
Verification of Web-Content: A Case
Study on Technical Documentation

Christian Schönberg, Mirjana Jakšić, Franz Weitl and Burkhard
Freitag

Department of Informatics and Mathematics, University of Passau
{Christian.Schoenberg, Mirjana.Jaksic, Franz.Weitl,

Burkhard.Freitag}@uni-passau.de

Technical Report, Number MIP-0904
Department of Informatics and Mathematics

University of Passau, Germany
February 2009

Christian Schönberg, Mirjana Jakšić, Franz Weitl, Burkhard Freitag: Verification of Web-Content: A Case Study on Technical Documentation.
2009. Technical report, Number MIP-0904, University of Passau

Abstract. In this paper, we present the results of a case study on a
novel approach to document verification. Employing new techniques of
user constraint specification and model checking, our aim is to bridge
the gap between logical precision and usability, thus enabling authors
and inexperienced users to employ formal verification methods. Based
on a technical documentation in the form of a web document, we show
that our approach is effective, efficient and has a high usability. Addi-
tionally, we argue that document verification is highly relevant for many
applications, but especially for web content and hypertext documents.

1 Introduction

Keeping technical documentations in a consistent state – w.r.t. both structure
and content – is a hard task. Many documentations today are compiled from a
number of separate resources and text fragments, depending on current require-
ments and priorities. Online documentations complicate matters further because
they usually offer more than one (linear) path through the document, rendering
content consistency almost impossible to check manually.

At the same time, publishing documents online, in digital formats, is steadily
gaining in importance. Most manufacturers make their technical documentations
available on the web, while reusing content that is common to more than one
product. This further increases the impact and relevancy of automatic document
verification [KSS04].

As part of the Verdikt1 project [WJF09] we propose a framework that em-
ploys information extraction, temporal description logics, and model checking
to verify consistency criteria on a multitude of document types. In this paper,
we will describe the techniques in the context of a case study in the domain of
technical documentation.

The results of the case study

– confirm the usability of our method for users not acquainted with formal
methods,

– show the limited effort required to prepare a web document for model check-
ing,

– reveal the efficiency of model checking, and
– demonstrate the precision and usefulness of error reports generated by model

checking.

As a result, our approach helps bridging the gap between formal precision
and usability. This sets it apart from existing work in the field of document
verification.

For the purpose of this use case, we have adopted a version of our approach
that is simplified in several areas. At the appropriate points, we will describe
briefly how our framework goes beyond the techniques described here. Our ap-
proach is explained in more detail in [WJF09].

The rest of this paper is organized as follows: Section 2 describes our use
case. Section 3 gives an overview of the Verdikt framework. Sections 4 through
6 contain more detailed descriptions of the main components of the framework
and exemplify the overall processing based on our use case. Section 7 presents
the results achieved, section 8 discusses related work, and section 9 concludes
the paper.

1 This work is funded by the German Research Foundation (Deutsche Forschungsge-
meinschaft, DFG) under grant number FR 1021/7-1.

2 Use Case

The case study presented in this paper concentrates on the domain of technical
documentation. As a sample document we picked a manual of a digital satellite
receiver published at the manufacturer’s web site and anonymized it, basically by
replacing company names, product brands, images, and most distinct phrases.
This lead to a document containing all the general features, characteristics, and
errors of the original but being anonymous in the sense that it cannot be linked to
a specific brand or seller. As a result, we obtained a document of 80 printed pages,
split into 25 HTML files that is a typical representative of technical documents in
terms of content, structure, and size. By convention, the content of each HTML
file is called a chapter of the document in the sequel.

Start Introduction

Safety
instructions

Important
instructions

Table of
contents

Package
content

Overview
of controls

Trouble-
shooting

Technical
lexicon

Technical
appendix

Fig. 1. Structure of the sample document

Fig. 1 presents a part of the basic structure of the web document in the
form of a directed graph of HTML pages / chapters (vertices) and links between
them (edges). The document begins with a title page (start), followed by a short
introduction, followed by important instructions, package content, and a table of
contents. The table of contents is succeeded by safety instructions and overview
of controls. Further follow the instructions about all the settings, options, and
functions of the receiver that could be used. The manual includes a technical
appendix – an overview of the complete configuration of the receiver, and a
technical lexicon – an overview of all abbreviations and technical terms with
explanations. The document ends with a troubleshooting chapter.

