

10
00

/2

50
0/

4

50
0/

8

50
0/

16

50
0/

32

50
0/

64

103

104

105

106

Number of files per document/average number of links per file

T
im

e
in

m
s

JBoss Drools
XQuery

Figure 11.6: Comparison of processing times for JBoss Drools and XQuery: obtaining a semantic
document model from an HTML document

260 CHAPTER 11. QUANTITATIVE EVALUATION

B
as

hG
ui

de

D
ev

el
op

er
sG

ui
de

A
dm

in
G
ui

de

In
te

gr
at

io
nG

ui
de

O
pt

im
iz
at

io
nG

ui
de

gt
km

m
-T

ut
or

ia
l

PyG
T
K
Tut

or
ia
l

108

109

1010

1011

T
im

e
in

m
s

JBoss Drools
XQuery

Figure 11.7: Comparison of processing times for JBoss Drools and XQuery: obtaining a semantic
document model from a DocBook document

11.3. COMPARISON WITH ALTERNATIVE METHODS 261

10
0/

2

20
0/

2

30
0/

2

40
0/

2

50
0/

2

60
0/

2

70
0/

2

80
0/

2

90
0/

2

10
00

/2

50
0/

4

50
0/

8

50
0/

16

50
0/

32

50
0/

64

103

104

105

106

Number of files per document/average number of links per file

T
im

e
in

m
s

SPARQL
XQuery

Figure 11.8: Comparison of processing times for SPARQL and XQuery: obtaining a verification
model from a semantic document model (HTML)

262 CHAPTER 11. QUANTITATIVE EVALUATION

B
as

hG
ui

de

D
ev

el
op

er
sG

ui
de

A
dm

in
G
ui

de

In
te

gr
at

io
nG

ui
de

O
pt

im
iz
at

io
nG

ui
de

gt
km

m
-T

ut
or

ia
l

PyG
T
K
Tut

or
ia
l

108

109

T
im

e
in

m
s

SPARQL
XQuery

Figure 11.9: Comparison of processing times for SPARQL and XQuery: obtaining a verification
model from a semantic document model (DocBook)

11.4. ADAPTABILITY OF THE PROCESSING RULES 263

DocBook BPMN Visio Custom XML DLR
Mandatory adaptations 2 2 2 2 2
Simplifications/removals 4 3 4 5 5
Changes/additions 2 2 2 1 4
Extensions/additions 0 0 1 0 0

Weighted sum 10 9 15 9 15

Table 11.13: Adaptations to the processing rules for different domains.

base, which allows SPARQL queries to be executed on the database. It would be an interesting
future project to find out if this configuration can be used to further enhance the performance
of our framework.

11.4 Adaptability of the Processing Rules

We will now attempt to quantify and assess the adaptability of the processing rules, i.e., how
many changes need to be made to the default rule set before it can be used in a new domain.
The rule set for the ML3 documents was created in [Ste10]. It is not yet based on the default
rule base, and will therefore be ignored in this comparison.

Table 11.13 shows a listing of the various types of changes that were made to the default rule
set. The mandatory adaptations are those that are defined in section 9.1.3, namely the two
functions getChildElements(LocalContext): List and getIndicators(LocalContext).
These adaptations are made for every domain.

Simplifications/removals are changes were an existing rule is either removed entirely, or
some part of it is deleted because the new domain or the new document format only requires
less complex processing. For example, if there are no keywords in the background knowledge for
a domain, then the corresponding part of the processing rules can be removed as well.

Changes/additions are small adaptations of the rules were simple things are changed or
added, usually in a single line of code. For example, the text that is checked for keywords may
not only be retrieved from XML text nodes, but also from specific attributes.

Extensions/additions are more complex adaptations, like a completely new rule or com-
prehensive changes to an existing rule. Such an extensive change was necessary for processing
the references (i.e., the control flow) in the Visio process description: references are represented
as graphical arrows between other graphical components, which in turn represent process steps.
So the control flow had to be established by finding the graphical components at the start and
at the end of an arrow, and then by connecting the corresponding process steps.

The weights for the weighted sum (bottom line) were chosen so that the resulting number
roughly corresponds to the number of work-minutes required to make the adaptations (based on
our own implementation times). The first two rows (mandatory adaptations and simplification-
s/removals) are weighted as 1, the third row (changes/additions) is weighted as 2, and the fourth
row is weighted as 5.

Note how the bulk of the adaptations are removals, which are only made for reasons of
efficiency. In fact, the rules could be used just as effectively – but not as efficiently – without
making these removals. Combined with the mandatory adaptations, the simplifications pose
over 70 % of the number of rule changes, and over 50 % of the total time required to make the
changes.

This shows how little actual work has to be put into changing the processing rules, with a
maximum of about 15 minutes for a completely new domain. These numbers are based on the
assumption, however, that the domain and the new document format are already known to the

264 CHAPTER 11. QUANTITATIVE EVALUATION

person making the adaptations, i.e., that the changes are made by domain experts.

11.5 Inference on Large Ontologies

We will now have a look at different inference engines that are publicly available and evaluate
their suitability for inference tasks on large ontologies, such as large document models or large
background knowledge bases. The Hermit (version 1.3.5) and Fact++ (version 1.5.2) reasoners
have both proven to be inadequate, since they both produced results that while sound were
incomplete. The reasoner integrated into the Jena framework (version 2.6.2) produced complete
results, but missed a (deliberate) inconsistency in the data. Additionally, the Jena reasoner
performs very poorly, requiring far more time than any other reasoner we regarded.

The Pellet reasoner (version 2.3) has shown itself to be both efficient and adequate (in the
sense of “sound and complete”). We will test it against a set of inference rules that cover concept
and role generalisation. The rules are executed by the JBoss Drools rule engine. Note that these
rules only represent a fraction of the description logics semantics supported by Pellet. On the
other hand, Pellet is a dedicated OWL/DL reasoner, while Drools is a general purpose rule
engine.

We start with a basic schema of 10 concepts in a linear generalisation relationships, i.e., the
first concept is a sub-concept of the second, the second concept is a sub-concept of the third, and
so forth. First, we test how the inference times scale in the number of individuals. To this end,
we created five test sets with 20, 40, 60, . . . , 180 or 200 individuals asserted for each concept,
respectively. The results are shown in figure 11.10.

At first, the Pellet reasoner clearly outperforms the Drools engine. Both time requirements
rise sharply, which is unsurprising because description logics reasoning is NP-hard. It is note-
worthy, however, that the custom inference rules slowly close the performance gap and finally
overtake the Pellet reasoner. For 10,000 individuals (1,000 per concept, not shown in the dia-
gram), the Pellet reasoner requires more than twice as long as the inference rules, with five
minutes versus 2 minutes, respectively. This comes, however, at the cost of fewer inferred facts
and no consistency checking.

Our next test set asserts a fixed number of 10 individuals per concept, but scales the number
of concepts: for each of the 10 original concepts, there are 20, 40, 60, . . . , 180 or 200 super-
concepts introduced into the ontology, respectively. Figure 11.11 shows the measured times.
This time the inference rules, which focus on just the concept generalisation that is scaled in this
scenario, are completely outclassed by Pellet.

It can also be seen that Pellet performs better for a large number of concepts than for a large
number of individuals. This is to be expected since the number of inference tasks as dictated by
the full description logics semantics for individuals and roles is much higher than the number of
tasks for concepts alone.

The results show that executing a specific set of inference rules with drools is well suited for
simple or very specific inference tasks such as those from section 9.2, but Pellet should be used
in all other cases when actual description logics semantics are required.

In-memory reasoning works well for relatively small ontologies. When dealing with huge
knowledge bases such as very large document corpora or ontologies obtained from Wikipedia,
however, such techniques reach their limits. We will now investigate how a vertical-cut technique
that keeps the TBox in-memory, but moves the bulk of the knowledge – the ABox – into a
conventional relational database, compares to a pure in-memory technique and a technique that
works entirely on the database. For the hybrid vertical-cut technique (which we will now call

11.5. INFERENCE ON LARGE ONTOLOGIES 265

20 40 60 80 100 120 140 160 180 200

102

103

Number of individuals per concept

T
im

e
in

m
s

JBoss Drools
Pellet

Figure 11.10: Ontology inference scaled by number of individuals

266 CHAPTER 11. QUANTITATIVE EVALUATION

20 40 60 80 100 120 140 160 180 200
102

103

104

105

Number of super-concepts per concept

T
im

e
in

m
s

JBoss Drools
Pellet

Figure 11.11: Ontology inference scaled by number of concepts

11.5. INFERENCE ON LARGE ONTOLOGIES 267

“Mem./DB”), we used two Jena ontology models: one for the TBox, and one for the ABox.
The former is a memory-model, while the latter is a database-backed model. For the in-memory
technique (which we will now call “Memory”), a single memory-model is used. And for the
database technique (which we will now call “Database”), a single database-backed model is
used.

We investigate the three techniques using two sets of generated ontologies that scale in the
number of individuals and in the number of concepts, respectively. When the number of concepts
is scaled, each concept has a constant average of two concept assertions for individuals and two
sub-concept axioms. When the average number of individuals per concept is scaled, there is a
fixed number of 128 concepts with a constant average of two sub-concept axioms. Sub-concept
axioms are created randomly, but in a way that resembles many typical ontologies: a hierarchy
of concepts is created, where most axioms are asserted between one layer and the next, but some
axioms ignore the hierarchy and connect arbitrary concepts. The Wikipedia category hierarchy
is structured in a similar manner, as are most ontologies that we used as background knowledge.

The times for reading the ontology files serialised in Turtle and loading them into the different
Jena models follow our expectations, with the Database approach the slowest (between one and
1,000 seconds, depending on the size of the ontology) and the Memory approach the fastest
(between 10 and 1,000 milliseconds). The Mem./DB approach falls in between the other two
(between 100 milliseconds and 500 seconds).

The times required for concept and individual retrieval are more interesting. For each onto-
logy, we first obtained a list of all concepts, and then for each concept, we obtained the list of
individuals belonging to the concept. The time requirements can be seen in figures 11.12 and
11.13.

The Database approach requires the most time when scaling the number of concepts, while
Memory and Mem./DB are almost en par. The Memory technique needs more time to find
classes because its single Jena model contains more statements than the small Mem./DB TBox.
But the Mem./DB technique needs more time to retrieve the individuals from the database,
despite its index support. However, further tests show that for even larger numbers of concepts,
the Mem./DB approach actually becomes more efficient than the Memory approach.

The most obvious effect when scaling the number of individuals is how badly the Memory
technique scales. Its huge time requirements are caused by its need to search through a huge
amount of data, as all statements of the very large ontology are lumped together in a single Jena
model. Since Jena does not use index structures for memory models, this is time consuming even
in-memory. The hybrid approach has the double advantage of a small TBox ontology and index-
supported ABox retrieval, clearly beating both other strategies in this retrieval scenario. Note
that this advantage vanishes for other retrieval tasks that require many joins on the ABox data.
It is interesting to note that the index-support of the database eventually beats the in-memory
advantage, as evidenced by the largest ontology.

While there are several possible optimisation for the Memory approach, such as splitting the
ontology into multiple Jena models (which, however, comes with its own set of caveats because
it necessitates joins) or introducing index structures, our data has clearly shown that for large
ontologies a vertical cut through a knowledge base is a promising approach. It can effectively
combine the speed advantages of in-memory processing with the storage and retrieval advantages
of conventional relational databases.

268 CHAPTER 11. QUANTITATIVE EVALUATION

8 16 32 64 128 256 512 1024
101

102

103

104

105

106

107

108

Number of concepts

T
im

e
in

m
s

Memory

Mem./DB
Database

Figure 11.12: Huge ontology retrieval times, scaled by number of concepts.

11.5. INFERENCE ON LARGE ONTOLOGIES 269

2 4 8 16 32 64 128 256 512 1024

104

105

106

Average number of individuals per concept

T
im

e
in

m
s

Memory

Mem./DB
Database

Figure 11.13: Huge ontology retrieval times, scaled by number of individuals per concept

270 CHAPTER 11. QUANTITATIVE EVALUATION

Conclusion

In this chapter we have shown that our proposed approach works in a reasonable amount of time
on very different documents. We have also shown that the processing rules can indeed by easily
adapted, without the necessity of huge changes when applying them to a new domain or a new
document format. Finally, we have presented different options for calculating inference tasks on
large ontologies.

Chapter 12

Qualitative Evaluation

In this chapter, we will investigate how the quality of semantic models of documents can be
measured, and how the quality of background knowledge can be measured. We will then eval-
uate the relationship between the respective qualities of the two. Finally, we will discuss the
effectiveness of our approach for various types of documents. First, however, we ask ourselves
how expressive the rules used for the model generation are.

12.1 Expressive Power of Transformation Rules and Back-
ground Knowledge

The premise of a transformation rule (cf. section 5.1), similar to the rule head in many rule
languages including JBoss Drools, can only access local information, i.e., information available
in the media object that the rule is matched to. For example, a premise cannot (directly) con-
tain conditions about a successor or a predecessor of a media object. There are, however, ways
to resolve this. One option is to preprocess the base document model and make the relevant
information about successors of predecessors available in each media object. Another option is
the use of state variables that are set in other rules, when the succeeding or preceding media
objects are processed. Finally, one might state these conditions using path expressions (such as
XPath expressions). While neither transformation rules nor Drools rules formally support path
expressions in the premise, at least for Drools it is possible to use them through some program-
ming trickery1. Yet, these options make rules both harder to write and harder to understand, so
we recommend avoiding it whenever possible.

In general, [SSD09] has shown for Constraint Handling Rules (CHR) that they are Turing-
complete. The Drools rule language is a super-set of CHR and is thus also Turing-complete. The
question remains, however, if transformation rules as defined in section 5.1 are Turing-complete
as well, or if they are missing some necessary expressive power.

Proposition 12.1.1 (Expressive Power of Transformation Rules). Transformation rules as
defined in section 5.1 are Turing-complete.

Proof of Proposition 12.1.1.

1Expressions like field["name"] in a Drools rule head are interpreted as a call to a Java Map. By implementing
the Map interface and overriding the getValue(String name) method, the name can be interpreted as an XPath
expression and evaluated against some XML document.

271

272 CHAPTER 12. QUALITATIVE EVALUATION

We will show the Turing-completeness of transformation rules by implementing Conway’s
Game of Life [Gar70], which is known to be Turing-complete [Ren].
The following set of five rules emulates the Game of Life:

1 (c(m) ‘=’ ‘‘init’’)

2 ↪→
3 (EG.cells = new boolean [][])

4

5 (md(m, “neighbours′′) ‘⊆’ {0, 1})

6 ↪→
7 (EG.cells[md(m, “x′′)][$md(m, ‘‘y’’)$] = false)

8

9 (md(m, “neighbours′′) ‘⊆’ {2, 3})

10 ↪→
11 (EG.cells[md(m, “x′′)][$md(m, ‘‘y’’)$] = true)

12

13 (md(m, “neighbours′′) ‘⊆’ {4, 5, 6, 7, 8})

14 ↪→
15 (EG.cells[md(m, “x′′)][$md(m, ‘‘y’’)$] = false)

16

17 (c(m) ‘=’ ‘‘generation’’)

18 ↪→
19 (

20 display(EG.cells),

21 MediaObject o = new MediaObject (),

22 o.setText(‘‘generation ’’),

23 append o to the base document model ,

24 for each (x,y) in EG.cells

25 int n = count living neighbours of EG.cells[x][y],

26 if (EG.cells[x][y] == true or n == 3)

27 o = new MediaObject (),

28 o.setMetadata(‘‘neighbours ’’, n),

29 o.setMetadata(‘‘x’’, x),

30 o.setMetadata(‘‘y’’, y),

31 append o to the base document model

32 EG.cells = new boolean [][]

33)

A valid input for these rules is for example the base document model Bblinker =
(M,F,m1, c, s, f) and its associated metadata ABblinker

= (L, V, d), which together represent
the “blinker” shape in the Game of Life.

M = {m0,m1,m2,m3,m4,m5,m6} = T ,
F = ∅,
c = {(m0, “init”), (m6, “generation”)},
s = {(m0,m1), (m1,m2), (m2,m3), (m3,m4), (m4,m5), (m5,m6)},
f = ∅,
L = {neighbours, x, y},
V = {“0”, “1”, “2”, . . .}, and
d = {(m1,neighbours, “1”), (m1, x, “1”), (m1, y, “0”),

(m2,neighbours, “2”), (m2, x, “1”), (m2, y, “1”),
(m3,neighbours, “1”), (m3, x, “1”), (m3, y, “2”),
(m4,neighbours, “3”), (m4, x, “0”), (m4, y, “1”),
(m5,neighbours, “3”), (m5, x, “2”), (m5, y, “1”)}.

Using a suitable interpretor for the transformation rules, applied to Bblinker they result in a
continuously alternating output of a vertical bar or a horizontal bar, respectively. An equivalent
Drools implementation and sample output can be found in appendix B.6.

12.2. QUALITY OF THE DOCUMENT MODELS 273

This shows that in principle the transformation rules can be used to generate any document
model that could be obtained through any other programming paradigm.

12.2 Quality of the Document Models

The first question when assessing the quality of document models is how this quality can be
measured, i.e., if it is possible to define a norm || · || : DM → R, where DM is the set of all
document models. For document models, their adequacy (correctness and completeness) can
only be measured with respect to a reference model that is “known” to be both correct and
complete. We will call a document model adequate if it contains all and only these assertions
that were intended to be in the model by the author of the extraction rules and background
knowledge. Such a reference model will likely be constructed manually. In the sequel, we will
refer to a given reference model as R.

We will now introduce and assess two different norms for the quality of document models.
The first norm, ||D||Rsteps is defined as the minimal number of atomic steps necessary to transform
a document model D into the reference model R. Atomic steps are the insertion, movement and
deletion of fragments (i.e., the operations +, ±, − as defined in definition 4.2.7 on page 80), and
the insertion, deletion and change of annotations (i.e., the operations +a, −a, #a as defined in
definition 4.2.18 on page 84).

The second norm, ||D||Rf−measure is defined as the F-measure of a document model D

w.r.t. a reference model R. The F-measure is defined as 2 · precision·recall
precision+recall , where precision =

|{correct assertions}|
|{correct assertions}|+|{incorrect assertions}| and recall = |{correct assertions}|

|{correct assertions}|+|{missing assertions}| .

The F-measure is easy to calculate, requiring only to count the number of assertions in
R (|{correct assertions}|), to count the number of assertions that are in R but not in D
(|{missing assertions}|), and to count the number of assertions that are in D but not in R
(|{incorrect assertions}|). || · ||Rsteps is harder to calculate because of the atomic move operation
for fragments: it is not only necessary to detect incorrect or missing assertions, but also if an
incorrect sub-fragment assertion “fits” a missing one, i.e., if an incorrectly placed sub-fragment
can be moved to another location and thereby solve two errors at once. But precisely this oper-
ation is what makes the steps-norm more meaningful, because the F-measure reveals less about
how costly repairing the document model would be. If, for example, a sub-section had been er-
roneously placed into the wrong chapter, then this can be repaired with a single move operation,
while the F-measure counts one missing assertion (the missing sub-section) and one incorrect
assertion (the wrong placement of the sub-section), thus counting some errors twice.

Yet at the same time it can be argued that such structural errors should indeed be weighted
more heavily then, say, a missed term. Combined with the higher cost of calculating || · ||Rsteps
and the advantage that the F-measure is limited to the range [0, 1], we generally recommend
using || · ||Rf−measure.

The norms for semantic document models can be transferred without adaptation to semantic
process models.

We have manually created reference document/process models R for one e-learning document
written in ML3 and for one technical documentation written in DocBook, as well as for a process
description written in Visio (NPB) and a process description written in Word (DLR).

The results for the ML3 document are easy to describe: of the 259 assertions in the reference
model, the document model DML3 obtained automatically through the processing rules and the
background knowledge faithfully reproduced every single one and did not introduce any erroneous
ones, resulting in ||DML3||Rf−measure = 1 and ||DML3||Rsteps = 0.

