
Representing Model Differences by Delta Operations

Dilshodbek Kuryazov, Andreas Winter
Software Engineering Group

University of Oldenburg
{kuryazov,winter}@se.uni-oldenburg.de

Abstract— Software models are subject to subsequent changes.
Models evolve over time to meet changes resulting in several
versions. The differences between subsequent model versions
are represented in differences documents usually referred to as
Modeling Deltas. The model differences are used in establish-
ing several further services and operations of version control,
collaborative modeling and history analysis tools for software
models. Therefore, finding an adequate difference representation
approach is essential for applicability, re-usability and analysis
of the model differences.

This paper introduces the Delta Operation Language (DOL),
a meta-model independent and operation-based concept to model
difference representations. The proposed approach provides sev-
eral operative DOL-services for utilizing the DOL-based differ-
ences. The application areas of DOL include Model Versioning,
Model History Analysis and Collaborative Modeling. The approach
is applied to UML activity diagrams as a running example.

I. MOTIVATION

Software models are widely used in designing software
systems on different abstraction levels. Like code of software
projects, software models evolve over time undergoing various
changes such as extensions, improvements and corrections.
Constantly changing a model results in different versions of a
model during its lifetime. The consistent recognition, specifi-
cation and exploitation of the differences between subsequent
model versions are crucial in comprehending, analysing and
managing model-based software systems.

For dealing with modifications on models, the differences
between model versions have to be properly identified and
represented in difference documents i.e. Modeling Deltas.
Representation of the model differences in modeling deltas
is an important concern for version control, collaborative
modeling and history analysis tools.

Model versioning systems used to handle and store the
histories of evolving software models. They usually take ad-
vantage of modeling deltas to store the model differences. Each
modeling delta represents the differences between subsequent
versions of a model. A model versioning system reduces the
difference storage space and improves simplicity by storing
only deltas.

Changes are applied to software models by a group of
designers using collaborative modeling tools. In the case of
collaborative modeling, exchanging the model differences is
eased by exchanging only modeling deltas which contain
only the differences. Exchanging small deltas enables them
to synchronize changes rapidly by reducing the capacity of
exchange data.

Analysing the model histories helps to understand the
evolutionary life-cycle of models. Information about the model

histories is gathered by tracking the change histories of each
model element. As long as only changed model elements
are referred to in modeling deltas, tracing the change history
from modeling deltas help to rapidly detect required history
information. Afterwards, the users can browse or visualize that
information to see how a model evolves.

Software models do not follow the similar principles and
syntax as code-based projects. Therefore, the rich data and
compound structure of models has be considered in repre-
sentation of the model differences. Difference representation
has to be capable of fully handling and carrying all necessary
information about the change histories. Additionally, the dif-
ferences represented in modeling deltas must be easy to access
for further re-use and manipulations. Software models also
can be represented as textual files using exchange formats like
XMI (XML Metadata Interchange ) [1]. But, it is commonly
admitted that differentiating textual representation of models
does not follow modeling concepts [2], [3]. The code-centric
versioning systems like Git [4], Subversion [5] or RCS [6] can
not fully handle software models in exchange formats and do
not produce useful information about the model differences.
To this end, this paper addresses the problem of difference
representation for software models.

This paper introduces the general Delta Operations Lan-
guage (DOL) of Generic Model Versioning System (GMoVerS)
to model difference representations. DOL is a set of domain
specific languages to model difference representation in terms
of delta language operations. In order to derive a specific
DOL for a specific modeling language, the meta-model of
a modeling language is required. A DOL Generator used to
generate a specific DOL for a certain modeling language using
the meta-model. Then, a specific DOL is fully capable of
representing all differences between subsequent versions of the
instance models in terms of operation-based DOL in modeling
deltas. The operations in modeling deltas are referred to as
Delta Operations.

Moreover, DOL aims at supporting several DOL-services
which can access and reuse delta operations. These operative
services make the DOL-based modeling deltas quite handy
in various application areas and enable application areas to
utilize the DOL-based modeling deltas. Operation-based DOL
has several use cases in this paper. These are Generic Model
Versioning System (GMoVerS) (discussed in Section VIII-A),
Model History Analysis (Section VIII-B), Collaborative Mod-
eling (Section VIII-C) which is in process.