The manual contains some problems that severely limit its readability. First,
inconsistent notation is used for some technical terms. For example, as a short
form of the term Conditional Access Module, the notation CA-Module has
been used in all chapters of the document, except for the technical lexicon, where
this term is referred to as CAM. We also found some abbreviations like USB,
EPG, FBAS, which are not explained in the technical lexicon at all. Finally, there
are some interfaces (like Ethernet) shown in the chapter overview of controls,
which are not described later on.

Among the objectives of this case study is to demonstrate the usability for
the end user and to determine the effort required to apply our framework in a
real-world scenario. Both are important factors for the general practicability of
the approach. In addition, the efficiency of the system is evaluated by runtime
tests.

3 Verdikt Framework

In the context of the Verdikt project, a general framework for document verifica-
tion has been developed [WJF09], which is divided into three major components:
the information extraction and model generation component, the specification
and formula generation component, and the model checking and error reporting
component.
The first component (information extraction) reads all relevant data from the
source document, stores it for further processing, and creates a verification model
suitable for model checking. The second component (specification) allows the
user to specify criteria to be applied to the input document. To this end, a
high level approach to the specification process based on specification patterns
is used [JF08]. The third component employs temporal description logics and
model checking techniques to verify the specification against the model and to
track errors to their origin in the source document. Temporal description logics
allow for the concise representation of consistency criteria evaluated along some
or all paths through the document the reader can sensibly follow. These paths
are subsequently called reading paths. For instance, “Start” → “Introduction”
→ “Table of contents” → “Troubleshooting” is a reading path in the document
depicted in Fig. 1.

A detailed overview of the framework is shown in Fig. 2. The user defines a
set of consistency criteria to be applied to a document (top left corner). These
user level specifications are converted into logical formulae to be used by the
model checker (top center). From a document base (bottom right corner), data
is extracted and stored as RDF metadata statements, which can be combined
with background knowledge about the domain of discourse. The user can choose
what metadata is relevant for the current application and should therefore be
transferred to the verification model (top right corner), which is then passed
on to the model checker. The model checking component, based on temporal
description logics (TDL), calculates the verification result according to the spec-
ification and the verification model, from which an error report is distilled and
presented to the user (bottom center). To make sense to the user, the error report
has to take into account the original user specification and has to refer to the
source document. Those source references are added to the document metadata.

4 Information Extraction

Extracting the necessary data from the document is performed in three stages:
(a) Extract the data from the document sources (in this case HTML), (b) store

verification model

TDL model
checker

logic level
specification

result
interpreter

error report

verification
result

user level
specification

model
generator

user document base

doc.
doc.

doc.
doc.

RDF statements

background
knowledge

document metadata

constructs configures

knowledge
extraction

Fig. 2. Overview of the Verdikt framework

the data in an RDF database, and (c) convert the data to a verification model
according to the semantics of the logic level specification language ALCCTL
(see sections 5 and 6). The model generated in step (c) can be adjusted to
meet different requirements, for example a fine-grained model describing every
paragraph of the document, or a more abstract model on the level of chapters.
To facilitate creating different models without having to reprocess the original
document, or to allow for ontology inferencing, the data is stored in an RDF
database.

(a) HTML extraction. First, the HTML source files are preprocessed using
JTidy2 to produce valid XML code. Subsequently, they are converted into RDF
triples by means of an XQuery program. Using the Qexo3 XQuery implemen-
tation, we developed and added further functionality to the XQuery program,
including an extended context to keep track of current and previously parsed
elements, list-like data structures to facilitate a file history and to avoid infinite
loops, and several convenience methods to create valid RDF XML code.