274 CHAPTER 12. QUALITATIVE EVALUATION

The results for the other documents are not quite as perfect, but still quite good. The technical
documentation, where we chose the “Gnome Integration Guide”, has a reference model with 215
assertions. In the document model DDocBook that was obtained automatically, 18 assertions
were missing and 18 assertions were incorrect, resulting in ||DDocBook||Rf−measure = 0.9227. But

||DDocBook||Rsteps = 18 better captures the underlying cause, which is that 18 fragments need to
be moved to a different location.

The reason for these errors lies in the non-strict hierarchy of fragment types in the source
document: there is no strict hierarchy were, for example, chapters are always parent fragments
of sections, and sections are always parent fragments of sub-sections. Instead, sections can be
parents of other sections, which leads to errors because the processing rules as defined in chapter 9
rely on a strict hierarchy to detect if one fragment is a sub-fragment of another. This is, however,
easy to solve by adding a new rule that is triggered not when a new fragment starts, but when a
fragment ends (cf. section 9.1.3). In the case of XML, the rule would match closing tags instead
of opening tags. The conclusion of this new rule would then be responsible for maintaining the
stack of fragments EG.stack (cf. sections 5.1 and 9.1.3), in particular for popping the current
fragment off the stack when the fragment’s end is reached in the source document. We will leave
the straight-forward implementation to the imagination of the reader.

The reference process model for the Visio model consists of 133 assertions. One of these
was missed, and one erroneous assertion was introduced in the process model PV isio, leading
to ||PV isio||Rf−measure = 0.9925. But ||PV isio||Rsteps = 2 shows that this time, the error cannot
be fixed with a single move (in fact, one deletion and one insertion are required). The cause
of the error in this case is that the direction of an arrow in the Visio illustration was detected
incorrectly, leading to a reference assertion from fragment A to fragment B instead of the other
way around. Visio assigns to each connecting element (such as lines or arrows) a start and an end
position, which are used by the processing rules to detect the direction of the arrow. However,
it is possible to define an arrow that has the tip at the wrong end, i.e., that points to its starting
point instead of its end point. This is what happened here. While this error can be fixed by
having the processing rules check for the actual arrowhead (requiring more extensive background
knowledge), perhaps the better solution in this case is to change the Visio document.

The reference process model for the Word-based process description is considerably larger
than the others, containing 1341 assertions, six of which were missed when extracting PWord,
and one incorrect assertion was added. This results in ||PWord||Rf−measure = 0.9970. The seven

atomic operations needed to repair the model lead to ||PWord||Rsteps = 7. At one point, the
keyword “process manager” was used to describe the tasks of a process manager, instead of
(as defined in the background knowledge) introducing the name of an actual process manager.
Since there exists background knowledge about the current personnel, this can be detected
automatically and is, indeed, detected by one of the consistency criteria in the verification step.
Six assertions were missed because of misspelt keywords or improper formatting. While some of
them could be fixed by making the background more forgiving of small errors like mistypes, we
believe that it is better to find these errors via the verification process and to correct them in
the source document.

Note that due to the semi-formal nature of the process description document the correctness
of many assertions are judgement calls, as there generally are no absolute truth values for many
assertions. We have followed the same mindset for the evaluation as we did when collecting
the background knowledge for the processing rules: it is better to collect too much data then
too little. Therefore, the document model contains as much information as could reasonably be
obtained, and if an assertion was not clearly false (as in the instance of the process manager) we
regarded it as correct.

12.3. QUALITY OF THE BACKGROUND KNOWLEDGE 275

In figure 12.1 we show an overview of the qualitative results for the document models. To
make its presentation more compatible with that of || · ||Rf−measure, we normalised || · ||Rsteps to
the interval [0, 1].

ML3 DocBook Visio Word
0

0.2

0.4

0.6

0.8

1

V
a
lu

e

|| · ||Rf−measure
|{correct assertions}|

|{correct assertions}|+||·||Rsteps

Figure 12.1: Quality of the extracted semantic document/process models

Despite the good results, it is obvious that the quality of the document model largely depends
on the quality of the background knowledge. If the background knowledge used in the extraction
had been of lower quality, the quality of the extracted document models would have suffered as
well. Anything that is missing from the background knowledge cannot be found in the document
model. We will investigate this relationship further after a discussion on how the quality of
background knowledge can be measured in the first place.

12.3 Quality of the Background Knowledge

For assessing the quality of background knowledge, the same question as for the document models
arises: how can it be measured? Can we define a norm for it? It is certainly possible to define a
norm along the same lines as || · ||Rf−measure. However, a reference knowledge base is necessary for
a norm. But background knowledge usually reflects a best-effort approach, meaning that the best
knowledge base that is available is already the one in use, and there is no secret better version
that could serve as a reference. Instead, a usable approach is to have the existing knowledge bases

276 CHAPTER 12. QUALITATIVE EVALUATION

checked by domain experts and to count the errors they find (potentially normalised against the
total number of assertions in the background knowledge).

Yet another option is to measure the quality of the knowledge bases indirectly, by finding
and counting the errors in the document models that are caused by errors or omissions in the
background knowledge. Ignoring all errors in the document model that are not caused by the
background knowledge, the norms defined in the previous section can then be used to assess the
quality of the background knowledge. This approach has the advantage that it is usually easier
to spot errors in a document model (which resembles a concrete document) than in a highly
abstract and formalised knowledge representation.

In our use cases, we corrected and extended the background knowledge until it did not cause
any errors in the extracted document models (cf. section 12.2).

Volatility of the Background Knowledge

Background knowledge often is not constant, but changes over time (it certainly changes across
domains, as we have already seen). For highly standardised formats such as ML3, DocBook or
BPMN, this volatility is very low and changes are well documented.

Document formats that are only semi- or unofficially standardised or that receive frequent
updates obviously change more often, requiring more or less extensive updates of the background
knowledge. When Microsoft replaced the binary formats for its office suite with XML-based
formats, large parts of existing knowledge bases suddenly became obsolete. Yet such sweeping
changed are rare. More often the templates used in documents are changed, so that the knowledge
base about formatting indicators must be updated. If updating the background knowledge is
done in parallel with changing the templates, then the effort necessary is minimal. This is
possible when the templates and the knowledge base are controlled by the same entity.

In other cases, the volatility can vary drastically, depending on the size and composition
of the author group of a document. For example, small groups of authors that collaborate on
a research paper or on a set of lecture notes often create their own informal standards that
remain reasonably constant. When regarding different papers written by different authors, the
differences are likely far more pronounced, even if they use a common template with a small
number of formatting options or LATEX commands as the lowest common denominator. For
websites or documents without a common template or at least common design guidelines, the
background knowledge likely differs widely, and changes often.

12.4 Relationship between Qualities

Finally, we will now investigate the relationship between the quality of the background knowledge
and the quality of the document models.

To this end, we selected a document, changed the background knowledge by removing or
adding information, obtained a document model using the new background knowledge, and com-
pared the new document model with the original model R. In particular, we selected one of the
technical documentations in DocBook format and then proceeded as follows: for each combina-
tion of one or two assertions from the knowledge base about structure or from the knowledge base
about structure, respectively, we removed the selected assertions from the background knowledge,
created the document model, and calculated || · ||Rf−measure. In addition, we successively added
one, two, and three invalid (but plausible) assertions to the knowledge base about structure or to
the knowledge base about structure, respectively, created the document model, and calculated
|| · ||Rf−measure.

12.5. APPLICABILITY TO DIFFERENT TYPES OF DOCUMENTS 277

Figure 12.2 shows the number of missing and incorrect assertions for various sets of modified
background knowledge. The set RS1 contains all modified versions of the knowledge base were
one assertion about the structure, e.g., which XML element indicates a specific structural type,
has been removed. RS2 contains all knowledge bases were two such assertions were removed. RD1
and RD2 are similar sets, but refer to assertions about data, e.g., which XML attribute indicates
a specific data annotation. The sets AS and AD contain all knowledge bases were one, two or
three assertions about structure or data, respectively, have been added. The original knowledge
base contains 21 data assertions and 36 structural assertions, and the original document model
R that serves as point of reference here contains 306 assertions.

The values for missing assertions for the two sets AS and AD are all zero, because the
additional knowledge only leads to new assertions in the document model. Vice versa, however,
removing assertions from the background knowledge can lead to incorrect attributions of data,
and thus to incorrect assertions in the document model, and not just to missing assertions.

The most notable feature of the graph are the two large values for the maximum number
of missing assertions in both RS1 and RS2. Such catastrophic results occur when structural
indicators for central fragment types like sections or paragraphs are removed. On the other
hand, in cases like this, the cause for the error is both easily determined and easily fixed. The
other maximum values are far less pronounced, indicating that the approach is – at least for some
file formats – reasonably robust even against extreme omissions in the background knowledge.
This is corroborated by the very low average and mean values, and has been confirmed for a
random sample of other file formats. The values for the AD set are slightly higher because some
of the assertions added to the background knowledge have a particularly high selection yield.

The average, mean, and minimal values for the F-measure for the various sets of background
knowledge can be seen in figure 12.3. The average and especially the mean values are generally
very close to the optimum of 1.0. The lower values for RS1 and RS2 reflect the effect of missing
important fragments, as discussed above. This effect is very distinctly shown in the minimum
values and is based on the low recall values.

These figures show that, apart from a few central structural omissions, a small amount of
error in the background knowledge only has a limited effect on the quality of the document
model. Large errors like the omission of central structural types are easy to deal with. More
importantly, however, they are unlikely to occur in the first place for knowledge bases created
by domain experts, barring accidents or sabotage.

Note, however, that no amount of robustness can save the approach if there simply is too
little background knowledge, or if the background knowledge is of insufficient quality. Because of
the different selectivity of different assertions, we cannot give any general figures on the amount
of assertions required, or exactly how many errors the knowledge base may contain before the
quality of the document model deteriorates too much.

12.5 Applicability to Different Types of Documents

As we have already seen, our approach can be effectively applied to hyperdocuments, to web-
documents, and to various types of office documents. We will now discuss if the approach can
also be used on other types of documents (cf. section 4.1.2).

The simplest text-centred types of documents are plain text documents. They usually have
little inherent structure and are therefore not very good candidates for structural processing.

The technical accessibility of PDF documents is more complex than for many other document
formats, but in principle they can be treated just like any other hypertext. Yet a more sensible
approach is to regard the source documents from which the PDF files were generated.

278 CHAPTER 12. QUALITATIVE EVALUATION

RS1 RS2 RD1 RD2 AS AD
0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

N
u

m
b

er
o
f

as
se

rt
io

n
s

Avg. incorrect
Mean incorrect
Max. incorrect
Avg. missing
Mean missing
Max. missing

Figure 12.2: Incorrect and missing assertions in document models with modified background
knowledge

12.5. APPLICABILITY TO DIFFERENT TYPES OF DOCUMENTS 279

RS1 RS2 RD1 RD2 AS AD
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

V
al

u
e

Avg. F-Measure
Mean F-Measure
Min. F-Measure

Figure 12.3: F-measure for document models with modified background knowledge

280 CHAPTER 12. QUALITATIVE EVALUATION

SVG is a vector graphics format that is based on XML and therefore highly structured on
the technical level. In [Plö09], a successful attempt was made to derive high-level structural
and semantic information about the image’s content from this technical data, demonstrating the
suitability of at least some vector documents for our approach.

Image, audio and video documents such as bitmaps, wave-audio and traditional linear video
have very little technical structure to exploit. Advanced feature-, voice- and object recognition
techniques would be required to learn anything about their content’s structure and semantics.

As stated in section 4.1.5, data in a database lacks the visualisation instructions and the
structural cohesion that characterise our understanding of a document. Such instructions can be
provided however, for example by creating a hyperdocument and integrating media fragments
from a database. On the other hand, if the content of a hypertext changes dynamically, for
example because it is randomly loaded from a database, or because it is frequently updated,
then it is hard to represent this dynamic nature in a semantic document model. A document
model can easily represent a snap shot of a dynamic page, but any change of the source document
must trigger a re-creation of the model.

Conclusion

In this chapter, we have introduced two different norms for measuring the quality of semantic
document models. We also have discussed new ways to measure the quality of background
knowledge. Additionally, we have investigated the impact of errors and omissions in background
knowledge on the quality of the resulting document models. Unsurprisingly, the quality of the
background knowledge directly affects the quality of the document models that can be obtained.
For small errors and omissions, however, this effect was smaller than expected, still resulting in
basically sound models. Finally, we have discussed how several different types of documents lend
themselves to the effectiveness of our approach.

Part V

Conclusion

Chapter 13

Conclusion

In this thesis we have developed a formal model to represent documents on a technical level,
as well as a formal model to represent documents on a structural and semantic level. We have
created a new technique for obtaining the second type of model from the first, using background
knowledge. By analysing runtime and scaling performance, we have shown that our implement-
ation of this technique is both efficient and suitable for live processing. We have also introduced
new methods for measuring the quality of semantic document models, and with these methods
we have shown that our technique is also effective and yields results of very high quality. In
addition, we have demonstrated several ways in which background knowledge can be obtained,
and how its quality can be determined.

Our technique for obtaining a semantic document model has proven to be easily transferable
to new document formats and new domains. It is even possible to transfer the approach to an
entirely new application domain, as was shown by applying the technique intended for docu-
ments and document models to processes and process models. This transfer requires almost no
changes to the transformation rules used, only the background knowledge needs to be updated
or replaced. This could be achieved by adhering to a strict separation of extraction logics and
domain knowledge, and by following a structured approach based on the formalisation of both
the starting point and the end point of the technique. The level of abstraction that we used is
well suited to make the mapping from the technical model onto the semantic model effective and
adaptable.

In addition to the semantic and structural data obtained from the original document, it
is possible to extend a semantic document model with further information, and to extract a
multitude of different models for various use-cases from it. We have provided different approaches
to this semantic extension and weighted their advantages and disadvantages. This semantic
processing is possible because our novel document model directly exposes the relevant structure
and semantics that were only indirectly available in the original document.

The obtained semantic document model has successfully been used as a source for a formal
verification system as introduced in the Verdikt research project. This system finds errors
based on consistency criteria in a document, and attempts to identify the underlying cause in
the document. This application covers a full circle in terms of document models: starting with
the original document and a technical model of this document, a semantic model is obtained,
from which one or more verification models are extracted that are used to find errors and error
locations, which in turn point back to the original document.

283

284 CHAPTER 13. CONCLUSION

Chapter 14

Extensions and Future Work

The principles developed in this work can also be applied to interactive documents, videos and
programs because these documents have the necessary inherent structure and can be modelled
as base document models. Especially the adaptation to hypervideos and to program verification
would most likely be a rewarding extension of this work.

Another interesting topic is to consider the life cycle of documents, where we have only
scratched the surface. The life cycle of a document can be treated as a sequence of snap shot
models, or the entire history of a document can be included in a single model. At this point, the
respective advantages are not entirely clear. For documents with frequent changes, a method to
update an existing document model, as opposed to re-building the whole model each time, would
also be advantageous.

A novel application for the results of this thesis could be an advanced search algorithm for
documents that not only considers related topics, but that allows for restrictions in the structure,
for example producing only results from certain chapters, or different topics that occur in the
same chapter.

There is also potential in expanding on the concept of the narrative path and the reading
path, which is the order of document fragments in which the author intends them to be read,
and in which the reader actually reads them, respectively. Especially in fiction, the path of the
“action” may not always coincide with the typical narrative/reading path, which instead often
alternates between multiple narratives. Finding inconsistencies or omissions in the timeline of
the narrative and in the mapping of this narrative onto the reading path is most likely an exiting
endeavour.

Another issue that we will leave to future work are the multiple layers of truth as discussed
in the outlook of section 4.2.1.

285

286 CHAPTER 14. EXTENSIONS AND FUTURE WORK

Bibliography

[ABF04] M. Alpuente, D. Ballis, and M. Falaschi. Verdi: An automated tool for web
sites verification. In Proc. of JELIA 2004, volume 3299 of LNAI, pages 726–729.
Springer, 2004.

[AG05] Renzo Angles and Claudio Gutierrez. Querying RDF data from a graph database
perspective. In In Proceedings of the Second European Semantic Web Conference,
pages 346–360, 2005.

[Ahr12] Norbert Ahrend. Nationale Prozessbibliothek. http://www.prozessbibliothek.de/,
2012. Visited 05/2013.

[AHV95] Serge Abiteboul, Richard Hull, and Victor Vianu, editors. Foundations of Data-
bases: The Logical Level. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 1st edition, 1995.

[AL07] Sören Auer and Jens Lehmann. What have Innsbruck and Leipzig in common? Ex-
tracting semantics from wiki content. In 4th European Semantic Web Conference,
2007.

[All10] Thomas Allweyer. BPMN 2.0 - Introduction to the Standard for Business Process
Modeling. BoD, 2010.

[AMMH07] Daniel J. Abadi, Adam Marcus, Samuel R. Madden, and Kate Hollenbach. Scalable
semantic web data management using vertical partitioning. In Proceedings of the
33rd international conference on Very large data bases, VLDB ’07, pages 411–422.
VLDB Endowment, 2007.

[AMMH09] Daniel J. Abadi, Adam Marcus, Samuel R. Madden, and Kate Hollenbach. Sw-
store: a vertically partitioned dbms for semantic web data management. The
VLDB Journal, 18(2):385–406, 2009.

[AMS07] Kemafor Anyanwu, Angela Maduko, and Amit Sheth. SPARQ2L: Towards Support
For Subgraph Extraction Queries in RDF Databases. In 16th International World
Wide Web Conference (WWW2007), pages 797–806, New York, NY, USA, May
2007. ACM.

[AP05] Olivier Aubert and Yannick Prié. Advene: active reading through hypervideo. In
ACM Hypertext’05, pages 235–244, 2005.

[BBH03] Steven R. Bagley, David F. Brailsford, and Matthew R. B. Hardy. Creating reusable
well-structured pdf as a sequence of component object graphic (cog) elements. In
Proceedings of the 2003 ACM symposium on Document engineering, DocEng ’03,
pages 58–67, New York, NY, USA, 2003. ACM.

287

288 BIBLIOGRAPHY

[BBP07] Tracy Bost, Phillipe Bonnard, and Mark Proctor. Implementation of Production
Rules for a RIF Dialect: A MISMO Proof-of-Concept for Loan Rates. In Adrian
Paschke and Yevgen Biletskiy, editors, RuleML, volume 4824 of Lecture Notes in
Computer Science, pages 160–165. Springer, 2007.

[BCF+10] Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela Florescu,
Jonathan Robie, and Jérôme Siméon. XQuery 1.0: An XML Query
Language (Second Edition), W3C Recommendation 14 December 2010.
http://www.w3.org/TR/xquery/, 2010. Visited 05/2013.

[BCM+03] Franz Baader, Diego Calvanese, Deborah L. McGuinness, Daniele Nardi, and
Peter F. Patel-Schneider, editors. The Description Logic Handbook: Theory, Im-
plementation, and Applications. Cambridge University Press, 2003.

[BG04] Dan Brickley and R. V. Guha. RDF Vocabulary Description Lan-
guage 1.0: RDF Schema, W3C Recommendation 10 February 2004.
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/, 2004. Visited 05/2013.

[BHP87] Wiebe E. Bijker, Thomas P. Hughes, and Trevor J. Pinch, editors. The Social
Construction of Technological Systems. MIT Press, 1987.

[BKvH02] Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen. Sesame: A generic
architecture for storing and querying rdf and rdf schema. In Ian Horrocks and
James Hendler, editors, The Semantic Web ISWC 2002, volume 2342 of Lec-
ture Notes in Computer Science, pages 54–68. Springer Berlin / Heidelberg, 2002.
10.1007/3-540-48005-6 7.

[BLK+09] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian Becker,
Richard Cyganiak, and Sebastian Hellmann. DBpedia - a crystallization point for
the web of data. Web Semantics: Science, Services and Agents on the World Wide
Web, July 2009.

[BM04a] Dave Beckett and Brian McBride. RDF/XML Syntax Specification (Revised),
W3C Recommendation 10 February 2004. http://www.w3.org/TR/REC-rdf-
syntax/, 2004. Visited 05/2013.