The paper is structured as follows: Section II lists require-
ments that difference representation has to satisfy. Several re-
lated approaches are discussed in Section III. Section IV gives
an example of an evolving model and DOL-based difference

{kuryazov, winter}@se.uni-oldenburg.de


representation between subsequent model versions. Section V
explains DOL generation from the given meta-model. The
DOL-services are introduced in Section VI. The prototype
implementations are explained in Section VII. Insight into
application areas of DOL is given in Section VIII. The paper
ends up by drawing conclusions and outlook for future work
in Section IX.

II. REQUIREMENTS

In the case of software models, difference representation
has to satisfy a number of requirements regarding its re-
usability, applicability and optimality. Difference information
(i.e. history information of model changes) must be small and
complete with a simple syntax and re-usable when needed.
Besides, the difference representation approach has to be inde-
pendent from modeling languages and modeling tools enabling
applicability. Consequently, in order to have a solid difference
representation technique in the end, several requirements and
properties following concrete principles are defined targeting
re-usability and applicability of modeling deltas and efficient
access of model versions:

– Meta-model Generic. There are several modeling lan-
guages which follow different formal specifications
and concepts. The abstract syntax of modeling lan-
guages i.e. the modeling concepts are defined by
the languages meta-model. Models conforming that
modeling language are subject to continuous changes
and evolution. Thus, being meta-model independent
makes a difference representation approach applicable
to all modeling languages with respect to their meta-
models.

– Tool Independent. There are several modeling tools
and they have own internal model representations.
To be able to handle models designed in different
modeling tools, difference representation must not rely
on an internal model representation of a specific model
designing tool restricting itself for that modeling tool.

– Operation-based. The model differences are the col-
lection of changes of modeling concepts. Changes of
modeling artefacts can be viewed as operations that are
applied to a previous version to form the later. These
operations have to allow for representing all model
changes embodying all necessary information about
the change histories. Additionally, using an operation
for each separate change results in a low number of
operations with simple syntax and allows effortless
implementations as well as follows actual modeling
concepts. These operations have to be composite to
enable representation of complex model changes.

– Delta-based. After representing changes in terms of
operations, a certain set of operations between two
states of a model should be grouped and stored in a
modeling delta. A modeling delta consists of a set of
operations which refer only to changed modeling con-
cepts, meanwhile that delta performs the executable
descriptions of the differences which allows to revert
older model versions.

– Completeness. The representation must carry precise
information about each change including the kind of

change and the referenced modeling concept. The kind
of change defines what kind of change is made (cf.
creation or deletion of an object or change of object
attributes), whereas the referenced modeling concept
admits the changed model object.

– Reusability. The model differences represented in
modeling deltas have to be available for further reuse
and exploitation. Only representing the model differ-
ences without being accessible and re-usable is inef-
fective and needless. Thus, difference representation
must be straightforward and accessible fur further
analysis and manipulations enabling applicability to
various application areas.

These significant principles are also design foundation of
the DOL-based representation approach that contribute to
empower the qualification and solidity of difference repre-
sentation. The approach aims at fulfilling these requirements
throughout this paper.

III. RELATED WORK

Before explaining operation-based DOL in detail, this
section discusses several existing difference representation
approaches. Also, these approaches are reviewed in the context
of principles listed in Section II.

An early approach on operation-based difference represen-
tation is introduced by Alanen and Porres [7] which is meta-
model independent as well. The approach addresses calculation
of the differences and union of models. It represents the
differences as a sequence of difference operations. Moreover, a
number of merge conflicts are extended by the combination of
the difference operations. The approach is meta-model generic,
operation-based and provides a conflict resolution technique.

A meta-model independent approach for difference rep-
resentation is introduced by Cicchetti et al. [2], [8]. The
approach uses a differences model for representing the model
differences. The differences model conforms to the differences
meta-model derived from the base meta-model by automatic
transformations. The approach provides a difference appli-
cation component which requires model matching between
the differences and base models to detect weaving model.
The weaving model is used to contain references between
the differences and base model elements. Conflict resolution
is provided to detect and resolve conflicts while merging
the differences and base models. Cicchetti et al. is meta-
model generic, provides difference application and conflict
resolution services, but it uses model-based way of difference
representation.

SMOVER (Semantically enhanced Model Version Control
System) [9] is a state-based approach, which provides several
standard versioning activities such as add – to bring new
models under version control, checkout – to obtain a copy
of a model in the central repository into the local working
space, commit – to commit local changes to the central
repository and update – to update the local working space
with the latest changes in the central repository. SMOVER
mostly addresses flexible difference merging technique and
uses standard SQL databases to store the model differences.
Hence, the approach requires to have an adapter which lies
between external modeling tools and SMOVER.