2 Java HTML Tidy, c© World Wide Web Consortium
3 Qexo is part of GNU Kawa, c© Per Bothner

chapter_6 “Overview of Controls”

“Front View”“Chapter”document:Structure

document:Title

c_6_front
“Multifunction Control”

p
document:Title

reference:Part

document:Term

“Back View”

“USB Connection”
“Section”

document:Structure

c 6 back

Back View

“Power Switch”
document:Title

reference:Part

d t T
_ _

“Power Connection”
document:Structure

document:Term

“Ethernet Connection”“Section”

Fig. 3. Small extract of the RDF metadata about the sample document

Using a predefined vocabulary and CSS classes to infer structural informa-
tion, a metadata description of the sample document is generated, which is
represented in RDF (see Fig. 3).
Structural metadata includes information about the document’s chapter and
subchapter structure, as well as the content type of text units: for example, a
section is identified as an introduction or as a technical appendix. In our case
study, evaluating stylesheet classes and rudimentary keyword analysis were suf-
ficient to determine all important attributes. For more complex documents, we
have dictionaries and thesauri at our disposal, and we have made some initial
experiments based on natural language processing and machine learning.
Similar techniques can be applied to the extraction of content information, which
is however the more difficult task. In this case study, we used background knowl-
edge about the important terms, so we could employ elementary grammar rules
to find all instances of those terms in the text.

(b) RDF database storage. After a comparative analysis of both the capabilities
and the performance of different RDF database systems [SF09a], we decided to
employ the Sesame Framework4, an open source software that supports several
relational databases, including PostgreSQL and MySQL, and different query
languages, including SPARQL and an extension of RQL. It both outperformed
and offered better reliability than its major competitor, the Jena Framework5.

In our case study, the RDF data amounted to nearly 900 statements. This
number can easily grow by one or several orders of magnitude for very large doc-
4 c© Aduna Software
5 c© Hewlett-Packard Development Company, LP

uments or interconnected web pages. In these cases, memory management be-
comes an issue, and storing the data in a database system is mandatory [SF09a].

(c) Verification model generation. We again use XQuery to generate a verifica-
tion model from the RDF graph. This gives us more flexibility in customizing
the verification model to the requirements of the use case than native RDF
query languages would, since these do not support recursive queries required to
track paths in the RDF graph [SF09a]. Instead of simply transferring the entire
metadata about the document to the verification model, we exclude information
irrelevant for the desired specifications. This increases the efficiency of model
checking and helps to facilitate a greater ease of use by providing a concise set
of vocabulary for user level specifications.

chapter_6
“Overview of Controls”

document:Title

reference:Reference

c_6_front

“Chapter”
document:Structure

document:Title

reference:Part

chapter_7

d t Titl

reference:Reference

m
et

ad
at

a
en

ts
)

“Front View”

“Section”

document:Structure document:Term
“Setup”

“Chapter”
document:Structure

document:Title

“Multifunction Control”

do
cu

m
en

t
R

D
F

st
at

em
e

model

Parameters:
• “Chapters” are the relevant structural elements
• Terms are to be represented as a concept Term
• Titles of Chapters are to be represented as a role hasTopic

d (R
el ic

)

generator

at
io

n
m

od
es

cr
ip

tio
n

lo
g

chapter_6 chapter_7

ve
rif

ic
a

(te
m

po
ra

l d
e

hasTopic = {(chapter_6, “Overview…”), (chapter_6, “Front View”)}

hasTopic = {(chapter_7, “Setup”)}

p {(p _) (p _)}
Term = {“Multifunction Control”}

Fig. 4. Generating the verification model from the RDF metadata

Fig. 4 provides an example of how the verification model is generated from
the document metadata w.r.t. a set of external parameters. The parameters
for this example specify that the relevant structural unit is the “Chapter” (as

opposed to e.g. “Section” or “Paragraph”), that any technical terms should be
represented by a concept named Term, and that the relation between chapters
and their titles and subtitles should be represented by a role named hasTopic.
The verification model is described in detail in section 6.

5 Formal Specification

For the purpose of our case study, we have chosen the following sample consis-
tency criteria:

1. Each abbreviation has to be defined later on.
2. Any technical term used in the document should be explained in the technical

lexicon.
3. The safety instructions should be listed immediately after the table of con-

tents.
4. The package content should be listed before the table of contents.
5. Any interface shown in the overview of controls should be explained later on

in the technical appendix.

To prove these or any other criteria automatically, they have to be expressed
in some formal language. For the formal representation of consistency criteria,
we use the temporal description logic ALCCTL, which has been introduced in
[Wei08]. ALCCTL is a combination of the description logic ALC [BN03] and the
branching time temporal logic CTL [Eme90]. ALC is expressive for representing
structured properties of single content elements. CTL is expressive for represent-
ing loose criteria on reading paths through the document. The combination of
description and temporal logics provides high expressiveness for content-related
criteria w.r.t. reading paths.