[BM04b] Paul V. Biron and Ashok Malhotra. XML Schema Part 2: Data-
types Second Edition, W3C Recommendation 28 October 2004.
http://www.w3.org/TR/xmlschema-2/, 2004. Visited 05/2013.

[BNJ03] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation.
J. Mach. Learn. Res., 3:993–1022, March 2003.

[Bol01] Jay David Bolter. Writing Space: Computers, Hypertext, and the Remediation of
Print. Lawrence Erlbaum Associates, second edition edition, 2001.

[Bor48] Jorge Luis Borges. The Garden of Forking Paths. Editorial Sur, 1948. Translated
from the original Spanish by Anthony Boucher. Original title: El jard́ın de senderos
que se bifurcan (1941).

[Bor99] Jorge Luis Borges. John Wilkins’ Analytical Language. Penguin Books, 1999. Eliot
Weinberger, Selected nonfictions. Translated from the original Spanish. Original
title: El idioma anaĺıtico de John Wilkins (1942).

BIBLIOGRAPHY 289

[BPSM+08] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and François Yergeau.
Extensible Markup Language (XML) 1.0 (Fifth Edition), W3C Recommendation
26 November 2008. http://www.w3.org/TR/2008/REC-xml-20081126/, 2008. Vis-
ited 05/2013.

[BTW] Harold Boley, Said Tabet, and Gerd Wagner. RuleML. http://ruleml.org/. Visited
05/2013.

[Bus45] Vannevar Bush. As we may think. The Atlantic Monthly, July 1945.

[BvHH+] Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks, Deborah L.
McGuinness, Peter F. Patel-Schneider, and Lynn Andrea Stein. OWL Web Onto-
logy Language Reference, W3C Recommendation 10 February 2004. http://www.
w3.org/TR/owl-ref/. Visited 05/2013.

[CD99] James Clark and Steve DeRose. XML Path Language (XPath) Version 1.0, W3C
Recommendation 16 November 1999. http://www.w3.org/TR/xpath/, 1999. Vis-
ited 05/2013.

[CDD+04] Jeremy J. Carroll, Ian Dickinson, Chris Dollin, Dave Reynolds, Andy Seaborne,
and Kevin Wilkinson. Jena: implementing the semantic web recommendations.
In Proceedings of the 13th international World Wide Web conference on Alternate
track papers & posters, WWW Alt. ’04, pages 74–83, New York, NY, USA, 2004.
ACM.

[CMLE08] Niklas Carlsson, Anirban Mahanti, Zongpeng Li, and Derek Eager. Optimized
periodic broadcast of non-linear media, August 2008.

[Cow06] Phil Cowans. Probabilistic Document Modelling. PhD thesis, University of Cam-
bridge, 2006.

[Cyg05] Richard Cyganiak. A relational algebra for SPARQL. Technical report, HP Labs,
2005.

[Dal09] Andrew Dalby. The World and Wikipedia. Siduri Books, 2009.

[DEAJ10] Don Day, Kristen James Eberlein, Robert D. Anderson, and Gershon
Joseph. Darwin Information Typing Architecture. http://docs.oasis-
open.org/dita/v1.2/os/spec/DITA1.2-spec.html, 2010. Visited 05/2013.

[dMW10] Gerard de Melo and Gerhard Weikum. Menta: inducing multilingual taxonom-
ies from wikipedia. In Proceedings of the 19th ACM international conference on
Information and knowledge management, CIKM ’10, pages 1099–1108, New York,
NY, USA, 2010. ACM.

[Dok06] Jiri Dokulil. Evaluation of SPARQL queries using relational databases, 2006.

[Doo95] Robert B. Doorenbos. Production matching for large learning systems. PhD thesis,
School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA,
1995.

[ECTOO09] Brendan Elliott, En Cheng, Chimezie Thomas-Ogbuji, and Z. Meral Ozsoyoglu. A
complete translation from SPARQL into efficient SQL. In IDEAS ’09: Proceedings
of the 2009 International Database Engineering & Applications Symposium,
pages 31–42, New York, NY, USA, 2009. ACM.

290 BIBLIOGRAPHY

[Eme90] E.A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Handbook
of Theoretical Computer Science: Formal Models and Semantics, pages 996–1072.
Elsevier, 1990.

[EPU] EPUB 3 Overview, Recommended Specification 11 October 2011.
http://www.idpf.org/epub/30/spec/. Visited 05/2013.

[Esp97] Espen J. Aarseth. Cybertext - Perspectives on Ergodic Literature. The Johns
Hopkins University Press, Baltimore and London, 1997.

[ESS05] U. Egly, B. Schiemann, and J. Schneeberger. Technical documentation authoring
based on semantic web methods. Künstliche Intelligenz, 2:56–59, 2005.

[FBY92] William B. Frakes and Ricardo A. Baeza-Yates, editors. Information Retrieval:
Data Structures & Algorithms. Prentice-Hall, 1992.

[Fra] Franz Inc. AllegroGraph. http://www.franz.com/agraph/ allegrograph/. Visited
05/2013.

[Fre09] Burkhard Freitag. Datenmodellierung, 2009. Lecture notes.

[Fre11] Burkhard Freitag. Semantische technologien, 2011. Lecture notes.

[FS90] Richard Furuta and P. David Stotts. A functional meta-structure for hypertext
models and systems. Electronic Publishing, 3(4):179–205, 1990.

[FWJS08] Burkhard Freitag, Franz Weitl, Mirjana Jakšić, and Christian Schönberg. Verdikt
– Verifikation semistrukturierter Dokumente im Kontext. http://www.verdikt.uni-
passau.de, 2008. Visited 05/2013.

[Gar70] Martin Gardner. Mathematical games: The fantastic combinations of john con-
way’s new solitaire game “life”. Scientific American, pages 120–123, October 1970.

[Gar87] Pankaj K. Garg. Abstraction mechanisms in hypertext. In Proceedings of the ACM
conference on Hypertext, HYPERTEXT ’87, pages 375–395, New York, NY, USA,
1987. ACM.

[GHP10] Stephan Gillmeier, Urs Hengartner, and Sandro Pedrazzi. Wie man mit Wikipedia
semantische Verfahren verbessern kann. In HMD - Praxis der Wirtschaftsinform-
atik 47, 2010.

[Goe04] Lutz Goertz. Wie interaktiv sind Medien?, pages 97–117. Campus Verlag, Frank-
furt am Main, 1 edition, 2004.

[Got06] David Gotz. Scalable and adaptive streaming for non-linear media. In Proceedings
of the 14th annual ACM international conference on Multimedia, MULTIMEDIA
’06, pages 357–366, New York, NY, USA, 2006. ACM.

[Gru06] Schema Gruppe. Schema ST4 Leistungsbeschreibung. SCHEMA Electronic Doc-
umentation Solutions GmbH, 2006.

[Haa02] Johannes Haack. Interaktivität als Kennzeichen von Multimedia und Hypermedia.
Information und Lernen mit Multimedia, 2002.

BIBLIOGRAPHY 291

[Har05] Steve Harris. SPARQL query processing with conventional relational database
systems. In International Workshop on Scalable Semantic Web Knowledge Base
Systems, pages 235–244, 2005.

[HBBB07] Rinke Hoekstra, Joost Breuker, Marcello Di Bello, and Alexander Boer. The lkif
core ontology of basic legal concepts. In Pompeu Casanovas, Maria Angela Biasi-
otti, Enrico Francesconi, and Maria-Teresa Sagri, editors, Proceedings of the Work-
shop on Legal Ontologies and Artificial Intelligence Techniques (LOAIT), volume
321 of CEUR Workshop Proceedings, pages 43–63. CEUR-WS.org, 2007.

[HKR09] Pascal Hitzler, Markus Krötzsch, and Sebastian Rudolph. Foundations of Semantic
Web Technologies. Chapman & Hall/CRC, 2009.

[HKS06] Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The even more irresistible sroiq. In
Patrick Doherty, John Mylopoulos, and Christopher A. Welty, editors, KR, pages
57–67. AAAI Press, 2006.

[HPSB+04] Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Ben-
jamin Grosof, and Mike Dean. SWRL: A Semantic Web Rule Language
Combining OWL and RuleML, W3C Member Submission 21 May 2004.
http://www.w3.org/Submission/SWRL/, 2004. Visited 05/2013.

[HPSH03] Ian Horrocks, Peter F. Patel-Schneider, and Frank Van Harmelen. From shiq and
rdf to owl: The making of a web ontology language. Journal of Web Semantics,
1:2003, 2003.

[HR04] Michael Huth and Mark Dermot Ryan. Logic in computer science - modelling and
reasoning about systems (2. ed.). Cambridge University Press, 2004.

[HS94] Frank Halasz and Mayer Schwartz. The dexter hypertext reference model. Com-
mun. ACM, 37(2):30–39, February 1994.

[HS12] Steve Harris and Andy Seaborne. SPARQL 1.1 Query Language.
http://www.w3.org/TR/sparql11-query/, 2012. Visited 05/2013.

[HSB07] Martin Hepp, Katharina Siorpaes, and Daniel Bachlechner. Harvesting wiki con-
sensus: Using Wikipedia entries as vocabulary for knowledge management. IEEE
Internet Computing, 11(5):54–65, 2007.

[HTMa] HTML 4.01 Specification, W3C Recommendation 24 December 1999.
http://www.w3.org/TR/html4/. Visited 05/2013.

[HTMb] HTML5: A vocabulary and associated APIs for HTML and XHTML, W3C Candid-
ate Recommendation 17 December 2012. http://www.w3.org/TR/html5/. Visited
05/2013.

[Jel02] R. Jelliffe. The schematron assertion language 1.6.
http://xml.ascc.net/resource/schematron/, 2002. Visited 05/2013.

[Jen] Apache Foundation. Jena. http://jena.apache.org/. Visited 05/2013.

[Joy87] Michael Joyce. Afternoon, a story, 1987. Electronic publication.

292 BIBLIOGRAPHY

[KC04] Graham Klyne and Jeremy J. Carroll. Resource Description Framework (RDF)
Concepts and Abstract Syntax, W3C Recommendation 10 February 2004.
http://www.w3.org/TR/rdf-concepts/, 2004. Visited 05/2013.

[KJ07] Krys J. Kochut and Maciej Janik. SPARQLeR: Extended SPARQL for Semantic
Association Discovery. In Proc. of the 4th European Semantic Web Conference
(ESWC, pages 145–159, Berlin, Heidelberg, 2007. Springer-Verlag.

[Knu73] Donald E. Knuth. The Art of Computer Programming, Volume I: Fundamental
Algorithms, 2nd Edition. Addison-Wesley, 1973.

[Koc06] Christoph Koch. On the complexity of nonrecursive xquery and functional query
languages on complex values. ACM Trans. Database Syst., 31(4):1215–1256,
December 2006.

[Kol08] Sergiy Kolesnikov. Metadata extraction from LMML. Bachelor thesis, Chair for
Information Management, University of Passau, 2008.

[Kos04] Harald Kosch. Distributed Multimedia Database Technologies Supported by MPEG-
7 and MPEG-21. CRC Press, 2004.

[KVV+07] Markus Krötzsch, D. Vrandecic, M. Völkel, H. Haller, and Rudi Studer. Semantic
Wikipedia. Journal of Web Semantics, 5:251–261, 2007.

[LCS09] Library of Congress Subject Headings. http://id.loc.gov/authorities/subjects.html,
2009. Visited 05/2013.

[Lev94] David M. Levy. Fixed or fluid? Document stability and new media. In Proceedings
of the 1994 ACM European conference on Hypermedia technology, ECHT ’94, pages
24–31, New York, NY, USA, 1994. ACM.

[LF73] F. W. Lancaster and E.G. Fayen. Information Retrieval On-Line. Melville Pub-
lishing Company, 1973.

[Llo87] J. W. Lloyd. Foundations of logic programming (2nd extended ed.). Springer-Verlag
New York, Inc., New York, NY, USA, 1987.

[LM95] David M. Levy and Catherine C. Marshall. Going digital: A look at assumptions
underlying digital libraries. Commun. ACM, 38(4):77–84, 1995.

[LM07] Preetha Lakshmi and Chris Mueller. Comparing path-based and vertically-
partitioned rdf databases, 2007.

[Mil06] George A. Miller. WordNet – a lexical database for the English language.
http://wordnet.princeton.edu/, 2006. Visited 05/2013.

[MMGK12] Britta Meixner, Katarzyna Matusik, Christoph Grill, and Harald Kosch. Towards
an easy to use authoring tool for interactive non-linear video. Multimedia Tools
and Applications, pages 1–26, 2012.

[MnPG07] Sergio Muñoz, Jorge Pérez, and Claudio Gutierrez. Minimal deductive systems for
rdf. In ESWC ’07: Proceedings of the 4th European conference on The Semantic
Web, pages 53–67, Berlin, Heidelberg, 2007. Springer-Verlag.

[Mou92] Stuart Moulthrop. Victory garden, 1992. Electronic publication.

BIBLIOGRAPHY 293

[MS04] Christoph Meinel and Harald Sack. WWW – Kommunikation, Internetworking,
Web Technologien. Springer, 2004.

[MW08] David Milne and Ian H. Witten. An Effective, Low-Cost Measure of Semantic Re-
latedness Obtained from Wikipedia Links. In Proceedings of the first AAAI Work-
shop on Wikipedia and Artificial Intelligence (WIKIAI’08), Chicago, US, 2008.

[MWM08] Olena Medelyan, Ian H. Witten, and David Milne. Topic Indexing with Wikipe-
dia. In Proceedings of the WIKI-AI: Wikipedia and AI Workshop at the AAAI’08
Conference, Chicago, US, 2008.

[NCEF02] C. Nentwich, L. Capra, W. Emmerich, and A. Finkelstein. xlinkit: a consistency
checking and smart link generation service. ACM Transactions on Internet Tech-
nology (TOIT), 2(2):151–185, 2002.

[Nel80] Theodor H. Nelson. Literary Machines. Mindful Press, 1980.

[Neo] Neo Technology Inc. Neo4j. http://neo4j.org/. Visited 05/2013.

[NS08] Vivi Nastase and Michael Strube. Decoding Wikipedia categories for knowledge
acquisition. In Dieter Fox and Carla P. Gomes, editors, AAAI, pages 1219–1224.
AAAI Press, 2008.

[Ope] OpenLink Software. Virtuoso Universal Server. http://virtuoso.openlinksw.com/.
Visited 05/2013.

[OVvdA+07] Chun Ouyang, Eric Verbeek, Wil M. P. van der Aalst, Stephan Breutel, Marlon
Dumas, and Arthur H. M. ter Hofstede. Formal semantics and analysis of control
flow in ws-bpel. Science of Computer Programming, 67(2-3):162–198, 2007.

[OWL] University of Manchester. The OWL API. http://owlapi.sourceforge.net/. Visited
05/2013.

[Pag00] Margherita Pagani. Multimedia and Interactive Digital TV: Managing the Oppor-
tunities Created by Digital Convergence. IRM Press, 2000.

[PAG09] Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. Semantics and complexity of
SPARQL. ACM Trans. Database Syst., 34(3):16:1–16:45, September 2009.

[PB09] Eric Prud’hommeaux and Alexandre Bertails. A Mapping of SPARQL Onto Con-
ventional SQL. http://www.w3.org/2008/07/MappingRules/StemMapping, 2009.

[PBB11] Alexander J. Pinkney, Steven R. Bagley, and David F. Brailsford. Reflowable
documents composed from pre-rendered atomic components. In Proceedings of the
11th ACM symposium on Document engineering, DocEng ’11, pages 163–166, New
York, NY, USA, 2011. ACM.

[PCC+11] Ricardo Farias Bidart Piccoli, Rodrigo Chamun, Nicole Carrion Cogo, João
Batista Souza de Oliveira, and Isabel Harb Manssour. A novel physics-based inter-
action model for free document layout. In Proceedings of the 11th ACM symposium
on Document engineering, DocEng ’11, pages 153–162, New York, NY, USA, 2011.
ACM.

[PDF] PDF Reference, fifth Edition. http://partners.adobe.com/public/ developer/en/p-
df/PDFReference16.pdf. Visited 05/2013.

294 BIBLIOGRAPHY

[Plö09] Jörn Plötz. Metadatenextraktion aus Vektorgrafiken. Bachelor thesis, Chair for
Information Management, University of Passau, 2009.

[Pre08] Helmuth Pree. DITA Testfallgenerator für das Verdikt Verifikationssystem. Bach-
elor thesis, Chair for Information Management, University of Passau, 2008.

[Pro07] Mark Proctor. Relational Declarative Programming with JBoss Drools. In Viorel
Negru, Tudor Jebelean, Dana Petcu, and Daniela Zaharie, editors, SYNASC,
page 5. IEEE Computer Society, 2007.

[PS07] Simone Paolo Ponzetto and Michael Strube. Deriving a large-scale taxonomy from
wikipedia. In AAAI, pages 1440–1445. AAAI Press, 2007.

[PS08] Eric Prud’hommeaux and Andy Seaborne. SPARQL Query Language for RDF.
http://www.w3.org/TR/rdf-sparql-query/, 2008. Visited 05/2013.

[PVB09] Mark Proctor, Kris Verlaenen, and Alexander Bagerman. Drools JBoss Rules 5.0.
http://www.jboss.org/drools/, 2009. Visited 05/2013.

[Que61] Raymond Queneau. A hundred thousand billion poems, 1961. Translated from
the original French by Stanley Chapman. Original title: Cent mille milliards de
poèmes.

[Ren] Paul Rendell. A Turing Machine in Conway’s Game of Life, extendable to a Uni-
versal Turing Machine. http://www.rendell-attic.org/gol/tm. Visited 05/2013.

[RG65] Herbert Rubenstein and John B. Goodenough. Contextual correlates of synonymy.
Commun. ACM, 8(10):627–633, October 1965.

[Röt99] Florian Rötzer. Megamaschine Wissen. Campus Verlag, Frankfurt/New York,
1999.

[RRZvdH03] A. L. Rector, J. E. Rogers, P. E. Zanstra, and E. van der Haring. OpenGALEN:
Open source medical terminology and tools. Proceedings of the AMIA Annual
Symposium, page 982, 2003.

[Sch04] J. Scheffczyk. Consistent Document Engineering. Dissertation, Universität der
Bundeswehr München, 2004.

[Sch07] Simon Schenk. A SPARQL Semantics Based on Datalog. In KI ’07: Proceedings
of the 30th annual German conference on Advances in Artificial Intelligence, pages
160–174, Berlin, Heidelberg, 2007. Springer-Verlag.

[Sch10] Christian Schlupp. Grafische Spezifikation einer Regelsprache nach Prinzipien der
Human Computer Interaction. Bachelor thesis, Chair for Information Management,
University of Passau, 2010.

[Ses] Aduna Software. Sesame. http://www.openrdf.org/. Visited 05/2013.

[SF89] P. David Stotts and Richard Furuta. Petri net based hypertext: Document struc-
ture with browsing semantics. ACM TRANSACTIONS ON INFORMATION SYS-
TEMS, 7:3–29, 1989.

[SF99] Christian Süß and Burkhard Freitag. Learning Material Markup Language, 1999.

BIBLIOGRAPHY 295

[SF09] Christian Schönberg and Burkhard Freitag. Evaluating RDF Querying Frameworks
for Document Metadata. Technical Report MIP-0903, Univ. of Passau, 2009.

[SFC98] David P. Stotts, Richard Furuta, and Cyrano R. Cabarrus. Hyperdocuments as
Automata: Verification of Trace-based Browsing Properties by Model Checking.
ACM Trans. Inf. Syst., 16(1):1–30, January 1998.

[SGD+09] Florian Stegmaier, Udo Grbner, Mario Dller, Harald Kosch, and Gero Baese.
Evaluation of current rdf database solutions. In Proceedings of the 10th Inter-
national Workshop on Semantic Multimedia Database Technologies (SeMuDaTe
2009), volume 239, pages 39–55, Graz, Austria, December 2009.