Haber et al. [10] addresses engineering delta modeling
languages for software product lines. The approach aims at au-
tomatically deriving delta operations for software architectures
of software product lines. But, it relies on text-based models
and requires to specify the grammar of a modeling language
to derive a delta language. The approach is operation-based,
but focuses on software product lines.

An approach for specifying and recognizing model changes
based on edit operations (MOCA) is introduced by Kehrer
et al. [11], [12]. The approach consists of a chain of model
differencing steps including model matching, deriving low-
level changes and semantic lifting phases for EMF (Eclipse
Modeling Framework) [3] models. The detected low-level
changes are grouped and shifted up to a high-level syntax using
the “semantic lifting” component. The authors define the set of
recognition rules to recognize low-level changes and produce
the user-level changes. These set of recognition rules cover 41
different edit operations for UML class diagrams [13] and 16
different edit operations for Matlab/Simulink models [14]. The
resulting user/high-level changes are represented in models
with different colours. MOCA is operation-based, uses model-
based way for representations and focuses on EMF models.

Koegel and Helming [15] developed the EMF Store frame-
work which is a data model repository for EMF models [3].
The framework allows collaborative work of several mod-
ellers directly via peer-to-peer connection providing semantic
versioning of models, branching and conflict detection while
merging. The EMF Store platform is extended by Krusche
and Bruegge with Model-based Real-time Synchronization
[16]. The EMF Store uses operation-based change tracking
considering an atomic change of the instance models or a
composite of several atomic changes. EMF Store is operation-
based, re-usable, delta-based, provides both state-based and
runtime operation recording but addresses EMF models.

Another model-based difference representation approach,
EMF compare and merge [3] was introduced for differencing
EMF models. The EMF compare provides model comparison
and merging services and relies on EMF models.

These approaches already provide a support to deal with
some aspects and principles of model difference representation.
All the existing approaches provide a form of difference
representation even some of them are strict to a specific
modeling language, but most of them lack providing sufficient
catalogue of additional services to manipulate their difference
information. GMoVerS DOL aims at supplying a wide range
of the DOL-services which can directly access and reuse the
DOL-based repositories. Besides, the approach in this paper
satisfies all the principles in Section II which are literally
important for applicability and exploitation of model difference
representations.

IV. EXAMPLE

This section covers a simple example of model difference
representation by the GMoVerS DOL. To express the idea
behind the approach, a simplified UML activity diagram [13]
is used as running example throughout this paper.

Figure 1 portrays a simplified meta-model of UML ac-
tivity diagram. The current prototype implementation of the

DOL Generator imports meta-models designed as UML Class
diagrams. DOL is derived for this specific meta-model to
explain the example in this section, but DOL Generation
is completely independent from meta-models satisfying the
Meta-model Genericness principle.

Figure 1: Simplified UML Activity Diagram meta-model

All meta-model classes are either Nodes or Flows (each
flow having source and target attributes) and both are of
type model ModelElement. Only Action has the name attribute
whereas the other classes have no attributes.

Figure 2 depicts three consecutive versions of the same
UML activity model performing an Ordering System example.
All model versions conform to the same simplified meta-model
shown in Figure 1.

Version 3Version 2Version 1

g1

g2

g3

g4

g5

g1

g2

g3

g14

g5

g6
g4

g7 g8

g9

g10 g11

g13g12

g1

g2

g3

g14

g5

g4

g7

g15

g12

Figure 2: Example activity diagram in three concurrent
versions

Each model element is assigned to a certain persistent
identifier (gx). The first version contains an Action named
Receive as well as an Initial and a Final node. All elements
are connected by (Control) Flows. The model evolves into the
second version after several modifications such as Fork, Join
nodes, two Actions named Fill Order and Send Invoice are
created, the target end of Control Flow g4 is reconnected to
the fork node, the name of the Receive action g3 is changed,
and several control flows are created connecting these nodes.
Finally, the model evolves again into the third version after
creating a new action with name Close Order, reconnecting
the target ends of g4 and g12, and the source end of g14
and deleting Fork and Join-nodes, the Send Invoice action,
and the control flows g10, g11 and g13.