Consider the first sample criterion: Each abbreviation has to be defined later
on, which can be expressed in ALCCTL as:

AbbreviatedTerm v EF DefinedTerm (1)

AbbreviatedTerm and DefinedTerm are concepts representing an abbreviation
and a definition of a technical term, respectively. v expresses that all instances
of the concept to its left (in this case AbbreviatedTerm) are also instances of the
concept to its right (in this case EF DefinedTerm). EF (read “some path future”)
is a temporal connective representing the set of objects which on some path are
eventually an instance of the concept in the scope of the EF quantification. For
instance, EF DefinedTerm is the set of terms being defined in some text unit
reachable from the current text unit on some reading path.

In addition to the atomic concepts AbbreviatedTerm and DefinedTerm in for-
mula (1), ALCCTL provides constructors to form complex concept terms [Wei08]
that enable the representation of relevant properties which cannot be expressed
by existing propositional temporal logics such as CTL and LTL [Eme90].

Expressing consistency criteria in a temporal description logics like ALCCTL
requires good mathematical knowledge and usually involves considerable effort.
For these reasons, ALCCTL is not suitable to be employed directly by the end
user. In the context of the case study, we manually prepared natural language
formulations of the selected target criteria. Of course, this approach does not
scale up to larger scenarios. In addition, criteria expressed in natural language are
usually ambiguous. We suggest specification patterns [JF08,WJF09] to support
the end user in specifying different types of consistency criteria without having
to deal with ALCCTL or being limited to a predefined set of natural language
sentences.

6 Model Checking and Error Reporting

Within our framework, specifications represented in ALCCTL are verified by
model checking [Wei08,WJF09]. ALCCTL model checking combines high preci-
sion with excellent performance [Wei08]. In the case of specification violations,
counterexamples are generated that precisely pinpoint the error locations within
the document.

Here, we cannot give a comprehensive introduction into model checking
ALCCTL. Instead, we illustrate ALCCTL model checking informally on a sim-
plified part of our use case and refer the reader to [Wei08] and [WJF09] for
technical details.

The model checking problem of ALCCTL is defined on top of two structures:

– a finite, non-empty set of ALCCTL formulae F that are derived from pattern-
based specifications [JF08,WJF09] and represent consistency criteria to be
met by a document d.

– a finite verification model Md of document d that is derived from RDF-based
metadata (Fig. 4) and represents the structure and content of document d.

Fig. 5 depicts a simplified part of the verification model of the presented
use case. The verification model is an annotated graph (S, R, I): Nodes S of the
graph represent text units of the document (in our case: web pages), edges R
represent links between text units, and annotations I represent the content of
each text unit of the document.

In Fig. 5, S contains the nodes “chapter 0” (start), “Table of contents”,
R contains, for instance, an edge from “Table of contents” to “chapter 7” and
an edge from “chapter 7” back to “Table of contents” (Fig. 5 center). I maps
each node in S onto a set of annotations. For instance, I(chapter 7) represents
the annotations for node “chapter 7” in Fig. 5 center bottom:

hasTopic = {(chapter 7, “Setup”)} (2)
AbbreviatedTerm = {“LNB”} (3)

This expresses that “chapter 7” covers the topic “Setup” and mentions the ab-
breviation “LNB”. The technical details of defining the interpretation I are omit-
ted here for brevity. The respective formal definitions can be found in [Wei08].

Table of
contents

chapter_6 chapter_7 chapter_23chapter_22

hasTopic = {(chapter_6, ”Overview...”),
(chapter_6, “Front View”)}

Term = {“Multifunction Control”}
AbbreviatedTerm = {“CA-Module”,

“USB”, “SPDIF”}

hasTopic = {(chapter_7, ”Setup”)}
AbbreviatedTerm = {“LNB”}

DefinedTerm = {“CA System”,
“HDMI”, “LNB”}

chapter_0

Fig. 5. Simplified verification model of the sample document

In contrast to models of propositional temporal logics such as CTL [Eme90],
the interpretation I of ALCCTL verification models allows to express relation-
ships among objects of the modeled domain. For instance, the fact that the
objects represented by chapter 7 and “Setup” are in a hasTopic relationship in
node chapter 7 (equation (2)) cannot be represented directly by means of propo-
sitional formalism such as CTL. Being able to represent semantic interrelation-
ships among parts and topics of a document is vital for verifying content-related
properties.