[SGK+08] Lefteris Sidirourgos, Romulo Goncalves, Martin Kersten, Niels Nes, and Stefan
Manegold. Column-store support for rdf data management: not all swans are
white. Proc. VLDB Endow., 1(2):1553–1563, 2008.

[SJWF09] Christian Schönberg, Mirjana Jakšić, Franz Weitl, and Burkhard Freitag. Verific-
ation of Web-Content: A Case Study on Technical Documentation. In Proc. of the
5th International Workshop on Automated Specification and Verification of Web
Systems (WWV 09), Linz, Austria, 2009.

[SKO] SKOS Simple Knowledge Organization System Reference, W3C Proposed Re-
commendation 15 June 2009. http://www.w3.org/TR/2009/PR-skos-reference-
20090615/. Visited 05/2013.

[SKS06] Abraham Silberschatz, Henry Korth, and S. Sudarshan. Database Systems Con-
cepts. McGraw-Hill, Inc., New York, NY, USA, 5 edition, 2006.

[SKW07] Fabian M. Suchanek, G. Kasneci, and Gerhard Weikum. Yago: a core of semantic
knowledge. In WWW ’07: Proc. of the 16th intern. conference on World Wide
Web, pages 697–706, New York, NY, USA, 2007. ACM Press.

[SMI] Synchronized Multimedia Integration Language (SMIL 3.0), W3C Recommenda-
tion 01 December 2008. http://www.w3.org/TR/smil/. Visited 05/2013.

[SMK97] Michael Steinbrunn, Guido Moerkotte, and Alfons Kemper. Heuristic and random-
ized optimization for the join ordering problem. VLDB, 6(3):191–208, 1997.

[SPF10] Christian Schönberg, Helmuth Pree, and Burkhard Freitag. Rich Ontology Extrac-
tion and Wikipedia Expansion Using Language Resources. In Proceedings of the
11th International Conference on Web-Age Information Management (WAIM’10),
Jiuzhaigou, China, 2010.

[SS89] Manfred Schmidt-Schauß. Subsumption in KL-ONE is undecidable. In Proceed-
ings of the first international conference on Principles of knowledge representation
and reasoning, pages 421–431, San Francisco, CA, USA, 1989. Morgan Kaufmann
Publishers Inc.

[SSD09] Jon Sneyers, Tom Schrijvers, and Bart Demoen. The computational power and
complexity of constraint handling rules. ACM Trans. Program. Lang. Syst.,
31(2):8:1–8:42, February 2009.

[Ste10] Katharina Sterner. Regelbasierte Modellgenerierung aus E-Learning Dokumenten.
Bachelor thesis, Chair for Information Management, University of Passau, 2010.

296 BIBLIOGRAPHY

[SVG] Scalable Vector Graphics (SVG) Full 1.2 Specification, W3C Working Draft 13
April 2005. http://www.w3.org/TR/SVG12/. Visited 05/2013.

[SW88] John B. Smith and Stephen F. Weiss. Hypertext: Introduction to the special issue.
Commun. ACM, 31(7):816–819, July 1988.

[SWF11] Christian Schönberg, Franz Weitl, and Burkhard Freitag. Verifying the Consistency
of Web-based Technical Documentations. Journal of Symbolic Computation, Spe-
cial Issue on Automated Specification and Verification of Web Systems, 46(2):183–
206, February 2011.

[SWJF09] Christian Schönberg, Franz Weitl, Mirjana Jakšić, and Burkhard Freitag. Logic-
based Verification of Technical Documentation. In Proceedings of the 9th ACM
symposium on Document engineering, DocEng ’09, pages 251–252, New York, NY,
USA, 2009. ACM.

[SWY75] G. Salton, A. Wong, and C. S. Yang. A vector space model for automatic indexing.
Commun. ACM, 18(11):613–620, November 1975.

[Sys] SYSTAP, LLC. Bigdata. http://www.systap.com/bigdata.htm. Visited 05/2013.

[TBMM04] Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendelsohn. XML
Schema Part 1: Structures Second Edition, W3C Recommendation 28 October
2004. http://www.w3.org/TR/xmlschema-1/, 2004. Visited 05/2013.

[TEI07] TEI P5: Guidelines for Electronic Text Encoding and Interchange, 2007.

[TLV03] Djamshid Tavangarian, Ulrike Lucke, and Denny Voigt. Multidimensional Learnin-
gObjects and Modular Lectures Markup Language. http://www.ml-3.org/, 2003.
Visited 05/2013.

[TvdAS09] Nikola Trcka, Wil M. P. van der Aalst, and Natalia Sidorova. Data-flow anti-
patterns: Discovering data-flow errors in workflows. In Pascal van Eck, Jaap
Gordijn, and Roel Wieringa, editors, CAiSE, volume 5565 of Lecture Notes in
Computer Science, pages 425–439. Springer, 2009.

[vdA03] Wil M.P. van der Aalst. Challenges in business process management: Verification
of business processes using petri nets. Bulletin of the EATCS, 80:174–198, 2003.

[vDK83] Teun A. van Dijk and Walter Kintsch. Strategies of Discourse Comprehension.
Academic Press, New York, 1983.

[VRL+10] Maria Esther Vidal, Edna Ruckhaus, Tomas Lampo, Javier Sierra, Amadis Mar-
tinez, and Axel Polleres. On the Efficiency of Joining Group Patterns in SPARQL
Queries. In 7th Extended Semantic Web Conference (ESWC2010), June 2010.

[VTP08] Anne-Marie Vercoustre, James A. Thorn, and Jovan Pehecevski. Entity Ranking
in Wikipedia. In Proceedings of the 23rd Annual ACM Symposium on Applied
Computing (SAC08), 2008.

[Wal09] Norman Walsh. DocBook. http://docs.oasis-open.org/docbook/specs/docbook-
5.0-spec.html, 2009. Visited 05/2013.

BIBLIOGRAPHY 297

[WBC+03] Michael Witbrock, David Baxter, Jon Curtis, Dave Schneider, Robert Kahlert,
Pierluigi Miraglia, Peter Wagner, Kathy Panton, Gavin Matthews, and Amanda
Vizedom. An interactive dialogue system for knowledge acquisition in cyc. In In
Proceedings of the Workshop on Mixed-Initiative Intelligent Systems. IJCAI, pages
138–145, 2003.

[Wei08] Franz Weitl. Document Verification with Temporal Description Logics. PhD thesis,
University of Passau, 2008.

[Wil68] John Wilkins. An essay towards a real character and a philosophical language,
1668. London.

[Wil11] Martin Wilhelm. Semantische Rollengewichtung in Wikipedia-basierten Ontolo-
gien. Bachelor thesis, Chair for Information Management, University of Passau,
2011.

[WJF09] F. Weitl, M. Jakšić, and B. Freitag. Towards the Automated Verification of Semi-
structured Documents. Journal of Data & Knowledge Engineering, 68:292–317,
2009.

[WSKR03] Kevin Wilkinson, Craig Sayers, Harumi Kuno, and Dave Reynolds. Efficient rdf
storage and retrieval in jena2. Technical report, Hewlett-Packard, 2003.

[WW08] Fei Wu and Daniel S. Weld. Automatically refining the Wikipedia infobox ontology.
In WWW ’08: Proceeding of the 17th international conference on World Wide Web,
pages 635–644, New York, NY, USA, 2008. ACM.

[WWR04] WWR - Wissenswerkstatt Rechensysteme. http://www.wwr-project.de, 2004. Vis-
ited 05/2013.

298 BIBLIOGRAPHY

List of Figures

3.1 RDF Graph . 35
3.2 Temporal models . 52

4.1 Left: Legal document with seal impression, Babylon, 414 BCE. Right: Seal and
seal impression, Babylon, 5th/6th century BCE. Pergamon Museum, Berlin, Ger-
many. 58

4.2 Fragment of a marble tablet with an Arabic line of text, Egypt, 10th/11th century
CE. Pergamon Museum, Berlin, Germany. 59

4.3 Collection of books. Pražský hrad, Prague, Czech Republic. 61
4.4 Document abstraction layers . 69
4.5 Illustration of the base document model from example 4.1.24 73
4.6 Document models . 76
4.7 Illustration of the relations s (red) and p (blue) in various structural document

models (directionality omitted for clarity) . 79
4.8 Partial illustration of a semantic document model 84
4.9 Structure of musical notes . 90
4.10 Example process: application for leave . 94

5.1 Values for a variable topic in an environment E at different positions in a document104
5.2 Simple base document model to illustrate the processing order of media objects . 107
5.3 Metalayers of examples 5.3.5 and 5.3.9 (black arrowheads represent instantiation

relationships, empty arrowheads represent generalisation relationships) 124
5.4 Metalayers of example 5.3.10 (black arrowheads represent instantiation relation-

ships, empty arrowheads represent generalisation relationships, open arrowheads
represent other relationships) . 125

5.5 Metalayers and knowledge bases (black arrowheads represent instantiation rela-
tionships) . 128

6.1 Wikipedia categories before (a) and after (b) extension 135
6.2 Database schema for Wikipedia . 147

7.1 System architecture . 156
7.2 Package overview . 156
7.3 UML diagram: document model . 158
7.4 UML diagram: background knowledge . 160
7.5 UML diagram: document adapters (1/2) . 161
7.6 UML diagram: document adapters (2/2) . 162
7.7 UML diagram: preprocessing . 164

299

300 LIST OF FIGURES

7.8 UML diagram: semantic processing . 166
7.9 UML diagram: postprocessing . 167
7.10 UML diagram: verification model . 169

8.1 Implementation options for reference relations . 173
8.2 Implementation options for document versions (arrows represent has-part rela-

tionships) . 177

9.1 Hierarchical source document and semantic document model 197
9.2 Flat source document and semantic document model 209
9.3 Chapter-level view on a semantic document model 220
9.4 Paragraph-level view on a semantic document model 220

10.1 VDK 1501 document. The primary reading path is shown in black, references
from the Table of Contents are shown in blue, and references from the Index are
shown in red. 230

10.2 VDK 1109 document. The primary reading path is shown in black, references to
and from the Table of Contents are shown in blue, and cross references between
sections are shown in green. 231

10.3 VDK 1108 document. The primary reading path is shown in black. Every sec-
tion except the Title Page has a bidirectional reference to and from the Table of
Contents (not shown). 232

10.4 Sample of a WWR e-learning document (German) 235
10.5 DLR document layout . 237
10.6 DLR process model (excerpt) . 238
10.7 Views on the DLR process model . 239

11.1 Time measurements for the processing time of documents with a varying number
of XML nodes . 246

11.2 Time measurements for the processing time of documents with varying number of
processing rules . 247

11.3 Time measurements for the processing time of documents with varying number of
data and fragment indicators in the background knowledge 248

11.4 Time measurements for the total processing time of documents from different
domains . 256

11.5 Time measurements for the average processing time of documents from different
domains . 257

11.6 Comparison of processing times for JBoss Drools and XQuery: obtaining a se-
mantic document model from an HTML document 259

11.7 Comparison of processing times for JBoss Drools and XQuery: obtaining a se-
mantic document model from a DocBook document 260

11.8 Comparison of processing times for SPARQL and XQuery: obtaining a verification
model from a semantic document model (HTML) 261

11.9 Comparison of processing times for SPARQL and XQuery: obtaining a verification
model from a semantic document model (DocBook) 262

11.10Ontology inference scaled by number of individuals 265
11.11Ontology inference scaled by number of concepts 266
11.12Huge ontology retrieval times, scaled by number of concepts. 268
11.13Huge ontology retrieval times, scaled by number of individuals per concept . . . 269

LIST OF FIGURES 301

12.1 Quality of the extracted semantic document/process models 275
12.2 Incorrect and missing assertions in document models with modified background

knowledge . 278
12.3 F-measure for document models with modified background knowledge 279

A.1 Model vocabulary: object properties . 312
A.2 Model vocabulary: datatype properties, coloured by namespace 313
A.3 Model vocabulary: classes . 314

B.1 Process specification in Visio, courtesy of the Datenverarbeitungszentrum
Mecklenburg-Vorpommern GmbH . 339

302 LIST OF FIGURES

List of Tables

3.1 ALC tableau rules for an ABox A, for complex concepts C1 and C2, an atomic role
R, and individuals p and p′, and a “new” individual q. p, p′ and q are parameters. 32

3.2 Example: triple table . 39

3.3 Example: property table . 39

3.4 Example: class-property tables . 40

3.5 Example: vertical partitioning . 40

3.6 OWL constructs and their corresponding description logics expressions, with
classes C1 and C2, concepts C1 and C2, properties r1 and r2, roles r1 and r2,
objects i1 and i2, and individuals i1 and i2. <...> denotes a list. 43

3.7 Example: SKOS document. 45

6.1 Statistics for the Wikipedia categories from example 6.1.3, as of 2012-05-30. . . . 134

6.2 Statistics for the Wikipedia articles from example 6.1.3, as of 2012-05-30. 134

6.3 Word pairs with their respective Adjusted Judged Synonymy (AJS), after [RG65]. 144

6.4 Statistics for Wikipedia cores, as of 2012-05-30. 146

6.5 Database indices for Wikipedia . 148

6.6 Time measurements for the Wikipedia extraction, as of 2012-05-30. 148

11.1 E-learning documents: XML document sizes (across 125 documents). 251

11.2 E-learning documents: document model sizes (across 125 document models). . . 251

11.3 E-learning documents: processing times in seconds (for 125 documents/document
models). 251

11.4 Technical documentation documents: XML document sizes (across seven docu-
ments). 252

11.5 Technical documentation: document model sizes (across seven document models). 252

11.6 Technical documentation documents: processing times in seconds (for seven doc-
uments/document models). 253

11.7 Process description documents (NPB): XML document sizes (across four docu-
ments). 253

11.8 Process description documents (NPB): document model sizes (across four docu-
ment models). 254

11.9 Process description documents (NPB): processing times in seconds (for four doc-
uments/document models). 254

11.10Process description documents (DLR): XML document sizes (across 20 documents).254

11.11Process description documents (DLR): document model sizes (for one document
model). 255

303

304 LIST OF TABLES

11.12Process description documents (DLR): processing times in seconds (for 20 docu-
ments/one document model). 255

11.13Adaptations to the processing rules for different domains. 263

Index

ABox, 24
AL, 30
ALC, 31
ALCCTL, 54
ALCCTL concept, 54
ALCCTL formula, 54
ALCCTL model checking problem, 56
ALCCTL path, 55
ALCCTL temporal model, 55
atomic concept, 22
atomic content object, 70
atomic entity, 71
atomic role, 22
Audio Video Interleave, 10
augment operator, 80
average, 250
AVI, 10

background knowledge, 98, 131
base document model, 71
base process model, 93
blank node, 33

Cascading Style Sheets, 9
clash, 32
class, 41
class-property table, 39
closed, 93
closed world assumption, 29
closest fragment induced by m, 100
compatible, 85
complete, 71
complex concept, 22
complex role, 22
Computation Tree Logic, 51
concept realisation problem, 29
conclusion, 101
conclusion of a transformation rule, 103
concrete data type, 23
concrete role, 23
condition, 102

confluent, 113
connected, 75, 93
connected base document model, 74, 75
connected base process model, 92, 93
consistent with respect to T , 28
content domain, 83
content unit, 70
control path, 93
CSS, 9
CTL, 51
CTL formula, 51
CTL model checking problem, 53
CTL path, 52
CTL temporal model, 51, 52

data layer, 120
data ontology, 95
definition, 23
description logic system, 24
DITA, 9
DocBook, 9
Document Object Model, 18
DOM, 18
domain, 25
domain knowledge, 131
DTD, 17

environment, 103
ePub, 9
equivalent, 98
equivalent with respect to T , 28
evaluation context, 118
evaluation of a graph selector against a model,

118
expansion, 27

fixed, 59
Flash Video, 10
fluid, 59
fulfilled, 105

305

306 INDEX

Game of Life, 272
global environment, 104
graft operator, 80
graph selector, 118
group pattern, 47

HTML, 9
HTML5, 10
hypermedia, 66
hypertext, 57
Hypertext Markup Language, 9
hypervideo, 66

iframe, 70
include, 70
individual, 22
individual retrieval problem, 29
inference service, 28
instance assertion, 24
interactive hypertext, 65
interpretation, 25

Javascript, 9

keyword taxonomy, 98
knowledge base, 25

language literal, 33
LATEX, 9
lexical database, 136
link, 66
links, 58
LMML, 9
local environment, 104
logical consequence of T and A, 28

Matroska, 10
maximal, 120
mean, 250
media object, 71
meta reference, 139
metaconflict, 120
metadata, 74
metadata associated with B, 74
metalayer, 120
Microsoft Excel, 9
Microsoft Powerpoint, 9
Microsoft Visio, 9
Microsoft Word, 9
ML3, 9

model, 27
move operator, 80
MPEG-2, 10
MPEG-4, 10
MPEG-7, 10

named RDF resource, 33
named style, 98
namespace, 15
navigation path, 66

object, 41
ontology, 24
open world assumption, 29, 30
operation, 103
OWL, 40

partial hypertext, 64
path expression, 118
PDF, 9
Portable Document Format, 9
premise, 101
premise of a transformation rule, 102
presentation domain, 83
process, 92
property, 41
property table, 39
prune operator, 80
punning, 42, 121

Quicktime, 10

RDF, 33
RDF literal, 33
RDF resource, 33
RDF Schema, 37
RDF statement, 34
RDF subgraph, 45
RDF subgraph pattern, 45
RDFS, 37
reading path, 59, 75
rendering instructions, 68
Resource Description Framework, 33

satisfiable with respect to T , 28
SAX, 18
Scalable Vector Graphics, 10
semantic document model, 82
semantic process model, 93, 95
semi-structured, 71

INDEX 307

semi-structured data, 71
Server Side Includes, 70
Simple API for XML, 18
Simple Interactive Video Authoring Suite, 10
Simple Knowledge Organization System, 43
SIVA, 10
SKOS, 43
SMIL, 10
social construction of technology, 60
SPARQL, 45
SPARQL Protocol And RDF Query Language,

45
SPARQL query, 46
SPARQL query result, 46
specialisation, 23
stop word, 137
structural document model, 77
structural layer, 68, 70
structural ontology, 82, 95
structural process model, 93
structure indicators, 68
style, 98
style taxonomy, 99
subsumed with respect to T , 28
successor relation, 70
SVG, 10
symbolic name, 23
Synchronized Multimedia Integration Lan-

guage, 10

tableau, 32
tableau algorithm, 32
tableau algorithm for ALC, 32
taxonomy, 25
TBox, 24
technical layer, 68, 70
template, 98
terminological axiom, 23
terminological ontology, 82
Theora, 10
three-layered document perspective, 71
tower of meta, 120
transformation rule, 101
triple, 47
triple table, 39
typed literal, 33
types of digital documents, 62

unbound, 47
unique name assumption, 26

untyped literal, 33

valid, 18
valid in an interpretation IO, 27
variable, 47
vertical partitioning, 39
view, 219
visual layer, 68, 70

Web Ontology Language, 40
well-formed, 16
Wikipedia, 133
Wikipedia ontology, 145

XML, 15
XPath, 18
XQuery, 20

308 INDEX

Part VI

Appendix

Appendix A

Model Vocabulary

In this chapter, we will present the concepts and roles used in document models. We will show
the vocabulary in the form of OWL/RDF properties and classes, including their namespace as
used in our implementation.

The vocabulary is divided into three sets. The first set covers common concepts and roles
that are used in most domains, such as date, creator, or Fragment. The second set covers
the vocabulary typical for documents, such as subtitle, Chapter, or Footnote. The third set
contains concepts and roles suitable for modelling processes, such as input, manager, or Choice.

For each property or class, we will give its name, its super-properties or super-classes (if any)
in parentheses, and a brief description. Note that some properties are taken verbatim from the
Dublin Core definition and are only shown here for the sake of completeness.