To represent these differences, the specific DOL for UML
activity diagrams is derived from its meta-model in Figure



1 by applying three atomic operations create, delete
and change to each concept of the meta-model (deriving
a complete set of DOL operations is explained in Section
V). A delta-operation may create or delete an object/model
element or change its attributes and associations. These three
operations are accepted as sufficient operations to apply to
the modeling concepts while deriving any specific DOL and
the specific DOL is capable of representing all differences by
these three operations. Other change operations like moving a
group of elements from one place to another in a model can be
achieved by changing one (or several) association(s) between
a part that should be moved and the rest of a model.

Like classical version management systems for source code
(cf. Subversion [5], Git [4], RCS [6]), GMoVerS DOL follows
a backward delta approach, where the most current version
and several differences documents are stored directly. The
current version (the third version in this example) is also
represented by operations which consists only of creation
operations. Figure 3 depicts the modeling delta named active
delta which gives directly the current model version by only
create operations.

The resulting modeling deltas are directed in reverse order
i.e. each change leads from the later state to the previous
states. Because all application areas of difference representa-
tion usually demand the reversal operations in order to obtain
earlier versions from later versions. Moreover, producing delta
operations in reverse order is quite practical for implementation
of applications.

1 g1 = createInitialNode();
2 g3 = createOpaqueAction("Receive Order");
3 g7 = createOpaqueAction("Fill Order");
4 g15 = createOpaqueAction("Close Order");
5 g5 = createActivityFinalNode();
6 g2 = createControlFlow(g1,g3);
7 g4 = createControlFlow(g3,g7);
8 g12 = createControlFlow(g7,g15);
9 g14 = createControlFlow(g15,g5);

Figure 3: Active delta

Each delta operation contains a Do part (cf.
g1=createInitialNode();) which describes the kind of
change by means of operations (one of create, change, delete,
explained in Section V) and an Object part (with attributes
if required) (cf. g1=createInitialNode();) which refers to
the modeling concept. To refer to model elements from the
operations in the modeling deltas, unique persistent identifiers
are used as references. For instance, the operation on the
sixth line in Figure 3 creates a Control Flow connecting g1
and g3 and assigns it to g2.

1 g6 = createForkNode();
2 g7 = createOpaqueAction("Send Invoice");
3 g9 = createJoinNode();
4 g4.changeTarget(g6);
5 g12.changeTarget(g9);
6 g14.changeSource(g9);
7 g10 = createControlFlow(g6,g7);
8 g11 = createControlFlow(g6,g8);
9 g13 = createControlFlow(g8,g9);

10 g15.delete();

Figure 4: Delta between active and the second
versions

Likewise, the differences deltas are also represented us-
ing operation-based difference representation. The differences

delta in Figure 4 depicts the differences between the third and
second versions.

Finally, Figure 5 illustrates the delta including the differ-
ences between the second and first versions.

1 g3.changeName("Receive");
2 g4.changeTarget(g5);
3 g6.delete();
4 g7.delete();
5 g8.delete();
6 g9.delete();

7 g10.delete();
8 g11.delete();
9 g12.delete();

10 g13.delete();
11 g14.delete();

Figure 5: Delta between the second and first versions

The modeling deltas in these figures are executable de-
scriptions of the differences. Each of the differences deltas
allows to revert the previous model version from the latest
version. The modeling delta in Figure 4 reverts the model to
the second version from the third and the modeling delta in
Figure 5 reverts the model to the first version from the second.
The concatenation of the modeling deltas from Figure 4 and
5 leads to the differences to be applied to the current version
resulting in the first version.

The model elements that have to be changed are addressed
by the persistent identifiers in the delta operations. For exam-
ple, the current model version contains an Action g3 named
Receive Order. It is not referred in the delta in Figure 4 because
it is not changed. In the delta in Figure 5, the name of that
action is changed to the previous name ”Receive” (cf. Figure
5, line 1).

In Figures 4 and 5, the modeling deltas consist only of the
list of changes including all necessary information about the
differences fulfilling completeness and the unchanged model
elements are not referred satisfying Delta-based properties.

V. DELTA OPERATION LANGUAGE

GMoVerS – Delta Operations Language (DOL) is a family
of operation-based languages to represent the model differ-
ences. This section expresses generating a specific DOL from
the meta-model of a specific modeling language by applying
three basic operations to each concept of the given meta-model.
After all, the resulting specific DOL allows to produce all the
possible representation operations that needed to represent the
entire model history in modeling deltas.