The semantics of ALCCTL [Wei08] defines when an ALCCTL formula f holds
at a node s ∈ S of a verification model Md = (S, R, I), in symbols Md, s |= f .

Given a verification model Md = (S, R, I) and an ALCCTL formula f , model
checking is defined as determining the set

Nodes(Md, f) := {s ∈ S | Md, s |= f}

i.e. the set of nodes at which a formula f holds in a model Md [Wei08].
Nodes(Md, f) represent the parts of the document that conform to a requirement
represented by formula f .

In [Wei08] we have shown that the ALCCTL model checking problem is decid-
able and has a polynomial runtime complexity. Further, we have defined a sound
and complete algorithm for determining the set Nodes(Md, f). This algorithm
runs in O(|d|3· |f |) where |d| denotes the size of the document d, and |f | denotes
the size of the formula f to be verified. Documents of several thousands of web
pages are verified in less than 5 seconds. For comparison, the state-of-the-art
CTL model checker NuSMV [CCG+02] takes more than 30 seconds for only 500
pages under similar conditions [Wei08].

For an illustration of model checking, let Md be the verification model de-
picted in Fig. 5 and f be the ALCCTL formula

AbbreviatedTerm v EF DefinedTerm

expressing that each “abbreviated term” is on some path within the graph (S, R)
eventually a “defined term” (compare section 5).

Then chapter 7 ∈ Nodes(Md, f) because for the (only) abbreviated term
“LNB” in chapter 7 (Fig. 5 center bottom) there is a path to the node chapter 23
where “LNB” is a defined term (Fig. 5 rhs bottom). However, chapter 6 6∈
Nodes(Md, f) because there are abbreviated terms “CA-Modules”,“USB”, and
“SPDIF” in chapter 6 (Fig. 5 lhs bottom) that are not defined terms in any
node reachable from chapter 6.

The nodes in S\Nodes(Md, f) represent the error locations within document
d w.r.t. formula f , i.e. the parts of the document d that do not conform to
the criterion represented by formula f . By applying appropriate naming con-
ventions, these nodes can be re-mapped easily onto the respective parts of the
document. For instance, node chapter 6 represents the part of the document
that is contained in chapter 6.html (cf. Table 1, first data row).

error location violating terms

chapter 6.html “CA-Modules”,“USB”, “SPDIF”
chapter 10.html “USB”, “CIM”
chapter 11.html “CA”
... ...

Table 1. Error report of verifying formula AbbreviatedTerm v EF DefinedTerm

Based on the model checking results, an error report as sketched in Table 1 is
generated. The first data row of Table 1 expresses that the terms “CA-Modules”,
“USB”, and “SPDIF” used in web page chapter 6.html are not satisfying the
formula AbbreviatedTerm v EF DefinedTerm.

In addition to the error report, a CSS file is generated that highlights the
violating terms within an error location of the document. Fig. 6 shows the pre-
sentation of “chapter 6.html” with violating terms “CA-Module”, “USB”, and
“SPDIF” being highlighted (bottom of Fig. 6).

7 Results

7.1 Quantitative Results

Table 7.1 summarizes the quantitative results of the case study. We checked a
manual of a satellite receiver, consisting of 25 HTML files, against a set of five
criteria each of them being represented by a single ALCCTL formula (first and
second row in Table 7.1).

18 of 25 web pages had errors (“# error locations” in Table 7.1). These web
pages contained, in total, 48 terms that violated one of the specified properties
(“# violating terms” in Table 7.1). This is surprising since the manual has

Fig. 6. Violating terms highlighted within the verified document

chapters of manual / HTML pages 25
formulae 5
violated formulae 3
error locations 18
violating terms 48

total runtime 9.1 s

time taken by knowledge extraction 4.4 s
model generation 4.5 s
model checking 0.1 s
report generation 0.1 s

Table 2. Results for verifying an online manual of a satellite receiver

not been verified in a pre-release stage but has already been published by the
manufacturer.

The runtime results listed in Table 7.1 have been obtained on a desktop
computer with Intel Pentium IV processor at 3.2 GHz and 2 GB RAM running
Windows XP and Java Version 6. The verification system has been implemented
in Java.