We will use the following namespace prefixes:

Prefix URI
dc http://purl.org/dc/elements/1.1/
vdk http://www.verdikt.uni-passau.de#
data http://www.verdikt.uni-passau.de/data#
ref http://www.verdikt.uni-passau.de/reference#
src http://www.verdikt.uni-passau.de/source#
did http://www.verdikt.uni-passau.de/didactic#
eval http://www.verdikt.uni-passau.de/evaluation#
ent http://www.verdikt.uni-passau.de/entities#

An overview of the defined object properties (roles) can be seen in figure A.1. Figure A.2
shows the datatype properties (concrete roles), and figure A.3 shows the defined classes (con-
cepts).

A.1 Common Vocabulary

A.1.1 Object Properties

ref:include (ref:part) Indicates that a fragment was included from an external source and
integrated into the current fragment.

ref:part Indicates that the current fragment is a super-fragment of the other fragment.

311

312 APPENDIX A. MODEL VOCABULARY

ref:include

ref:partref:predecessor

ref:reference

ref:requires

ref:successor ref:citation

ref:successornoref:successoryes

Figure A.1: Model vocabulary: object properties

ref:predecessor (ref:reference) Indicates that the current fragment is a successor of the other
fragment.

ref:reference A general purpose reference from one fragment to another.

ref:requires (ref:reference) Indicates that the content of the current fragment depends on the
content of the other fragment.

ref:successor (ref:reference) Indicates that the current fragment is a predecessor of the other
fragment.

A.1.2 Datatype Properties

dc:contributor (ent:legalentity) An entity responsible for making contributions to the re-
source. Examples of a Contributor include a person, an organization, or a service. Typically, the
name of a Contributor should be used to indicate the entity.1

dc:coverage The spatial or temporal topic of the resource, the spatial applicability of the
resource, or the jurisdiction under which the resource is relevant. Spatial topic and spatial ap-
plicability may be a named place or a location specified by its geographic coordinates. Tem-
poral topic may be a named period, date, or date range. A jurisdiction may be a named
administrative entity or a geographic place to which the resource applies. Recommended
best practice is to use a controlled vocabulary such as the Thesaurus of Geographic Names
[http://www.getty.edu/research/tools/vocabulary/tgn/index.html]. Where appropriate, named
places or time periods can be used in preference to numeric identifiers such as sets of coordinates
or date ranges.1

1All descriptions for properties and classes in the Dublin Core (dc) namespace have been taken verbatim from
http://dublincore.org/.

http://dublincore.org/

A.1. COMMON VOCABULARY 313

d
c:
co
n
tr
ib
u
to
r

d
c:
cr
e
at
o
r

d
c:
co
ve
ra
ge

d
c:
d
at
e

d
c:
d
es
cr
ip
ti
o
n

d
c:
fo
rm

at

d
c:
id
en
ti
fi
er

d
c:
la
n
gu
ag
e

d
c:
p
u
bl
is
h
er

d
c:
re
la
ti
on

d
c:
ri
gh
ts

d
c:
so
u
rc
e

d
c:
su
b
je
ct

d
c:
ti
tl
e

d
c:
ty
p
e

vd
k:
id

vd
k:
in
it
ia
l

vd
k:
p
o
si
ti
o
n

vd
k:
ve
rs
io
n

vd
k:
p
re
vi
o
u
sv
er
si
o
n

d
at
a:
ab
b
re
vi
at
io
n

d
at
a:
co
d
e

d
at
a:
co
n
te
n
t

d
at
a:
d
o
cu
m
e
nt
id

d
at
a:
is
su
e

d
at
a:
n
am

e

d
at
a:
p
ro
gr
am

m
in
g

la
n
g
u
ag
e

d
at
a:
te
rm

d
at
a:
to
p
ic

d
id
:d
u
ra
ti
on

d
id
:im

p
o
rt
an
ce

en
t:
ap
p
ro
ve
d

en
t:
au
th
o
r

en
t:
le
ga
le
n
ti
ty

en
t:
lo
ca
ti
o
n

en
t:
o
rg
an
is
at
io
n

en
t:
p
er
so
n

en
t:
p
re
pa
re
d

en
t:
re
le
as
ed

en
t:
re
vi
ew

ed

ev
al
:c
o
rr
ec
tn
es
s ev
al
:m

es
sa
ge

ev
al
:p
ar
se
er
ro
rs

ev
al
:p
ro
b
ab
ili
ty

ev
al
:q
u
al
it
y

ev
al
:t
ru
th

re
f:
ex
te
rn
al

sr
c:
ch
an
ge

sr
c:
ch
ec
ks
um

sr
c:
fi
le
na
m
e

sr
c:
id
re
f

sr
c:
la
st
ch
an
ge

sr
c:
u
ri

d
at
a:
co
lu
m
n
he
ad
e
r

d
at
a:
ro
w
h
ea
d
er

d
id
:a
u
d
ie
n
ce

d
id
:c
o
m
pl
ex
it
y

d
id
:m

ed
iu
m

d
id
:o
b
je
ct
iv
e

sr
c:
p
ag
en
um

b
er

d
at
a:
su
b
ti
tl
e

d
at
a:
d
at
af
lo
w

d
at
a:
en
ti
ty
n
am

e

d
at
a:
en
ti
ty
in
p
u
t

d
at
a:
en
ti
ty
o
u
tp
u
t

d
at
a:
en
ti
ty
p
at
h

d
at
a:
fa
ci
lit
yn
am

e

d
at
a:
fa
ci
lit
yp
at
h

d
at
a:
in
p
u
t

d
at
a:
o
u
tp
u
t

d
at
a:
p
ro
ce
ss
id

d
at
a:
p
ro
ce
ss
n
am

e
d
at
a:
ac
ti
vi
ty

d
at
a:
o
p
ti
o
n
al
ac
ti
vi
ty

d
at
a:
p
ro
d
u
ct

d
at
a:
p
ro
d
u
ct
in
p
u
t

d
at
a:
p
ro
d
u
ct
o
u
tp
ut

e
n
t:
d
o
e
sn
o
tn
e
e
d
su
b
st
it
u
te

en
t:
m
an
ag
e
r

en
t:
n
ee
d
ss
u
bs
ti
tu
te

en
t:
p
ro
ce
ss
m
an
ag
e
r

Figure A.2: Model vocabulary: datatype properties, coloured by namespace

314 APPENDIX A. MODEL VOCABULARY

vd
k:
B
a
ck
g
ro
u
n
d
K
n
o
w
le
d
ge

vd
k:
C
o
rp
u
s

vd
k:
Fr
ag
m
en
t

vd
k:
Fu
n
ct
io
n
Ty
p
e

vd
k:
Li
st

vd
k:
Se
ct
io
n

vd
k:
So
u
rc
ec
o
de

vd
k:
St
ep

vd
k:
St
ru
ct
u
ra
lT
yp
e

vd
k:
Ta
b
le

vd
k:
U
M
L

vd
k:
A
b
st
ra
ct

vd
k:
A
lg
o
ri
th
m

vd
k:
A
n
no
ta
ti
o
n vd
k:
A
p
pl
et

vd
k:
A
xi
o
m

vd
k:
C
h
ap
te
r

vd
k:
C
o
n
cl
u
si
o
n

vd
k:
D
e
fi
n
it
io
n

vd
k:
D
e
sc
ri
p
ti
o
n

vd
k:
D
o
cu
m
en
t

vd
k:
D
o
cu
m
en

tV
er
si
o
n

vd
k:
Ex
am

p
le

vd
k:
Fi
gu
re

vd
k:
Fi
le

vd
k:
Fo
o
tn
o
te

vd
k:
Fo
rm

u
la

vd
k:
G
lo
ss
ar
y

vd
k:
G
ra
p
h
ic

vd
k:
H
in
t

vd
k:
Ill
u
st
ra
ti
on

vd
k:
Im

pu
ls
e

vd
k:
In
de
x

vd
k:
In
tr
o
d
u
ct
io
n

vd
k:
Le
m
m
a

vd
k:
Li
st
O
fF
ig
u
re
s

vd
k:
Li
st
O
fT
ab
le
s

vd
k:
Li
te
ra
tu
re
R
ef
e
re
n
ce

vd
k:
M
u
lt
im
e
d
ia

vd
k:
N
o
te

vd
k:
O
rd
er
e
d
Li
st

vd
k:
P
ar
ag
ra
p
h

vd
k:
P
ar
t

vd
k:
P
re
p
ar
at
io
n

vd
k:
P
ro
o
f

vd
k:
P
ro
o
fS
ke
tc
h

vd
k:
P
ro
p
o
si
ti
o
n

vd
k:
Q
uo
te

vd
k:
R
em

ar
k

vd
k:
R
o
w

vd
k:
Si
d
eN

o
te

vd
k:
So
lu
ti
o
n

vd
k:
Su
b
p
ar
ag
ra
ph

vd
k:
Su
b
se
ct
io
n

vd
k:
Su
b
su
b
se
ct
io
n

vd
k:
Su
m
m
ar
y

vd
k:
Ta
b
le
of
Co

nt
en
ts

vd
k:
Ta
sk

vd
k:
Te
st

vd
k:
Th
eo
re
m

vd
k:
Ti
tl
ep
ag
e

vd
k:
W
ar
n
in
g

vd
k:
C
h
o
ic
e

vd
k:
P
ro
ce
ss

vd
k:
P
ro
d
u
ct
In

vd
k:
P
ro
d
u
ct
O
u
t

Figure A.3: Model vocabulary: classes

A.1. COMMON VOCABULARY 315

dc:creator (ent:legalentity) An entity primarily responsible for making the resource. Examples
of a Creator include a person, an organization, or a service. Typically, the name of a Creator
should be used to indicate the entity.1

dc:date A point or period of time associated with an event in the lifecycle of the resource.
Date may be used to express temporal information at any level of granularity. Recommen-
ded best practice is to use an encoding scheme, such as the W3CDTF profile of ISO 8601
[http://www.w3.org/TR/NOTE-datetime].1

dc:description (data:content) An account of the resource. Description may include but is not
limited to: an abstract, a table of contents, a graphical representation, or a free-text account of
the resource.1

dc:format The file format, physical medium, or dimensions of the resource. Examples of di-
mensions include size and duration. Recommended best practice is to use a controlled vocabulary
such as the list of Internet Media Types [http://www.iana.org/assignments/media-types/].1

dc:identifier An unambiguous reference to the resource within a given context. Recommended
best practice is to identify the resource by means of a string conforming to a formal identification
system.1

dc:language A language of the resource. Recommended best practice is to use a controlled
vocabulary such as RFC 4646 [http://www.ietf.org/rfc/rfc4646.txt].1

dc:publisher (ent:legalentity) An entity responsible for making the resource available. Ex-
amples of a Publisher include a person, an organization, or a service. Typically, the name of a
Publisher should be used to indicate the entity.1

dc:relation A related resource. Recommended best practice is to identify the related resource
by means of a string conforming to a formal identification system.1

dc:rights Information about rights held in and over the resource. Typically, rights informa-
tion includes a statement about various property rights associated with the resource, including
intellectual property rights.1

dc:source A related resource from which the described resource is derived. The described
resource may be derived from the related resource in whole or in part. Recommended best prac-
tice is to identify the related resource by means of a string conforming to a formal identification
system.1

dc:subject (data:term) The topic of the resource. Typically, the subject will be represented
using keywords, key phrases, or classification codes. Recommended best practice is to use a
controlled vocabulary. To describe the spatial or temporal topic of the resource, use the Coverage
element.1

dc:title (data:topic) A name given to the resource.1

316 APPENDIX A. MODEL VOCABULARY

dc:type The nature or genre of the resource. Recommended best practice is to use a controlled
vocabulary such as the DCMI Type Vocabulary [http://dublincore.org/documents/dcmi-type-
vocabulary/]. To describe the file format, physical medium, or dimensions of the resource, use
the Format element.1

vdk:id (dc:identifier) A corpus-wide unique id for a fragment.

vdk:initial Indicates if the current fragment is the first fragment in the default reading order
for the resource. If there is more than one default reading order, multiple initial attributes
can be specified. The default value for initial is false. Recommended practise is to put the
initial attribute on the innermost initial fragment and optionally on its super-fragment up to but
excluding the fragment representing the document.

vdk:position Indicates the position of the current fragment relative to the other sibling frag-
ments that are also part of the current super-fragment. Recommended practise is to number
sub-fragments starting with 1 and incrementing by 1, but this is not a requirement.

vdk:version Indicates the version of the current document. Recommended practise is to use
a standardised numbering schema.

vdk:previousversion Indicates a previous version of the current document. Recommended
practise is to use a standardised numbering schema.

data:abbreviation (data:term) Indicates that a term is used in an abbreviated form in the
current fragment. Recommended practise is to use the term in its regular form, not in its
abbreviated form as in the content of the fragment. The term should be used in a normalised
grammatical form and spelling.

data:code Indicates a very small fragment of programming code. Recommended practise is
to use one or two words, or the signature of a method at the most.

data:content Some extract or total of the content of the resource.

data:documentid (dc:identifier) A domain-dependent system-wide unique id for a document.

data:issue The issue of the current document. Recommended practise is to use a standardised
numbering schema.

data:name (data:term) The name of an entity, a place, an event, or something similar. If
a collection of knowledge about such entities is maintained, they should be identified by their
preferred label.

data:programminglanguage (data:term) The name of a programming language.

data:term A term, consisting of one or more words, in a normalised grammatical form and
spelling. Recommended practise is to use the nominative singular for nouns, infinitive for verbs,
and nominative singular masculinum for adjectives. If a collection of knowledge about such terms
is maintained, they should be identified by their preferred label.

A.1. COMMON VOCABULARY 317

data:topic (data:content) A topic, possibly in fragment or sentence form, of the resource.

did:duration (dc:date) The estimated duration required for working through a section of a
document.

did:importance The didactical importance of a fragment in relation to the other fragments
of the same resource. Recommended practise is to use a domain-wide standardised model of
importance, or the high-medium-low model.

ent:approved (dc:contributor) An entity who has approved the current version of a document
or process. The entity should be represented by its name. If a collection of knowledge about
such entities is maintained, they should be identified by their preferred label.

ent:author (dc:creator) An entity who has written or drafted the current version of a fragment.
The entity should be represented by its name. If a collection of knowledge about such entities is
maintained, they should be identified by their preferred label.

ent:legalentity A legal entity such as a person or an organisation. The entity should be
represented by its name. If a collection of knowledge about such entities is maintained, they
should be identified by their preferred label.

ent:location A location entity. The entity should be represented by its name. If a collection
of knowledge about such entities is maintained, they should be identified by their preferred label.

ent:organisation (ent:legalentity) An organisation as a legal entity. The entity should be
represented by its name. If a collection of knowledge about such entities is maintained, they
should be identified by their preferred label.

ent:person (ent:legalentity) A person as a legal entity. The entity should be represented by
its name. If a collection of knowledge about such entities is maintained, they should be identified
by their preferred label.

ent:prepared (dc:contributor) An entity who has prepared the current version of a document
or process. The entity should be represented by its name. If a collection of knowledge about
such entities is maintained, they should be identified by their preferred label.

ent:released (dc:contributor) An entity who has released the current version of a document
or process. The entity should be represented by its name. If a collection of knowledge about
such entities is maintained, they should be identified by their preferred label.

ent:reviewed (dc:contributor) An entity who has reviewed the current version of a document
or process. The entity should be represented by its name. If a collection of knowledge about
such entities is maintained, they should be identified by their preferred label.

eval:correctness (eval:truth) A truth value of a statement or fact, based on fuzzy theory.
Values should be normalised to fall between 0 and 1.

318 APPENDIX A. MODEL VOCABULARY

eval:message An evaluation or error message. Messages like this are often added by the
document parser or the extraction component.

eval:parseerrors Indicates the number of errors encountered while parsing the resource.

eval:probability (eval:truth) A truth value of a statement or fact, based on probability theory.
Values should be normalised to fall between 0 and 1.

eval:quality (eval:truth) A truth value of a statement or fact, based on a custom quality
measurement style. Values should be normalised to fall between 0 and 1.

eval:truth Indicates the truth value of a statement or fact. Recommended practise is to derive
values for one or more of the sub-properties of truth (correctness, probability, quality) from actual
measurements, and to derive the accumulated truth value using a standardised mathematical
model. Values should be normalised to fall between 0 and 1.

ref:external (dc:relation) A reference to an external document or fragment. Usually specified
as a URI/IRI.

src:change (dc:date) A date and time when the resource was changed.

src:checksum The checksum of the current version of the file containing the current fragment.
Recommended practise is to use a standardised checksum method like MD5 or SHA-1.

src:filename (dc:source) The source filename of a document or fragment. Specified either as
a system-dependent path or as a local URI.

src:idref An internal reference to a document id.

src:lastchange (src:change) The date and time of the last change to the resource.

src:uri (dc:source) The source URI of a document or fragment.

A.1.3 Classes

vdk:BackgroundKnowledge (vdk:StructuralType) A collection of background knowledge,
integrated into the document model.

vdk:Corpus (vdk:StructuralType) A collection of resources like documents or processes.

vdk:Fragment Base class for all fragments.

vdk:FunctionType (vdk:Fragment) Base class for the function type of fragments.

vdk:List (vdk:StructuralType) A list.

vdk:Section (vdk:StructuralType) A generic section.

A.2. VOCABULARY FOR DOCUMENTS 319

vdk:Sourcecode (vdk:FunctionType) A section of source code.

vdk:Step (vdk:StructuralType) A generic step.

vdk:StructuralType (vdk:Fragment) Base class for the structural type of fragments.

vdk:Table (vdk:StructuralType) A table.

vdk:UML (vdk:FunctionType) A UML diagram.

A.2 Vocabulary for Documents

A.2.1 Object Properties

ref:citation A reference to a literature reference.

A.2.2 Datatype Properties

data:columnheader (data:topic) The title of a table column.

data:rowheader (data:topic) The title of a table row.

data:subtitle (data:topic) A subtitle.

did:audience The intended audience of a document or fragment. Recommended practise is
to use a domain-wide standardised vocabulary. If a collection of knowledge about such terms is
maintained, they should be identified by their preferred label.

did:complexity The complexity of the content of a document or fragment. Recommended
practise is to use a domain-wide standardised vocabulary. If a collection of knowledge about
such terms is maintained, they should be identified by their preferred label.

did:medium (dc:format) The intended medium of a document. Recommended practise is to
use a domain-wide standardised vocabulary. If a collection of knowledge about such terms is
maintained, they should be identified by their preferred label.

did:objective (data:term) A learning objective for the current fragment in e-learning docu-
ments.

src:pagenumber The page number of the document containing the start of the current frag-
ment.

A.2.3 Classes

vdk:Abstract (vdk:FunctionType) An abstract.

vdk:Algorithm (vdk:FunctionType) An algorithm.

320 APPENDIX A. MODEL VOCABULARY

vdk:Annotation (vdk:FunctionType) An annotation.

vdk:Applet (vdk:FunctionType) An applet.

vdk:Axiom (vdk:Definition) An axiom.

vdk:Chapter (vdk:StructuralType) A chapter.

vdk:Conclusion (vdk:FunctionType) A conclusion.

vdk:Definition (vdk:FunctionType) A formal definition.

vdk:Description (vdk:FunctionType) A description.

vdk:Document (vdk:StructuralType) A document.

vdk:DocumentVersion (vdk:Document) A version of a document.

vdk:Example (vdk:FunctionType) An example.

vdk:Figure (vdk:Graphic) A figure.

vdk:File (vdk:StructuralType) A file. This class should only be used if the represented file
does not contain any other suitable root fragments.

vdk:Footnote (vdk:FunctionType) A footnote.

vdk:Formula (vdk:FunctionType) A formula.

vdk:Glossary (vdk:FunctionType) A glossary.

vdk:Graphic (vdk:StructuralType) A graphic.

vdk:Hint (vdk:Note) A hint.

vdk:Illustration (vdk:Example) An illustration.

vdk:Impulse (vdk:FunctionType) An impulse.

vdk:Index (vdk:FunctionType) An index.

vdk:Introduction (vdk:FunctionType) An introduction.

vdk:Lemma (vdk:Theorem) A lemma.

vdk:ListOfFigures (vdk:FunctionType, vdk:List) A list of figures.