Figure 6 depicts the specification of the meta-model in
Figure 1 with the specific DOL-operations. It is abstraction
of the DOL interface in Figure 7.

Figure 6: Meta-model of the specific DOL-operations



In Figure 6, all model elements including flows and nodes
can be deleted, also, they can be created with parameters
if they have attributes. Only attributes can be changed and
all associations are associated with attributes. Attributes are
created when their composing elements are created and deleted
when their composing elements are deleted.

The specific DOL is generated as Java Interface by a DOL
Generator (Figure 8) importing the meta-model of a modeling
language. The methods of the resulting interface are named and
parametrized according to the meta-model concepts including
one of the create, delete and change operations (Figure 7).
Each implementation of these methods results in an analogous
operation with relevant parameters.

Considering the activity diagram example presented in
Section IV, the DOL Generator imports the simplified meta-
model depicted in Figure 1.

1 //------ Creations ------
2 InitialNode createInitialNode();
3 OpaqueActionNode createOpaqueAction(String name);
4 ForkNode createForkNode();
5 JoinNode createJoinNode();
6 DecisionNode createDecisionNode();
7 MergeNode createMergeNode();
8 ActivityFinalNode createActivityFinalNode();
9 ControlFlow createControlFlow(Node source, Node

Target);
10 ObjectFlow createObjectFlow(Node source, Node

Target);
11 //------ Changes ------
12 void changeName(String newName);
13 void changeSource(Node newSource);
14 void changeTarget(Node newTarget);
15 //------ Deletion ------
16 void delete();

Figure 7: Interface generated from UML Activity Diagram
meta-model

In case of the meta-model of any other modeling language,
the DOL Generator follows the same principle to generate
DOL i.e. only a meta-model is imported and three basic
operations are applied to each concept of that meta-model.
Eventually, each of the interface methods has the same struc-
ture as a Do part and an Object part. The delta operations are
produced by implementations of that interface by assigning
persistent identifiers.

VI. DOL SERVICES

Representing the model differences by modeling deltas
is not only focus of GMoVerS DOL. Besides, this paper
introduces a reasonable set of DOL-services enabling re-
usability and applicability of the DOL-based deltas. Figure
8 displays the overall architecture of the DOL-services and
the potential orchestration of them based on data-flows among
these services.

The amalgamation depicts the DOL-services such as an
Adapter, a Difference Calculator, a Delta Optimizer, a Patcher
and a Change Tracer. Each DOL-service has a particular
task and is involved in constructing the specific orchestration
in the framework of DOL applications. For instance, models
designed in external modeling tools are imported into the
system through the Adapter. The adapter parses models in the
exchange formats to internal representations and vice versa.

The difference calculator is used to detect the differences
between the compared models and produce the differences and
active deltas by implementing a DOL interface. The difference
calculator uses the Optimizer to produce the optimized model-
ing deltas and to write them into a repository. After all, other
DOL-services such as the Patcher and the Change Tracer are
capable of utilizing the DOL operations. The patcher is used
to revert older model versions. The change Tracer tracks a
specified model element and reports the change history of
that element. Then, these change reports can be visualized
to analyse the change history. All of these DOL-services are
discussed in detail in the following sections.

These DOL-services are employed in developing the DOL
applications such as Model Versioning, Collaborative Model-
ing and Model History Analysis (discussed in Section VIII).
Architectures of these applications are built based on the
specific orchestrations of several DOL-services in a certain
order.

A. Adapter

Software models are created by using model designing
tools and mostly these tools do not provide proper model
versioning, collaborative modeling or model history analysis
support. Most commercial modeling tools such as Visual
Paradigm (VP) [17], Rational Software Architect (RSA) [18]
or open source tool Eclipse Modeling Framework (EMF) [3]
have their own internal model representation techniques. Thus,
integrating version management or collaborative modeling
tools with model designing tools is a challenge. But, these
tools provide export and import of software models by XML
Metadata Interchange (XMI) [1] format without layout infor-
mation. Therefore, to exchange models between the external
modeling tools and the GMoVerS version control system, the
DOL-services provide the Adapter (Figure 9).