The entire verification process took about 9 seconds (Table 7.1 center). The
major portion of runtime was consumed by the knowledge extraction and model
generation process (Fig. 2) that analyzes HTML markup, generates an RDF
description of the relevant parts of the document, and finally delivers a verifica-
tion model as described in sections 4 and 6. Note, however, that the verification
model can be generated off-line in a preprocessing step and re-used across dif-
ferent verification runs.

Checking the verification model against the ALCCTL-based specification and
generating an error report each took just 1% of the total runtime. This ensures
a quick response of the system when constructing and testing different specifi-
cations interactively.

The application costs for our verification system arise from

– preparing the document. In our case study, the document has been converted
from PDF to HTML format by using the HTML export function of Adobe
Acrobat. The resulting HTML code has been cleaned up, anonymized, and
annotated manually which took about eight hours. Documents in a more
structured original format would require considerably less effort.

– preparing the specification. Five criteria for the content of the document have
been expressed in natural language and then formalized in terms ofALCCTL.
This took about two hours.

– configuring the system. The knowledge extraction, model generation, and er-
ror reporting components have been configured and parameterized according
to the format and markup of the document, which took about two hours in
total.

Altogether, the setup cost of our verification system amounts to about 12
hours of manual effort. This initial effort amortizes quickly when a document
is changed frequently or parts of it are re-used in different contexts which is
typically the case for technical documentations.

7.2 Qualitative Results

Intelligent preprocessing of the document, an expressive yet concise specification
method, and a well-structured GUI result in a high degree of usability that is
unmatched by existing verification or validation methods for documents (see
section 8).

The usability of the approach has been demonstrated at a large exhibition
of the University of Passau targeted at the general public. Visitors that did not
have any knowledge of verification techniques or technical documentation were
able to use the system and understand its verification results after being given
a brief introduction.

We have to add that the presented system was limited w.r.t. the type of
specifications that could be verified. Currently, we are successively increasing
the flexibility of the system without jeopardizing its usability. An intelligent
specification assistant leads the user from a first vague idea of a criterion to a
precise, unambiguous specification using a structured base of predefined specifi-
cation patterns and application examples [JF08].

8 Related Work

Schematron [Jel02] and xlinkit [NCEF02] are powerful tools for validating the
consistency of XML documents. Our approach is different from these and other
XML validation techniques in the following aspects. First, our method is not
limited to XML documents but can be applied to other formats, e.g. HTML,
Microsoft Word, or LATEX, to name a few (cf. [Wei08,SF09b]). Second, properties
of reading paths are hard to express and inefficient to check using XPath, which
is fundamental both to Schematron and xlinkit. Finally, Schematron and xlinkit
are not designed to be used by authors without detailed knowledge about XML
processing.

There are several approaches (e.g. [SFC98,SDM+05,FLV08]) using some pro-
positional temporal logics (CTL, LTL), which enable the specification of complex
properties along browsing paths in hypermedia structures. Although ALCCTL
exceeds the expressive power of these formalisms regarding semantic relation-
ships within the modeling domain, we achieve a better usability by adding a
user specification layer on top of the formal core. In addition, the higher expres-
siveness of ALCCTL results in richer and more precise error reports that clearly
pinpoint problems within the document.

A formal consistency management component based on description logics
is proposed in [ESS05] as an extension to the content management system for
technical documentation Schema ST4 [Gru06]. Extensive tool support ensures
a good usability – at least for authors experienced in technical documentation.
However, description logics on their own are not sufficiently expressive for rep-
resenting criteria on reading paths through the document (cf. [Wei08]).

A powerful and flexible framework for checking the consistency of collections
of interrelated documents has been proposed by [Sch04]. The formal basis is full
first order logics interpreted over a language defined in terms of the functional
programming language Haskell. While the suggested formalisms are very expres-
sive they are also very complex both in terms of computation and application
costs. Our approach offers a better compromise between high expressiveness and
formal precision on the one hand, and efficiency, usability, and low application
costs on the other.

9 Conclusion

We have sketched a new verification framework for web-based documents and
presented the results of a case study on an online manual of a satellite receiver.

The core of the verification framework consists of flexible RDF-based meta-
data representation, configurable generation of verification models, a temporal
description logic as an expressive specification language, and formal verification
of specifications by model checking.