A.2. VOCABULARY FOR DOCUMENTS 321

vdk:ListOfTables (vdk:FunctionType, vdk:List) A list of tables.

vdk:LiteratureReference (vdk:FunctionType) A literature reference.

vdk:Multimedia (vdk:StructuralType) A multimedia element.

vdk:Note (vdk:FunctionType) A note.

vdk:OrderedList (vdk:List) An ordered list.

vdk:Paragraph (vdk:StructuralType) A paragraph.

vdk:Part (vdk:StructuralType) A part. This class should only be used for books that are split
into different parts.

vdk:Preparation (vdk:FunctionType) A preparation step.

vdk:Proof (vdk:FunctionType) A formal proof.

vdk:ProofSketch (vdk:Proof) A proof sketch.

vdk:Proposition (vdk:Theorem) A proposition.

vdk:Quote (vdk:FunctionType) A quote.

vdk:Remark (vdk:Note) A remark.

vdk:Row (vdk:StructuralType) A row in a table.

vdk:SideNote (vdk:FunctionType) A side note. This class can also be used to represent
excursions spanning entire sections or chapters.

vdk:Solution (vdk:FunctionType) A solution to a test.

vdk:Subparagraph (vdk:StructuralType) A subparagraph.

vdk:Subsection (vdk:StructuralType) A subsection.

vdk:Subsubsection (vdk:StructuralType) A sub-subsection.

vdk:Summary (vdk:FunctionType) A summary.

vdk:TableOfContents (vdk:FunctionType) A table of contents.

vdk:Task (vdk:FunctionType) A task in a test.

322 APPENDIX A. MODEL VOCABULARY

vdk:Test (vdk:FunctionType) A test.

vdk:Theorem (vdk:FunctionType) A theorem.

vdk:Titlepage (vdk:FunctionType) A titlepage.

vdk:Warning (vdk:Note) A warning.

A.3 Vocabulary for Processes

A.3.1 Object Properties

ref:successorno (ref:successor) A successor for a conditional negative.

ref:successoryes (ref:successor) A successor for a conditional positive.

A.3.2 Datatype Properties

data:dataflow Content related to the data flow of a process.

data:entityinput (data:input, data:product) Content related to the input data of an entity.

data:entityname (data:name) The name of an entity.

data:entityoutput (data:output, data:product) Content related to the output data of an en-
tity.

data:entitypath (data:content) The path of an entity.

data:facilityname (data:name) The name of a facility.

data:facilitypath (data:content) The path a a facility.

data:input (data:dataflow) Content related to the input data of a process.

data:output (data:dataflow) Content related to the output data of a process.

data:processid (data:term) The id of a process.

data:processname (data:name) The name of a process.

data:activity (data:term) Content related to an activity of a process.

data:optionalactivity (data:activity) Content related to an optional activity of a process.

data:product Content related to the data of a process.

A.3. VOCABULARY FOR PROCESSES 323

data:productinput (data:input, data:product) Content related to the input data of a process.

data:productoutput (data:output, data:product) Content related to the output data of a
process.

ent:doesnotneedsubstitute (ent:person) A specialised domain-dependent property.

ent:manager (ent:person) A person who is a manager in the local context. The entity should
be represented by its name. If a collection of knowledge about such entities is maintained, they
should be identified by their preferred label.

ent:needssubstitute (ent:person) A specialised domain-dependent property.

ent:processmanager (ent:manager) The name of a process manager.

A.3.3 Classes

vdk:Choice (vdk:StructuralType) A process step involving a choice.

vdk:Process (vdk:StructuralType) A process.

vdk:ProductIn (vdk:FunctionType) A section representing the input of a product.

vdk:ProductOut (vdk:FunctionType) A section representing the output of a product.

324 APPENDIX A. MODEL VOCABULARY

Appendix B

Use Cases

In this chapter, we will show some excerpts of our implementation. We will present the actual
Drools rules for obtaining semantic document models from base document models in DocBook
format, as well as the required background knowledge. We will also show the SPARQL queries
used to obtain a verification model from the semantic document model. For four different formats
of process specifications, we will show both the Drools rules and the background knowledge.

Additionally, we will provide the code and some examples for implementing Conway’s Game
of Life in JBoss Drools.

B.1 Technical documentations in DocBook format

Drools extraction rules

1 package de.uni_passau.verdikt.DocumentModel.adapter.implementation;

2

3 import de.uni_passau.verdikt.DocumentModel .*;

4 import de.uni_passau.verdikt.DocumentModel.BackgroundKnowledge .*;

5 import org.w3c.dom.*

6 import java.util .*;

7

8 function void annotate(Fragment fragment , String name , Object value ,

DroolsGlobalContext context) {

9 if (name == null)

10 return;

11 if (name.equals(""))

12 return;

13 if (value == null)

14 return;

15 fragment.addAnnotation(context.createDataAnnotation(name , value));

16 }

17

18 function List getChildElementsRecursive(Element node) {

19 List result = new ArrayList ();

20 NodeList children = node.getChildNodes ();

21 for (int i=children.getLength () -1;i>=0;i--) {

22 if (children.item(i) instanceof Element) {

23 Element child = (Element) children.item(i);

24 result.addAll(getChildElementsRecursive(child));

25 result.add(child);

26 }

27 }

325

326 APPENDIX B. USE CASES

28 return result;

29 }

30

31 function List getChildElements(DroolsLocalContext lcontext) {

32 return getChildElementsRecursive(lcontext.getNode ());

33 }

34

35 function String getIndicators(DroolsLocalContext lcontext) {

36 // adapted and simplified

37 return lcontext.getNode ().getLocalName ();

38 }

39

40 function String getId(DroolsLocalContext lcontext , DroolsGlobalContext context) {

41 // adapted

42 if (lcontext.getNode ().hasAttribute("id"))

43 return lcontext.getNode ().getAttribute("id");

44 else

45 return context.generateId(lcontext);

46 }

47

48 rule "Element Recursion"

49 salience 20

50 when

51 $context: DroolsGlobalContext ()

52 $lcontext: DroolsLocalContext(parent == null && recursed == false)

53 then

54 for (Object $child: getChildElements($lcontext)) {

55 DroolsLocalContext $childcontext = $context.createLocalContext ();

56 $childcontext.setNode ((Element) $child);

57 $childcontext.setParent($lcontext);

58 insert($childcontext);

59 }

60 modify($lcontext) {

61 setRecursed(true);

62 }

63 // removed: not necessary (only one file)

64 // Fragment $fragment = $context.createFragment($lcontext);

65 // $context.getModel ().getRoot ().addChild($fragment);

66 end

67

68 // removed: not necessary (only one file)

69 // rule "Reference Insertion" ...

70

71 rule "Data Annotation "

72 when

73 $context: DroolsGlobalContext ()

74 $lcontext: DroolsLocalContext($context.knowledgebases[" dataIndicators "].

termGroups[" indicators "] contains node.localName)

75 then

76 List <DataMapping > $mappings = $context.getMappings("data");

77 for (DataMapping $mapping: $mappings) {

78 // adapted: multiple values

79 for (String $value: $context.evaluateXPathValues($mapping.getSource (),

$lcontext.getNode ())) {

80 if (! $value.equals("")) {

81 annotate($context.getStack ().peek(), $mapping.getTarget (), $value ,

$context);

82 }

83 }

84 }

85 end

86

B.1. TECHNICAL DOCUMENTATIONS IN DOCBOOK FORMAT 327

87 rule " Reference"

88 when

89 $context: DroolsGlobalContext ()

90 $lcontext: DroolsLocalContext($context.knowledgebases[" referenceIndicators "].

termGroups[" indicators "] contains node.localName)

91 then

92 List <DataMapping > $mappings = $context.getMappings(" reference");

93 for (DataMapping $mapping: $mappings) {

94 String $value = $context.evaluateXPathValue($mapping.getSource (),

$lcontext.getNode ());

95 if (! $value.equals("")) {

96 annotate($context.getStack ().peek(), $mapping.getTarget (), $context.

createFragment($value), $context);

97 }

98 }

99 end

100

101 rule "Fragment"

102 when

103 $context: DroolsGlobalContext ()

104 $lcontext: DroolsLocalContext($context.knowledgebases[" fragmentIndicators "].

termGroups[" indicators "] contains node.localName)

105 then

106 Fragment $fragment = $context.createFragment(getId($lcontext , $context));

107 String $ind = getIndicators($lcontext);

108 List <DataMapping > $mappings = $context.getMappings(" styleFragment ");

109 for (DataMapping $mapping: $mappings) {

110 if ($ind.equals($mapping.getSource ())) {

111 $fragment.addStructuralType($mapping.getTarget ());

112 }

113 }

114 // removed: not necessary (no keywords)

115 // $mappings = $context.getMappings (" keywordFragment ");

116 $lcontext.setFragment($fragment);

117 Assertions $kb = (Assertions) $context.getKnowledgebases ().get("

documentStructure ");

118 boolean changed = true;

119 while (changed) {

120 changed = false;

121 for (OntologyClass $newtype: $fragment.getStructuralTypes ()) {

122 for (OntologyClass $stacktype: $context.getStack ().peek().

getStructuralTypes ()) {

123 if ($kb.getBroaderSelf($stacktype.getURI ()).contains($newtype.

getURI ())) {

124 $context.getStack ().pop();

125 changed = true;

126 }

127 }

128 }

129 }

130 // added: mark the first chapter

131 if ($fragment.hasStructuralType("vdk:Chapter"))

132 annotate($fragment , "vdk:initial", $context.initial (), $context);

133 $context.getStack ().peek().addChild($fragment);

134 $context.getStack ().push($fragment);

135 end

136

137 /* removed: not necessary (only one file)

138 * rule "File Root" */

328 APPENDIX B. USE CASES

Background knowledge: document structure

1 <assertions >

2 <roleAssertion role=" hasNarrower "

3 left=" vdk:Chapter " right=" vdk:Section "/>

4 <roleAssertion role=" hasNarrower "

5 left=" vdk:Section " right=" vdk:Paragraph "/>

6 <roleAssertion role=" hasNarrower "

7 left=" vdk:Section " right=" vdk:Table"/>

8 <roleAssertion role=" hasNarrower "

9 left=" vdk:SideNote " right=" vdk:Paragraph "/>

10 <roleAssertion role=" hasNarrower "

11 left=" vdk:Section " right="vdk:List"/>

12 <roleAssertion role=" hasNarrower "

13 left="vdk:List" right=" vdk:Paragraph "/>

14 </assertions >

Background knowledge: fragment indicators chapter, section, sect1, sect2, sect3, sect4,
para, appendix, glossary, preface, itemizedlist, orderedlist, programlisting, example, table

Background knowledge: style fragment mappings
chapter → vdk:Chapter
section → vdk:Section
sect1 → vdk:Section
sect2 → vdk:Section
sect3 → vdk:Section
sect4 → vdk:Section
para → vdk:Paragraph
appendix → vdk:Chapter
appendix → vdk:Appendix
glossary → vdk:Chapter
glossary → vdk:Glossary
preface → vdk:Chapter
itemizedlist → vdk:List
orderedlist → vdk:List
programlisting → vdk:Sourcecode
programlisting → vdk:Paragraph
example → vdk:Example
example → vdk:Paragraph
table → vdk:Table

Background knowledge: data indicators chapter, section, sect1, sect2, sect3, sect4, para,
appendix, glossary, preface, itemizedlist, orderedlist, example, table

Background knowledge: data mappings
./title/text() → dc:title
self::node()[local-name()=’para’]//command/text() → data:command
self::node()[local-name()=’para’]//primary/text() → data:term
self::node()[local-name()=’para’]//firstterm/text() → data:term
self::node()[local-name()=’para’]//acronym/text() → data:abbreviation
self::node()[local-name()=’glossary’]//glossterm/text() → data:term

B.1. TECHNICAL DOCUMENTATIONS IN DOCBOOK FORMAT 329

Background knowledge: reference indicators xref

Background knowledge: reference mappings
./@linkend → ref:reference

SPARQL queries for verification model: select states

1 SELECT ?s

2 WHERE { ?s rdf:type vdk:Chapter }

SPARQL queries for verification model: select starting states

1 SELECT ?s

2 WHERE {

3 ?s vdk:id "$state" .

4 { ?s doc:initial "true" }

5 UNION {

6 { ?s reference:part ?p }

7 UNION

8 { ?s reference:part ?v0 . ?v0 reference:part ?p }

9 UNION

10 { ?s reference:part ?v1 . ?v1 reference:part ?v2 . ?v2 reference:part ?p }

11 UNION

12 { ?s reference:part ?v3 . ?v3 reference:part ?v4 . ?v4 reference:part ?v5

. ?v5 reference:part ?p } .

13 ?p doc:initial "true"

14 } UNION {

15 { ?p reference:part ?s }

16 UNION

17 { ?p reference:part ?v6 . ?v6 reference:part ?s }

18 UNION

19 { ?p reference:part ?v7 . ?v7 reference:part ?v8 . ?v8 reference:part ?s }

20 UNION

21 { ?p reference:part ?v9 . ?v9 reference:part ?v10 . ?v10 reference:part ?

v11 . ?v11 reference:part ?s } .

22 ?p doc:initial "true"

23 }

24 }

SPARQL queries for verification model: select successors for states

1 SELECT ?s

2 WHERE {

3 ?x vdk:id "$state" .

4 { ?x reference:part ?p }

5 UNION

6 { ?x reference:part ?v0 . ?v0 reference:part ?p }

7 UNION

8 { ?x reference:part ?v1 . ?v1 reference:part ?v2 . ?v2 reference:part ?p }

9 UNION

10 { ?x reference:part ?v3 . ?v3 reference:part ?v4 . ?v4 reference:part ?v5 . ?

v5 reference:part ?p } .

11 { ?x reference:related ?r }

12 UNION

13 { ?x reference:reference ?r }

330 APPENDIX B. USE CASES

14 UNION

15 { ?p reference:related ?r }

16 UNION

17 { ?p reference:reference ?r } .

18 { ?x reference:related ?s }

19 UNION

20 { ?x reference:reference ?s }

21 UNION

22 { ?p reference:related ?s }

23 UNION

24 { ?p reference:reference ?s }

25 UNION {

26 { ?r reference:part ?s }

27 UNION

28 { ?r reference:part ?v6 . ?v6 reference:part ?s }

29 UNION

30 { ?r reference:part ?v7 . ?v7 reference:part ?v8 . ?v8 reference:part ?s }

31 UNION

32 { ?r reference:part ?v9 . ?v9 reference:part ?v10 . ?v10 reference:part ?

v11 . ?v11 reference:part ?s }

33 } UNION {

34 { ?s reference:part ?r }

35 UNION

36 { ?s reference:part ?v12 . ?v12 reference:part ?r }

37 UNION

38 { ?s reference:part ?v13 . ?v13 reference:part ?v14 . ?v14 reference:part

?r }

39 UNION

40 { ?s reference:part ?v15 . ?v15 reference:part ?v16 . ?v16 reference:part

?v17 . ?v17 reference:part ?r }

41 } .

42 ?s rdf:type vdk:Chapter

43 }

SPARQL queries for verification model: select values for the concept “term”

1 SELECT ?v

2 WHERE {

3 ?x vdk:id "$state" .

4 {

5 { ?x reference:part ?p }

6 UNION

7 { ?x reference:part ?v0 . ?v0 reference:part ?p }

8 UNION

9 { ?x reference:part ?v1 . ?v1 reference:part ?v2 . ?v2 reference:part ?p }

10 UNION

11 { ?x reference:part ?v3 . ?v3 reference:part ?v4 . ?v4 reference:part ?v5

. ?v5 reference:part ?p }

12 UNION

13 { ?x reference:part ?v6 . ?v6 reference:part ?v7 . ?v7 reference:part ?v8

. ?v8 reference:part ?v9 . ?v9 reference:part ?p }

14 UNION

15 { ?x reference:part ?v10 . ?v10 reference:part ?v11 . ?v11 reference:part

?v12 . ?v12 reference:part ?v13 . ?v13 reference:part ?v14 . ?v14

reference:part ?p } .

16 ?p data:term ?v

17 } UNION {

18 ?x data:term ?v

19 } UNION {

B.1. TECHNICAL DOCUMENTATIONS IN DOCBOOK FORMAT 331

20 { ?p reference:part ?x }

21 UNION

22 { ?p reference:part ?v15 . ?v15 reference:part ?x }

23 UNION

24 { ?p reference:part ?v16 . ?v16 reference:part ?v17 . ?v17 reference:part

?x }

25 UNION

26 { ?p reference:part ?v18 . ?v18 reference:part ?v19 . ?v19 reference:part

?v20 . ?v20 reference:part ?x } .

27 ?p data:term ?v

28 }

29 }

SPARQL queries for verification model: select values for the concept “glossary
term”

1 SELECT ?v

2 WHERE {

3 ?x vdk:id "$state" .

4 ?x rdf:type vdk:Glossary .

5 {

6 { ?x reference:part ?p }

7 UNION

8 { ?x reference:part ?v0 . ?v0 reference:part ?p }

9 UNION

10 { ?x reference:part ?v1 . ?v1 reference:part ?v2 . ?v2 reference:part ?p }

11 UNION

12 { ?x reference:part ?v3 . ?v3 reference:part ?v4 . ?v4 reference:part ?v5

. ?v5 reference:part ?p }

13 UNION

14 { ?x reference:part ?v6 . ?v6 reference:part ?v7 . ?v7 reference:part ?v8

. ?v8 reference:part ?v9 . ?v9 reference:part ?p }

15 UNION

16 { ?x reference:part ?v10 . ?v10 reference:part ?v11 . ?v11 reference:part

?v12 . ?v12 reference:part ?v13 . ?v13 reference:part ?v14 . ?v14

reference:part ?p } .

17 ?p data:term ?v

18 } UNION {

19 ?x data:term ?v

20 } UNION {

21 { ?p reference:part ?x }

22 UNION

23 { ?p reference:part ?v15 . ?v15 reference:part ?x }

24 UNION

25 { ?p reference:part ?v16 . ?v16 reference:part ?v17 . ?v17 reference:part

?x }

26 UNION

27 { ?p reference:part ?v18 . ?v18 reference:part ?v19 . ?v19 reference:part

?v20 . ?v20 reference:part ?x } .

28 ?p data:term ?v

29 }

30 }

SPARQL queries for verification model: select values for the concept “source”

1 SELECT ?v

332 APPENDIX B. USE CASES

2 WHERE { ?x vdk:id "$state" . ?x source:idref ?v }

B.2 Process specifications in BPMN format (NPB)

Drools extraction rules

1 package de.uni_passau.verdikt.DocumentModel.adapter.implementation;

2

3 import de.uni_passau.verdikt.DocumentModel .*;

4 import de.uni_passau.verdikt.DocumentModel.BackgroundKnowledge .*;

5 import org.w3c.dom.*

6 import java.util .*;

7

8 function void annotate(Fragment fragment , String name , Object value ,

DroolsGlobalContext context) {

9 if (name == null)

10 return;

11 if (name.equals(""))

12 return;

13 if (value == null)

14 return;

15 fragment.addAnnotation(context.createDataAnnotation(name , value));

16 }

17

18 function List getChildElementsRecursive(Element node) {

19 List result = new ArrayList ();

20 NodeList children = node.getChildNodes ();

21 for (int i=children.getLength () -1;i>=0;i--) {

22 if (children.item(i) instanceof Element) {

23 Element child = (Element) children.item(i);

24 result.addAll(getChildElementsRecursive(child));

25 result.add(child);

26 }

27 }

28 return result;

29 }

30

31 function List getChildElements(DroolsLocalContext lcontext) {

32 return getChildElementsRecursive(lcontext.getNode ());

33 }

34

35 function String getIndicators(DroolsLocalContext lcontext) {

36 // adapted and simplified

37 return lcontext.getNode ().getLocalName ();

38 }

39

40 function String getId(DroolsLocalContext lcontext , DroolsGlobalContext context) {

41 // simplified

42 return lcontext.getNode ().getAttribute("id");

43 }

44

45 rule "Element Recursion"

46 salience 20

47 when

48 $context: DroolsGlobalContext ()

49 $lcontext: DroolsLocalContext(parent == null && recursed == false)

50 then

51 for (Object $child: getChildElements($lcontext)) {

B.2. PROCESS SPECIFICATIONS IN BPMN FORMAT (NPB) 333

52 DroolsLocalContext $childcontext = $context.createLocalContext ();

53 $childcontext.setNode ((Element) $child);

54 $childcontext.setParent($lcontext);

55 insert($childcontext);

56 }

57 modify($lcontext) {

58 setRecursed(true);

59 }

60 // removed: not necessary (only one file)

61 // Fragment $fragment = $context.createFragment($lcontext);

62 // $context.getModel ().getRoot ().addChild($fragment);

63 end

64

65 // removed: not necessary (only one file)

66 // rule "Reference Insertion" ...