External
Modeling

Tools
Adapter

Export/Import 
(XMI)

{xmi model}{TGraph}

Figure 9: DOL-Service: Adapter

In GMoVerS, models are represented as TGraphs inter-
nally [19] (discussed in Section VII) to make them generally
processable in implementation of the DOL applications. The
Adapter can parse models in both directions: from the ex-
change formats to TGraphs and vice versa. The adapter also
uses the meta-model of a modeling language to recognize all
modeling concepts specified in the exchange format. There-
fore, it is independent from model designing tools, modeling
languages and exchange format versions in regard to a meta-
model.

B. Difference Calculator

The difference calculator detects the differences between
compared models using state-based comparison and produces
the delta operations. A number of approaches already exist
for difference calculation. Therefore, Küpker [20] investigated
existing approaches such as UMLDiff [21] and SiDiff [22],
[23] and combined them to gDiff (generic differentiating) tool.



DOL-services
External
Modeling

Tools

VP

EMF

RSA

Adapter

PatcherCalculator

DOL 
Generator

{Optimized delta}

Export/
Import 
(XMI)

DOL Interface

Metamodel
conform to

imports

generates

DOL Generation

conforms to Repository

{Previous model}

{xmi model}

Optimizer

Change Tracer{Deltas}

implements

{Optimized 
delta}

Visualization

{Change 
reports}

{Delta} {Delta}

{Internal model} 

{Internal model} 

{Deltas} 

Figure 8: DOL generation and potential orchestration of the DOL-services

Calculator
{Model A}

{Model B}

{Modeling Deltas}

Figure 10: DOL-Service: Difference calculator

The calculator used in GMoVerS firstly detects possible
matches between two compared models (Model A and Model
B in Figure 10), and then calculates the model similarities
using similarity metrics such as a name [21] or a structural
similarity [23]. The candidate element with the highest simi-
larity is selected as an unique match for the host element and
created, deleted and changed elements are detected.

After detecting such modifications, the calculator produces
two modeling deltas in the operation-based format by imple-
menting a specific DOL Interface: the active delta representing
the current model by create operations (cf. Figure 3) and
the differences delta which leads the older version from the
latest. If the first version of a model is given, the calculator
produces only the active delta without the difference delta.
Because, there is not previous versions to compare and detect
the difference delta. Assigning the persistent identifiers to delta
operations is also done by the difference calculator while
matching model elements. These assignments are persistent
over all sequences of the modeling deltas.

C. Delta Optimizer

In some cases, modeling deltas might contain some useless
operations. To increase efficiency by reducing useless opera-
tions in modeling deltas, optimization of the delta operations is
required. Optimization helps to receive more optimal modeling
deltas, eventually. The Delta Optimizer (Figure 11) basically
receives modeling delta as input.

There might be a lot of useless operations or redundancies
in modeling deltas. For instance, if a particular model element
is created and later deleted in the same delta (this might happen
in the case of collaborative modeling at runtime), these two

operations are registered for one element where both have no
affect.

{Modeling Delta} {Optimized Delta} 
Optimizer

Figure 11: DOL-Service: Delta Optimizer

Another example might be changing one element several
times in one modeling delta. In this case, it is optimal to save
only the last change instead of several change operations for
that model element.

Moreover, the order of delta operations in modeling deltas
is also important to avoid the lost and fuzziness of change
information while applying deltas to models by the patcher.
The creation operations are lifted to the top and deletions are
dropped to the end and changes are placed in the middle in
each modeling delta. Creations are made firstly, then changes
are made and deletions are made in the end. For instance, if a
control flow has to be change to a newly created action node
in the case of Activity diagrams, a new action node has to be
created first, then an existing control flow can be reconnected
to that new node.

After completing optimization process based on aforemen-
tioned criterion, the delta optimizer produces optimal modeling
delta in the end. Besides, the delta optimizer can be utilized
by other DOL-services to optimize the DOL-based modeling
deltas. For example, the Patcher uses delta optimization to
ease delta application process so that it can skip some delta
operations between subsequent modeling deltas.

D. Patcher

The patcher allows to revert to earlier versions by applying
(sequences of) modeling deltas to a model. For instance, mod-
ellers may need to roll back a model to an older version/state
in the case of loss or damage of information. The inputs to
the patcher are a model and a modeling delta. An input delta
is applied to an input model and a result is previous model
version (Figure 12).



Patcher
{Current Model}

{Previous model}

{Modeling Delta}
Figure 12: DOL-Service: Patcher

The delta operations are represented as executable de-
scriptions in modeling deltas. For instance, execution of the
active delta in the example in Section IV results in the
current state of the model (V ersion3 = ∅.apply(∆active)).
Executing each differences delta leads to the previous state
from the current (V ersion2 = V ersion3.apply(∆(3,2)) and
V ersion1 = V ersion2.apply(∆(2,1)). To apply differences
deltas to the current model version, formerly the current model
version has to be reverted from the active delta.