The case study shows that the modularity and flexibility of the framework
reduces its application cost. Temporal description logics and model checking have
been demonstrated as powerful, efficient, and precise methods for the verification
of web documents. Error reports generated from model checking results pinpoint
error locations precisely within the document and highlight problematic terms.
The system offers a high degree of usability and can – in a restricted version – be
applied instantly by users without any pre-knowledge in the area of document
verification. As compared to existing approaches, a better compromise between
expressive power, low application costs, and usability has been found. Thus, an
important step towards closing the gap between the power of formal methods
and their practical applicability has been achieved.

The results of this study have also raised some issues worth to be examined
in more detail.

For one, while the efficiency of the model checking algorithm is already sat-
isfactory, the efficiency of the metadata extraction process still needs to be in-
creased. We believe that, among other things, using more native RDF database
methods may help in that regard. A first prototype has shown encouraging re-
sults.

To identify important terms and topics, we used a small amount of back-
ground knowledge during the extraction process. What remains to be investi-
gated, however, is the trade-off of model quality vs. reasoning effort.

References

[BN03] Franz Baader and Werner Nutt. Basic description logics. In The Description
Logic Handbook - Theory, Implementation and Applications, chapter 2, pages
47–100. Cambridge University Press, 2003.

[CCG+02] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, and A. Tacchella. NuSMV 2: An opensource tool for symbolic
model checking. In Proceedings of Computer Aided Verification (CAV 02),
volume 2404 of LNCS. Springer, 2002.

[Eme90] E.A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor, Hand-
book of Theoretical Computer Science: Formal Models and Semantics, pages
996–1072. Elsevier, 1990.

[ESS05] U. Egly, B. Schiemann, and J. Schneeberger. Tech. documentation authoring
based on semantic web methods. Künstliche Intelligenz, 2:56–59, 2005.

[FLV08] S. Flores, S. Lucas, and A. Villanueva. Formal verification of websites.
Electronic Notes in Theoretical Computer Science, 200:103–118, 2008.

[Gru06] Schema Gruppe. Schema ST4 Leistungsbeschreibung. SCHEMA Electronic
Documentation Solutions GmbH, 2006.

[Jel02] Rick Jelliffe. The schematron assertion language 1.6. http://xml.ascc.net
/resource/schematron/Schematron2000.html, 2002. last visited Feb. 2009.

[JF08] M. Jakšić and B. Freitag. Temporal patterns for document verification.
Technical Report MIP-0805, University of Passau, Germany, 2008.

[KSS04] Reiner Kuhlen, Thomas Seeger, and Dietmar Strauch, editors. Grundlagen
der praktischen Information und Dokumentation. K. G. Saur Verlag, 2004.

[NCEF02] C. Nentwich, L. Capra, W. Emmerich, and A. Finkelstein. xlinkit: a con-
sistency checking and smart link generation service. ACM Transactions on
Internet Technology (TOIT), 2(2):151–185, 2002.

[Sch04] Jan Scheffczyk. Consistent Document Engineering. Dissertation, Universität
der Bundeswehr München, 2004.

[SDM+05] E. Di Sciascio, F. M. Donini, M. Mongiello, R. Totaro, and D. Castelluccia.
Design verification of web applications using symbolic model checking. In
D. Lowe and M. Gaedke, editors, Proc. of the 5th Internat. Conf. of Web
Engineering ICWE 2005, volume 3579 of LNCS, pages 69–74. Springer, 2005.

[SF09a] C. Schönberg and B. Freitag. Evaluating RDF querying frameworks for
document metadata. Technical Report MIP-0903, University of Passau,
Germany, 2009.

[SF09b] C. Schönberg and B. Freitag. Extracting and storing document metadata.
Technical report, University of Passau, Germany, 2009. to appear.

[SFC98] P. David Stotts, Richard Furuta, and Cyrano Ruiz Cabarrus. Hyperdocu-
ments as automata: Verification of trace-based browsing properties by model
checking. Information Systems, 16(1):1–30, 1998.

[Wei08] Franz Weitl. Document Verification with Temporal Description Logics. PhD
thesis, University of Passau, 2008.

[WJF09] F. Weitl, M. Jakšić, and B. Freitag. Towards the automated verification
of semi-structured documents. Journal of Data & Knowledge Engineering,
68(3), 2009.