67

68 rule "Data Annotation "

69 when

70 $context: DroolsGlobalContext ()

71 $lcontext: DroolsLocalContext($context.knowledgebases[" dataIndicators "].

termGroups[" indicators "] contains node.localName)

72 then

73 List <DataMapping > $mappings = $context.getMappings("data");

74 for (DataMapping $mapping: $mappings) {

75 String $value = $context.evaluateXPathValue($mapping.getSource (),

$lcontext.getNode ()).replaceAll("\\s+", " ").replace(" - ", " -- ").

replace("- ", "");

76 if (! $value.equals("")) {

77 annotate($context.getStack ().peek(), $mapping.getTarget (), $value ,

$context);

78 }

79 }

80 end

81

82 rule " Reference"

83 when

84 $context: DroolsGlobalContext ()

85 $lcontext: DroolsLocalContext($context.knowledgebases[" referenceIndicators "].

termGroups[" indicators "] contains node.localName)

86 then

87 // adapted and simplified: references are not modelled as part

88 // of the source , but as separate entities that hold the IDs

89 // of both the source and the target

90 Fragment $source = $context.createFragment($lcontext.getNode ().getAttribute("

sourceRef "));

91 Fragment $target = $context.createFragment($lcontext.getNode ().getAttribute("

targetRef "));

92 annotate($source , "ref: reference", $target , $context);

93 end

94

95 rule "Fragment"

96 when

97 $context: DroolsGlobalContext ()

98 $lcontext: DroolsLocalContext($context.knowledgebases[" fragmentIndicators "].

termGroups[" indicators "] contains node.localName)

99 then

100 Fragment $fragment = $context.createFragment(getId($lcontext , $context));

101 String $ind = getIndicators($lcontext);

102 List <DataMapping > $mappings = $context.getMappings(" styleFragment ");

103 for (DataMapping $mapping: $mappings) {

104 if ($ind.equals($mapping.getSource ())) {

105 $fragment.addStructuralType($mapping.getTarget ());

334 APPENDIX B. USE CASES

106 }

107 }

108 // adapted: other text content source (attribute instead of text content)

109 String $text = $lcontext.getNode ().getAttribute("name");

110 $mappings = $context.getMappings(" keywordFragment ");

111 for (DataMapping $mapping: $mappings) {

112 if ($text.contains($mapping.getSource ())) {

113 $fragment.addStructuralType($mapping.getTarget ());

114 }

115 }

116 $lcontext.setFragment($fragment);

117 Assertions $kb = (Assertions) $context.getKnowledgebases ().get("

documentStructure ");

118 boolean changed = true;

119 while (changed) {

120 changed = false;

121 for (OntologyClass $newtype: $fragment.getStructuralTypes ()) {

122 for (OntologyClass $stacktype: $context.getStack ().peek().

getStructuralTypes ()) {

123 if ($kb.getBroaderSelf($stacktype.getURI ()).contains($newtype.

getURI ())) {

124 $context.getStack ().pop();

125 changed = true;

126 }

127 }

128 }

129 }

130 $context.getStack ().peek().addChild($fragment);

131 $context.getStack ().push($fragment);

132 end

133

134 /* removed: not necessary (only one file)

135 * rule "File Root" */

Background knowledge: fragment indicators other, task, exclusiveGateway, otherEvent

Background knowledge: style fragment mappings
other → vdk:Step
task → vdk:Task
task → vdk:Step
exclusiveGateway → vdk:Choice
exclusiveGateway → vdk:Step
otherEvent → vdk:Event
otherEvent → vdk:Step

Background knowledge: data indicators other, task, otherEvent

Background knowledge: data mappings
./@name → vdk:name

Background knowledge: keyword mappings
(Vorlage) → vdk:Document

B.3. PROCESS SPECIFICATIONS IN VISIO FORMAT (NPB) 335

Background knowledge: reference indicators sequenceFlow

B.3 Process specifications in Visio format (NPB)

Drools extraction rules

1 package de.uni_passau.verdikt.DocumentModel.adapter.implementation;

2

3 import de.uni_passau.verdikt.DocumentModel .*;

4 import de.uni_passau.verdikt.DocumentModel.BackgroundKnowledge .*;

5 import org.w3c.dom.*

6 import java.util .*;

7

8 function void annotate(Fragment fragment , String name , Object value ,

DroolsGlobalContext context) {

9 if (name == null)

10 return;

11 if (name.equals(""))

12 return;

13 if (value == null)

14 return;

15 fragment.addAnnotation(context.createDataAnnotation(name , value));

16 }

17

18 function List getChildElementsRecursive(Element node) {

19 List result = new ArrayList ();

20 NodeList children = node.getChildNodes ();

21 for (int i=children.getLength () -1;i>=0;i--) {

22 if (children.item(i) instanceof Element) {

23 Element child = (Element) children.item(i);

24 result.addAll(getChildElementsRecursive(child));

25 result.add(child);

26 }

27 }

28 return result;

29 }

30

31 function List getChildElements(DroolsLocalContext lcontext) {

32 return getChildElementsRecursive(lcontext.getNode ());

33 }

34

35 function String getIndicators(DroolsLocalContext lcontext) {

36 // adapted

37 return lcontext.getNode ().getLocalName () + "_" + lcontext.getNode ().

getAttribute("Master");

38 }

39

40 function int getId(DroolsLocalContext lcontext , DroolsGlobalContext context) {

41 // simplified

42 return Integer.parseInt(lcontext.getNode ().getAttribute("ID"));

43 }

44

45 rule "Element Recursion"

46 salience 20

47 when

48 $context: DroolsGlobalContext ()

49 $lcontext: DroolsLocalContext(parent == null && recursed == false)

50 then

51 for (Object $child: getChildElements($lcontext)) {

52 DroolsLocalContext $childcontext = $context.createLocalContext ();

53 $childcontext.setNode ((Element) $child);

336 APPENDIX B. USE CASES

54 $childcontext.setParent($lcontext);

55 insert($childcontext);

56 }

57 modify($lcontext) {

58 setRecursed(true);

59 }

60 // removed: not necessary (only one file)

61 // Fragment $fragment = $context.createFragment($lcontext);

62 // $context.getModel ().getRoot ().addChild($fragment);

63 end

64

65 // removed: not necessary (only one file)

66 // rule "Reference Insertion" ...

67

68 rule "Data Annotation "

69 when

70 $context: DroolsGlobalContext ()

71 // adapted: split indicators

72 $lcontext: DroolsLocalContext($context.knowledgebases[" dataIndicators "].

termGroups[" indicators "] contains node.localName &&

73 $context.knowledgebases[" dataIndicators2 "]. termGroups[" indicators "]

contains attributes["Master"])

74 then

75 List <DataMapping > $mappings = $context.getMappings("data");

76 for (DataMapping $mapping: $mappings) {

77 String $value = $context.evaluateXPathValue($mapping.getSource (),

$lcontext.getNode ()).replaceAll("\\s+", " ").replace(" - ", " -- ").

replace("- ", "").trim();

78 if (! $value.equals("")) {

79 annotate($context.getStack ().peek(), $mapping.getTarget (), $value ,

$context);

80 }

81 }

82 end

83

84 rule " Reference"

85 when

86 $context: DroolsGlobalContext ()

87 $lcontext: DroolsLocalContext($context.knowledgebases[" referenceIndicators "].

termGroups[" indicators "] contains node.localName)

88 then

89 // adapted: references are modelled as separate entities that hold the IDs

90 // of both the source and the target , where either the source or the target

91 // is a connector (e.g., an arrow) and needs to be bypassed (because arrows

92 // are not part of the actual process model , only graphical objects)

93 if ($lcontext.getNode ().getAttribute("FromCell").equals("BeginX")) {

94 String $rname = "ref_" + $lcontext.getNode ().getAttribute(" FromSheet");

95 Fragment $source = $context.createFragment(Integer.parseInt($lcontext.

getNode ().getAttribute("ToSheet")));

96 Fragment $target = (Fragment) $context.getValue($rname);

97 if ($target == null) {

98 $context.setValue($rname , $source);

99 } else if (! $source.getStructuralTypes ().isEmpty () && !$target.

getStructuralTypes ().isEmpty ()) {

100 annotate($source , "ref: reference", $target , $context);

101 }

102 } else if ($lcontext.getNode ().getAttribute("FromCell").equals("EndX")) {

103 String $rname = "ref_" + $lcontext.getNode ().getAttribute(" FromSheet");

104 Fragment $target = $context.createFragment(Integer.parseInt($lcontext.

getNode ().getAttribute("ToSheet")));

105 Fragment $source = (Fragment) $context.getValue($rname);

106 if ($source == null) {

B.3. PROCESS SPECIFICATIONS IN VISIO FORMAT (NPB) 337

107 $context.setValue($rname , $target);

108 } else if (! $source.getStructuralTypes ().isEmpty () && !$target.

getStructuralTypes ().isEmpty ()) {

109 annotate($source , "ref: reference", $target , $context);

110 }

111 }

112 end

113

114 rule "Fragment"

115 when

116 $context: DroolsGlobalContext ()

117 // adapted: split indicators

118 $lcontext: DroolsLocalContext($context.knowledgebases[" fragmentIndicators "].

termGroups[" indicators "] contains node.localName &&

119 $context.knowledgebases[" fragmentIndicators2 "]. termGroups[" indicators "

] contains attributes["Master"])

120 then

121 Fragment $fragment = $context.createFragment(getId($lcontext , $context));

122 String $ind = getIndicators($lcontext);

123 List <DataMapping > $mappings = $context.getMappings(" styleFragment ");

124 for (DataMapping $mapping: $mappings) {

125 if ($ind.equals($mapping.getSource ())) {

126 $fragment.addStructuralType($mapping.getTarget ());

127 }

128 }

129 // removed: not necessary (no keywords)

130 // $mappings = $context.getMappings (" keywordFragment ");

131 $lcontext.setFragment($fragment);

132 Assertions $kb = (Assertions) $context.getKnowledgebases ().get("

documentStructure ");

133 boolean changed = true;

134 while (changed) {

135 changed = false;

136 for (OntologyClass $newtype: $fragment.getStructuralTypes ()) {

137 for (OntologyClass $stacktype: $context.getStack ().peek().

getStructuralTypes ()) {

138 if ($kb.getBroaderSelf($stacktype.getURI ()).contains($newtype.

getURI ())) {

139 $context.getStack ().pop();

140 changed = true;

141 }

142 }

143 }

144 }

145 $context.getStack ().peek().addChild($fragment);

146 $context.getStack ().push($fragment);

147 end

148

149 /* removed: not necessary (only one file)

150 * rule "File Root" */

Background knowledge: fragment indicators (1/2) Shape

Background knowledge: fragment indicators (2/2) 11, 12, 14, 15, 16, 17, 21

Background knowledge: style fragment mappings

338 APPENDIX B. USE CASES

Shape 11 → vdk:Start
Shape 11 → vdk:Step
Shape 12 → vdk:Task
Shape 12 → vdk:Step
Shape 14 → vdk:Event
Shape 14 → vdk:Step
Shape 15 → vdk:Choice
Shape 15 → vdk:Step
Shape 16 → vdk:Database
Shape 16 → vdk:Step
Shape 17 → vdk:File
Shape 17 → vdk:Step
Shape 21 → vdk:End
Shape 21 → vdk:Step

Background knowledge: data indicators (1/2) Shape

Background knowledge: data indicators (2/2) 11, 12, 14, 15, 16, 17, 21

Background knowledge: data mappings
concat(./Text/text()[1],./Text/text()[2],./Text/text()[3]) → vdk:name

Background knowledge: reference indicators Connect

B.4 Process specifications in XML format (NPB)

Figure B.1 shows an illustration of a process specified in Visio. This is the process that we used
in the evaluation.

Drools extraction rules

1 package de.uni_passau.verdikt.DocumentModel.adapter.implementation;

2

3 import de.uni_passau.verdikt.DocumentModel .*;

4 import de.uni_passau.verdikt.DocumentModel.BackgroundKnowledge .*;

5 import org.w3c.dom.*

6 import java.util .*;

7

8 function void annotate(Fragment fragment , String name , Object value ,

DroolsGlobalContext context) {

9 if (name == null)

10 return;

11 if (name.equals(""))

12 return;

13 if (value == null)

14 return;

15 fragment.addAnnotation(context.createDataAnnotation(name , value));

16 }

17

18 function List getChildElementsRecursive(Element node) {

19 List result = new ArrayList ();

20 NodeList children = node.getChildNodes ();

21 for (int i=children.getLength () -1;i>=0;i--) {

B.4. PROCESS SPECIFICATIONS IN XML FORMAT (NPB) 339

Figure B.1: Process specification in Visio, courtesy of the Datenverarbeitungszentrum
Mecklenburg-Vorpommern GmbH

340 APPENDIX B. USE CASES

22 if (children.item(i) instanceof Element) {

23 Element child = (Element) children.item(i);

24 result.addAll(getChildElementsRecursive(child));

25 result.add(child);

26 }

27 }

28 return result;

29 }

30

31 function List getChildElements(DroolsLocalContext lcontext) {

32 return getChildElementsRecursive(lcontext.getNode ());

33 }

34

35 function String getIndicators(DroolsLocalContext lcontext) {

36 // adapted and simplified

37 return lcontext.getNode ().getLocalName ();

38 }

39

40 function String getId(DroolsLocalContext lcontext , DroolsGlobalContext context) {

41 // adapted: id or blockId attribute

42 if (lcontext.getNode ().hasAttribute("blockId"))

43 return lcontext.getNode ().getAttribute("blockId");

44 else

45 return lcontext.getNode ().getAttribute("id");

46 }

47

48 rule "Element Recursion"

49 salience 20

50 when

51 $context: DroolsGlobalContext ()

52 $lcontext: DroolsLocalContext(parent == null && recursed == false)

53 then

54 for (Object $child: getChildElements($lcontext)) {

55 DroolsLocalContext $childcontext = $context.createLocalContext ();

56 $childcontext.setNode ((Element) $child);

57 $childcontext.setParent($lcontext);

58 insert($childcontext);

59 }

60 modify($lcontext) {

61 setRecursed(true);

62 }

63 // removed: not necessary (only one file)

64 // Fragment $fragment = $context.createFragment($lcontext);

65 // $context.getModel ().getRoot ().addChild($fragment);

66 end

67

68 // removed: not necessary (only one file)

69 // rule "Reference Insertion" ...

70

71 rule "Data Annotation "

72 when

73 $context: DroolsGlobalContext ()

74 $lcontext: DroolsLocalContext($context.knowledgebases[" dataIndicators "].

termGroups[" indicators "] contains node.localName)

75 then

76 List <DataMapping > $mappings = $context.getMappings("data");

77 for (DataMapping $mapping: $mappings) {

78 String $value = $context.evaluateXPathValue($mapping.getSource (),

$lcontext.getNode ()).replaceAll("\\s+", " ").replace(" - ", " -- ").

replace("- ", "");

79 if (! $value.equals("")) {

B.4. PROCESS SPECIFICATIONS IN XML FORMAT (NPB) 341

80 annotate($context.getStack ().peek(), $mapping.getTarget (), $value ,

$context);

81 }

82 }

83 end

84

85 // removed: not necessary (no cross references)

86 //rule "Reference" ...

87

88 rule "Fragment"

89 when

90 $context: DroolsGlobalContext ()

91 $lcontext: DroolsLocalContext($context.knowledgebases[" fragmentIndicators "].

termGroups[" indicators "] contains node.localName)

92 then

93 Fragment $fragment = $context.createFragment(getId($lcontext , $context));

94 String $ind = getIndicators($lcontext);

95 List <DataMapping > $mappings = $context.getMappings(" styleFragment ");

96 for (DataMapping $mapping: $mappings) {

97 if ($ind.equals($mapping.getSource ())) {

98 $fragment.addStructuralType($mapping.getTarget ());

99 }

100 }

101 // removed: not necessary (no keywords)

102 // $mappings = $context.getMappings (" keywordFragment ");

103 $lcontext.setFragment($fragment);

104 Assertions $kb = (Assertions) $context.getKnowledgebases ().get("

documentStructure ");

105 boolean changed = true;

106 while (changed) {

107 changed = false;

108 for (OntologyClass $newtype: $fragment.getStructuralTypes ()) {

109 for (OntologyClass $stacktype: $context.getStack ().peek().

getStructuralTypes ()) {

110 if ($kb.getBroaderSelf($stacktype.getURI ()).contains($newtype.

getURI ())) {

111 $context.getStack ().pop();

112 changed = true;

113 }

114 }

115 }

116 }

117 // adapted: exception for child insertion

118 if (! $lcontext.getNode ().getLocalName ().equals("block"))

119 $context.getStack ().peek().addChild($fragment);

120 else

121 $context.removeFragment($fragment);

122 $context.getStack ().push($fragment);

123 end

124

125 /* removed: not necessary (only one file)

126 * rule "File Root" */

Background knowledge: document structure

1 <assertions >

2 <roleAssertion role=" hasNarrower "

3 left=" vdk:Process " right=" vdk:SubProcess "/>

4 <roleAssertion role=" hasNarrower "

342 APPENDIX B. USE CASES

5 left=" vdk:SubProcess " right=" vdk:Choice "/>

6 <roleAssertion role=" hasNarrower "

7 left=" vdk:Choice " right="vdk:Step"/>

8 </assertions >

Background knowledge: fragment indicators subProcess, variant, blockOccurrence,
block

Background knowledge: style fragment mappings
subProcess → vdk:SubProcess
variant → vdk:Choice
blockOccurrence → vdk:Step
block → vdk:Step

Background knowledge: data indicators subProcess, variant, block

Background knowledge: data mappings
./name/text() → vdk:name

B.5 Process specifications in Word format (DLR)

Drools extraction rules

1 package de.uni_passau.verdikt.DocumentModel.adapter.implementation;

2

3 import de.uni_passau.verdikt.DocumentModel .*;

4 import de.uni_passau.verdikt.DocumentModel.BackgroundKnowledge .*;

5 import org.w3c.dom.*

6 import java.util .*;

7

8 function void annotate(Fragment fragment , String name , Object value ,

DroolsGlobalContext context) {

9 if (name == null)

10 return;

11 if (name.equals(""))

12 return;

13 if (value == null)

14 return;

15 fragment.addAnnotation(context.createDataAnnotation(name , value));

16 }

17

18 function List getChildElementsRecursive(Element node) {

19 List result = new ArrayList ();

20 NodeList children = node.getChildNodes ();

21 for (int i=children.getLength () -1;i>=0;i--) {

22 if (children.item(i) instanceof Element) {

23 Element child = (Element) children.item(i);

24 result.addAll(getChildElementsRecursive(child));

25 result.add(child);

26 }

27 }

28 return result;

29 }

30

B.5. PROCESS SPECIFICATIONS IN WORD FORMAT (DLR) 343

31 function List getChildElements(DroolsLocalContext lcontext) {

32 return getChildElementsRecursive(lcontext.getNode ());

33 }

34

35 function String [] getIndicators(DroolsLocalContext lcontext) {

36 // adapted

37 String [] result = new String [2];

38 String ind = lcontext.getNode ().getNodeName ();

39 result [0] = ind;

40 result [1] = ind;

41 if (lcontext.getNode ().hasAttribute("pStyle")) {

42 result [0] += "_" + lcontext.getNode ().getAttribute("pStyle").replace(" ",

"");

43 result [1] += "_" + lcontext.getNode ().getAttribute("pStyle").replace(" ",

"");

44 }

45 if (lcontext.getNode ().hasAttribute("text"))

46 result [1] += "_" + lcontext.getNode ().getAttribute("text").replace(" ", ""

);

47 return result;

48 }

49

50 function String getId(DroolsLocalContext lcontext , DroolsGlobalContext context) {

51 // adapted

52 return context.generateId(lcontext);

53 }

54

55 rule "Element Recursion"

56 salience 20

57 when

58 $context: DroolsGlobalContext ()

59 $lcontext: DroolsLocalContext(parent == null && recursed == false)

60 then

61 for (Object $child: getChildElements($lcontext)) {

62 DroolsLocalContext $childcontext = $context.createLocalContext ();

63 $childcontext.setNode ((Element) $child);

64 $childcontext.setParent($lcontext);

65 insert($childcontext);

66 }

67 modify($lcontext) {

68 setRecursed(true);

69 }

70 // removed: not necessary (only one file)

71 // Fragment $fragment = $context.createFragment($lcontext);

72 // $context.getModel ().getRoot ().addChild($fragment);

73 end

74

75 // removed: not necessary (only one file)

76 // rule "Reference Insertion" ...

77

78 // added: manually add background knowledge to the document model

79 rule "BGK"

80 when

81 $context: DroolsGlobalContext ()

82 $lcontext: DroolsLocalContext(node.nodeName == "entity")

83 then

84 Fragment $bgk = $context.createFragment("bgk");

85 $bgk.addStructuralType("vdk: BackgroundKnowledge ");

86 for (String $person: $context.getKnowledgebases ().get("persons").getTermGroups

().get("persons"))

87 $bgk.addAnnotation($context.createDataAnnotation("ent:person", $person));

88 $context.getModel ().getRoot ().addChild($bgk);

344 APPENDIX B. USE CASES

89 end

90

91 rule "Data Annotation "

92 when

93 $context: DroolsGlobalContext ()

94 $lcontext: DroolsLocalContext($context.knowledgebases[" dataIndicators "].

termGroups[" indicators "] contains node.nodeName)

95 then

96 List <DataMapping > $mappings = $context.getMappings("data");

97 for (DataMapping $mapping: $mappings) {

98 String $value = $context.evaluateXPathValue($mapping.getSource (),

$lcontext.getNode ()).trim();

99 if (! $value.equals("")) {

100 // use additional background knowledge: check names against list of

personel

101 for (String $term: $context.getKnowledgebases ().get("persons").

getTermGroups ().get("persons"))

102 if ($value.toLowerCase ().contains($term.toLowerCase ())) {

103 $value = ((SKOSOntology) $context.getKnowledgebases ().get("

persons")).getDefaultTerm($term);

104 break;

105 }

106 annotate($context.getStack ().peek(), $mapping.getTarget (), $value ,

$context);

107 }

108 }

109 end

110

111 // removed: not necessary (no references)

112 //rule "Reference" ...

113

114 rule "Fragment"

115 when

116 $context: DroolsGlobalContext ()

117 $lcontext: DroolsLocalContext($context.knowledgebases[" fragmentIndicators "].

termGroups[" indicators "] contains node.nodeName)

118 then

119 Fragment $fragment = $context.createFragment(getId($lcontext , $context));

120 // adapted: multiple indicators

121 String [] $inds = getIndicators($lcontext);

122 for (String $ind: $inds) {

123 List <DataMapping > $mappings = $context.getMappings(" styleFragment ");

124 for (DataMapping $mapping: $mappings) {

125 if ($ind.equals($mapping.getSource ())) {

126 $fragment.addStructuralType($mapping.getTarget ());

127 }

128 }

129 }

130 // removed: not necessary (no keywords)

131 // $mappings = $context.getMappings (" keywordFragment ");

132 $lcontext.setFragment($fragment);

133 Assertions $kb = (Assertions) $context.getKnowledgebases ().get("

documentStructure ");

134 boolean changed = true;

135 while (changed) {

136 changed = false;

137 for (OntologyClass $newtype: $fragment.getTypes ()) {

138 for (OntologyClass $stacktype: $context.getStack ().peek().getTypes ())

{

139 if ($kb.getBroaderSelf($stacktype.getURI ()).contains($newtype.

getURI ())) {

140 $context.getStack ().pop();

B.5. PROCESS SPECIFICATIONS IN WORD FORMAT (DLR) 345

141 changed = true;

142 }

143 }

144 }

145 }

146 // adapted: add only valid fragments

147 if (! $fragment.getTypes ().isEmpty ()) {

148 // added: mark the first document

149 if ($fragment.hasStructuralType("vdk:Document"))

150 annotate($fragment , "vdk:initial", $context.initial (), $context);

151 $context.getStack ().peek().addChild($fragment);

152 $context.getStack ().push($fragment);

153 } else

154 $context.removeFragment($fragment);

155 end

156

157 /* removed: not necessary (only one file)

158 * rule "File Root" */

Background knowledge: document structure

1 <assertions >

2 <roleAssertion role=" hasNarrower "

3 left=" vdk:Entity " right=" vdk:Document "/>

4 <roleAssertion role=" hasNarrower "

5 left=" vdk:Document " right=" vdk:Section "/>

6 <roleAssertion role=" hasNarrower "

7 left=" vdk:Document " right=" vdk:Process "/>

8 <roleAssertion role=" hasNarrower "

9 left=" vdk:Document " right=" vdk:ProductIn "/>

10 <roleAssertion role=" hasNarrower "

11 left=" vdk:Document " right=" vdk:ProductOut "/>

12 <roleAssertion role=" hasNarrower "

13 left=" vdk:Process " right=" vdk:ProductIn "/>

14 <roleAssertion role=" hasNarrower "

15 left=" vdk:Process " right=" vdk:ProductOut "/>

16 <roleAssertion role=" hasNarrower "

17 left=" vdk:ProductIn " right=" vdk:Process "/>

18 <roleAssertion role=" hasNarrower "

19 left=" vdk:ProductOut " right=" vdk:Process "/>

20 <roleAssertion role=" hasNarrower "

21 left=" vdk:Process " right="vdk:Step"/>

22 </assertions >

Background knowledge: fragment indicators entity, document, paragraph

Background knowledge: style fragment mappings

346 APPENDIX B. USE CASES

entity → vdk:Entity
document → vdk:Document
paragraph Title-Entity → vdk:Section
paragraph Title-ProductIn ProductIn → vdk:ProductIn
paragraph Title-Process Process → vdk:Process
paragraph Title-ProductOut ProductOut → vdk:ProductOut
paragraph Title-berschrift1 → vdk:Section
paragraph Title-berschrift2 → vdk:Section
paragraph Title-berschrift3 → vdk:Section

Background knowledge: data indicators document, paragraph

Background knowledge: data mappings
substring(self::node()[preceding::paragraph[1]/@text=’Prepared:’]/@text, 6) → ent:prepared
substring(self::node()[preceding::paragraph[1]/@text=’Reviewed:’]/@text, 6) → ent:reviewed
substring(self::node()[preceding::paragraph[1]/@text=’Approved:’]/@text, 6) → ent:approved
substring(self::node()[preceding::paragraph[1]/@text=’Released:’]/@text, 6) → ent:released
self::node()[preceding::paragraph[1]/@text=’Process Name’]/@text → data:processname
self::node()[preceding::paragraph[1]/@text=’Process ID’]/@text → data:processid
self::node()[preceding::paragraph[1]/@text=’Process Manager’]/@text → ent:processmanager
self::node()[preceding::paragraph[1]/@text=’Entity Name:’]/@text → data:entityname
self::node()[preceding::paragraph[1]/@text=’Entity Path:’]/@text → data:entitypath
self::node()[preceding::paragraph[1]/@text=’Facility Name:’]/@text → data:facilityname
self::node()[preceding::paragraph[1]/@text=’Facility Path:’]/@text → data:facilitypath
self::node()[preceding::paragraph[1]/@text=’Document ID:’]/@text → dc:subject
self::node()[preceding::paragraph[1]/@text=’Issue:’]/@text → vdk:version
self::node()[preceding::paragraph[1]/@text=’Date:’]/@text → source:change
self::node()[starts-with(@pStyle, ’Title-’)]/@text → data:topic
self::node()[@numbering=’true’]/@text → data:topic
self::node()[@numbering=’true’ and @color=’0000FF’]/@text → data:product
self::node()[@table=’true’ and @column=’1’ and @pStyle=’TableCellValue’]/@text → vdk:previousversion

SPARQL queries for verification model: select states

1 SELECT ?s

2 WHERE { ?s rdf:type vdk:Document }

SPARQL queries for verification model: select starting states

1 SELECT ?s

2 WHERE {

3 ?s vdk:id "$state" .

4 ?p dc:subject "Entity Input and Output" .

5 { ?s ref:part ?p }

6 UNION

7 { ?s ref:part ?v0 . ?v0 ref:part ?p }

8 UNION

9 { ?s ref:part ?v1 . ?v1 ref:part ?v2 . ?v2 ref:part ?p }

10 UNION

11 { ?s ref:part ?v3 . ?v3 ref:part ?v4 . ?v4 ref:part ?v5 . ?v5 ref:part ?p }

12 }

B.5. PROCESS SPECIFICATIONS IN WORD FORMAT (DLR) 347

SPARQL queries for verification model: select successors for states

1 SELECT ?s

2 WHERE { ?s rdf:type vdk:Document . ?s vdk:id ?i }

SPARQL queries for verification model: select values for the concept “ProductIn”

1 SELECT ?d

2 WHERE { ?s vdk:id "$state" . ?s ref:part ?t . ?t ref:part ?p . ?p rdf:type vdk:

ProductIn . ?p data:topic ?d }

SPARQL queries for verification model: select values for the concept “Pro-
ductOut”

1 SELECT ?d

2 WHERE { ?s vdk:id "$state" . ?s ref:part ?t . ?t ref:part ?p . ?p rdf:type vdk:

ProductOut . ?p data:topic ?d }

SPARQL queries for verification model: select values for the concept “EntityPro-
ductIn”

1 SELECT ?d

2 WHERE { ?s vdk:id "$state" . ?s ref:part ?t . ?t ref:part ?p . ?p rdf:type vdk:

ProductIn . ?p data:topic ?d }

SPARQL queries for verification model: select values for the concept “EntityPro-
ductOut”

1 SELECT ?d

2 WHERE { ?s vdk:id "$state" . ?s ref:part ?t . ?t ref:part ?p . ?p rdf:type vdk:

ProductOut . ?p data:topic ?d }

SPARQL queries for verification model: select values for the concept “Process”

1 SELECT ?d

2 WHERE { ?s vdk:id "$state" . ?s ref:part ?p . ?p data:processname ?d }

SPARQL queries for verification model: select values for the concept “Manager”

1 SELECT ?d

2 WHERE { ?s vdk:id "$state" . ?s ref:part ?p . ?p ent:processmanager ?d }

348 APPENDIX B. USE CASES

SPARQL queries for verification model: select values for the concept “ActivePer-
sonnel”

1 SELECT ?d

2 WHERE { ?s rdf:type vdk:BackgroundKnowledge . ?s ent:person ?d }

SPARQL queries for verification model: select values for the concept “Approved”

1 SELECT ?d

2 WHERE { ?s vdk:id "$state" . ?s ent:approved ?d }

SPARQL queries for verification model: select values for the concept “Reviewed”

1 SELECT ?d

2 WHERE { ?s vdk:id "$state" . ?s ent:reviewed ?d }

SPARQL queries for verification model: select values for the concept “Released”

1 SELECT ?d

2 WHERE { ?s vdk:id "$state" . ?s ent:released ?d }

SPARQL queries for verification model: select values for the concept “Docu-
mentVersion”

1 SELECT ?d

2 WHERE { ?s vdk:id "$state" . ?s vdk:version ?d }

SPARQL queries for verification model: select values for the concept “Recorded-
Version”

1 SELECT ?d

2 WHERE { ?s vdk:id "$state" . ?s vdk:previousversion ?d }

SPARQL queries for verification model: select values for the concept “Source”

1 SELECT ?d

2 WHERE { ?s vdk:id "$state" . ?s ref:part ?p . ?p data:processid ?d }

B.5. PROCESS SPECIFICATIONS IN WORD FORMAT (DLR) 349

SPARQL queries for verification model: select values for the role “hasManager”
(base)

1 SELECT ?p

2 WHERE { ?s vdk:id "$state" . ?s ref:part ?p . ?p ent:processmanager ?m . ?p data:

processname ?n }

SPARQL queries for verification model: select values for the role “hasManager”
(left hand side)

1 SELECT ?n

2 WHERE { ?s vdk:id "$base" . ?s data:processname ?n }

SPARQL queries for verification model: select values for the role “hasManager”
(right hand side)

1 SELECT ?m

2 WHERE { ?s vdk:id "$base" . ?s ent:processmanager ?m }

SPARQL queries for verification model: select values for the role “managerOf”
(base)

1 SELECT ?p

2 WHERE { ?s vdk:id "$state" . ?s ref:part ?p . ?p ent:processmanager ?m . ?p data:

processname ?n }

SPARQL queries for verification model: select values for the role “managerOf” (left
hand side)

1 SELECT ?m

2 WHERE { ?s vdk:id "$base" . ?s ent:processmanager ?m }

SPARQL queries for verification model: select values for the role “managerOf”
(right hand side)

1 SELECT ?n

2 WHERE { ?s vdk:id "$base" . ?s data:processname ?n }

350 APPENDIX B. USE CASES

B.6 Game of Life

The following Drools rule set implements Conway’s Game of Life:

1 rule "init"

2 when

3 $m: MediaObject(text == "init")

4 $field: Field ()

5 then

6 $field.clear();

7 end

8

9 rule " starvation "

10 when

11 $m: MediaObject(metadata[" neighbours "] == "0"

12 || metadata[" neighbours "] == "1")

13 $field: Field ()

14 then

15 $field.setCell($m.getMetadata("x"), $m.getMetadata("y"), false);

16 end

17

18 rule "life"

19 when

20 $m: MediaObject(metadata[" neighbours "] == "2"

21 || metadata[" neighbours "] == "3")

22 $field: Field ()

23 then

24 $field.setCell($m.getMetadata("x"), $m.getMetadata("y"), true);

25 end

26

27 rule " overcrowding "

28 when

29 $m: MediaObject(metadata[" neighbours "] == "4"

30 || metadata[" neighbours "] == "5"

31 || metadata[" neighbours "] == "6"

32 || metadata[" neighbours "] == "7"

33 || metadata[" neighbours "] == "8")

34 $field: Field ()

35 then

36 $field.setCell($m.getMetadata("x"), $m.getMetadata("y"), false);

37 end

38

39 rule " generation "

40 when

41 $m: MediaObject(text == " generation ")

42 $field: Field ()

43 then

44 $field.display ();

45 MediaObject $o = new MediaObject ();

46 $o.setText(" generation ");

47 insert($o);

48 for (int $y=0;$y<Field.MAX;$y++) {

49 for (int $x=0;$x<Field.MAX;$x++) {

50 int $n = $field.countNeighbours($x , $y);

51 if ($field.getCell($x, $y) || $n == 3) {

52 $o = new MediaObject ();

53 $o.setMetadata(" neighbours ", $n);

54 $o.setMetadata("x", $x);

55 $o.setMetadata("y", $y);

56 insert($o);

57 }

58 }

B.6. GAME OF LIFE 351

59 }

60 $field.clear();

61 end

It can be applied to XML documents that are serialised as MediaObjects and inserted in
reverse document order. For example, the “blinker” document

1 <gol>

2 <m text="init"/>

3 <m x="2" y="1" neighbours="1"/>

4 <m x="2" y="2" neighbours="2"/>

5 <m x="2" y="3" neighbours="1"/>

6 <m x="1" y="2" neighbours="3"/>

7 <m x="3" y="2" neighbours="3"/>

8 <m text=" generation "/>

9 </gol>

results in the following alternating output:

.....

..... ..X..

.XXX. => ..X.. => .XXX. => ...

..... ..X..

.....

The slightly more complex “glider” document

1 <gol>

2 <m text="init"/>

3 <m x="2" y="1" neighbours="1"/>

4 <m x="3" y="2" neighbours="3"/>

5 <m x="1" y="3" neighbours="1"/>

6 <m x="2" y="3" neighbours="3"/>

7 <m x="3" y="3" neighbours="2"/>

8 <m x="2" y="4" neighbours="3"/>

9 <m x="1" y="2" neighbours="3"/>

10 <m text=" generation "/>

11 </gol>

results in the following progressing output:

......

......

.X.X.. ...X.. ..X... ...X..

..XX.. => .X.X.. => ...XX. =>X. => ..X.X. => ...

..X... ..XX.. ..XX.. ..XXX. ...XX.

......X..

......

	I Preliminaries
	Introduction
	Motivation
	Problem Description
	Approach
	Contributions

	Other Work
	Documents
	Document Types
	Digital Video

	Document Modelling and Verification

	II Foundations
	Technologies
	XML Technologies
	XML
	XPath
	XQuery

	Description Logics
	Syntax of Description Logics
	Semantics of Description Logics
	Description Logic Languages

	Semantic Web Technologies
	RDF
	RDF Schema
	OWL
	SKOS
	SPARQL
	RDF Frameworks

	Rule Languages
	Model Checking
	CTL
	ALCCTL

	Modelling Digital Documents
	Terminology
	What is a Document?
	Our Notion of a Document
	Interactivity in Documents
	Other Types of Documents
	Layers of Abstraction on Documents
	Formalised Notion of a Document

	Modelling Semantic Data
	Modelling Documents
	Modelling Processes

	Processing Digital Documents
	Extracting Data Models
	Inference on Document Models
	Modelling Towers of Meta

	Background Knowledge
	Obtaining Knowledge from Wikipedia
	Preparing Wikipedia for Knowledge Extraction
	Harvesting Wikipedia
	Practical Considerations

	Obtaining Knowledge from other Sources

	III Implementation
	System Architecture
	System Overview
	Preprocessing
	Semantic Processing
	Postprocessing

	Implementing Document Models
	Implementation Basics
	Implementing Document Fragments
	Implementing Relations
	Implementing Include Relations
	Implementing Reference Relations
	Implementing Has-Part Relations
	Implementing Literal-Valued Relations

	Document Lifecycle
	Implementing Process Models

	Processing Document Models
	Extracting Data Models
	Program-based Extraction
	Query-based Extraction
	Rule-based Extraction

	Inference on Document Models
	Views on a Document Model

	Use Cases
	Document Verification
	Realistic Technical Documentation Use Case
	Real E-Learning Use Case
	Real Lecture Notes Use Case

	Process Verification
	Other Use Cases

	IV Evaluation
	Quantitative Evaluation
	Generated Documents
	Real Documents from Different Domains
	E-Learning Documents
	Technical Documentation
	Process Descriptions (NPB)
	Process Descriptions (DLR)

	Comparison with Alternative Methods
	Adaptability of the Processing Rules
	Inference on Large Ontologies

	Qualitative Evaluation
	Expressive Power of Transformation Rules and Background Knowledge
	Quality of the Document Models
	Quality of the Background Knowledge
	Relationship between Qualities
	Applicability to Different Types of Documents

	V Conclusion
	Conclusion
	Extensions and Future Work
	Bibliography
	List of Figures
	List of Tables
	Index

	VI Appendix
	Model Vocabulary
	Common Vocabulary
	Object Properties
	Datatype Properties
	Classes

	Vocabulary for Documents
	Object Properties
	Datatype Properties
	Classes

	Vocabulary for Processes
	Object Properties
	Datatype Properties
	Classes

	Use Cases
	Technical documentations in DocBook format
	Process specifications in BPMN format (NPB)
	Process specifications in Visio format (NPB)
	Process specifications in XML format (NPB)
	Process specifications in Word format (DLR)
	Game of Life