Considering that there are fifty versions of a model and
the patcher is requested to revert the tenth version from the
fiftieth. In this case, the patcher runs through a sequence of
deltas between the fiftieth and the tenth versions and optimizes
patching process by concatenating and optimizing the delta
operations in these deltas. Several operations in these steps
can be skipped using the optimizer to have faster and efficient
reverting in the end.

E. Change Tracer

Being aware of changes on models is essential in compre-
hending and analysing the histories of evolving models. To
this end, GMoVerS DOL provides the Change Tracer service
which contributes the history analysis to reveal necessary
information about the change history. The change tracer copes
with extracting necessary information about whole evolution-
ary life-cycle of a model by focusing on a specific model
element.

The change tracer receives the set of modeling deltas from
the repository as input (as shown in Figure 13). Then, it seeks
change information of a specific model element based on its
persistent identifier by verifying the given set of modeling
deltas. After all, detected information is reported as a set of
connected correspondences so that it can be used in further
analysis by visualizing.

Change Tracer
{Modeling 

Deltas}
{Change 
reports}

Repository

Figure 13: DOL-Service: Change Tracer

For instance, Figure 14 illustrates all history information
of the control flow g4 in the example in Section IV.

1 g4 = createControlFlow(g3,g7);
2 g4.changeTarget(g6);
3 g4.changeTarget(g5);

Figure 14: History information of Control Flow g4.

The traced element was referred to in three states. Because,
it was in three different states in three model versions i.e it
was changed subsequently. Information about these states is
tracked by slicing three modeling deltas, the active delta in
Figure 3 and two differences deltas in Figures 4 and 5.

VII. IMPLEMENTATION

This section discusses the prototype implementation of the
DOL-services integrated into the Eclipse environment. First
of all, this section indicates which tools and techniques are
required to derive a specific DOL for a specific modeling
language and to implement all the DOL-services. Then, the
selected tools and techniques are explained based on their role
in the prototype implementations.

All model designing tools have their own internal model
representation technique. Therefore, internal representations
are required for both instance and meta-models. This allows
the DOL-services to manipulate models being a part of the
specific orchestration of any DOL-application.

To manipulate models within the DOL-application plat-
forms, in-place model transformations are needed. Model
manipulations help to apply changes to models and shift a
model between states which it undergoes during the evolution
process. The DOL-services like the Patcher and the Adapter
take advantage of in-place model manipulations to fulfil their
missions. The Difference Calculator requests the model traver-
sal system to compare the given models and calculate the
differences between them.

The requirements for the implementation tools and tech-
niques are solved by JGraLab (Java Graph Laboratory)
API [24]. First of all, JGraLab provides means to handle
meta-models defining Graph Schema. Thereafter, TGraphs
conforming the given graph-schema can be manipulated and
handled by JGraLab API. To represent models internally,
GMoVerS DOL uses TGraphs [19] that are accessible by
JGraLab API. Vertices and edges are the first-class objects
in TGraphs and they can be attributed, are directed and typed.
JGraLab supports management of TGraphs, and in-place graph
transformations such as creation, deletion and change of graph
elements. Finally, JGraLab has its own graph querying system
which allows to filter, traverse and to compare the query
results.

The meta-model of a modeling language is designed in
RSA [18] as UML class diagrams and loaded into JGraLab.
When a meta-model is loaded, the DOL Generator automati-
cally generates the DOL Interface. Likewise, the meta-model
is used by the adapter to parse models in the exchange XMI
format to TGraphs. The instance models are designed in RSA
as well and parsed to TGraphs by the adapter. Both, meta-
and instance models are exported in the exchange formats
without layout information. Eventually, all DOL-services like
the calculator and the patcher directly operate on the TGraph-
based models using JGraLab’s in-place transformations and
querying system.

The DOL-based difference representation approach is also
implemented by VIATRA (VIsual Automated model TRAns-
formations) in [25]. GMoVerS DOL is not strict only to
JGraLab and can be realized by other model transformation
and representation approaches such as QVT (Query/View/-
Transformation) [26]. But in some cases, model transformation
approaches aim at transform from source model to target
model lacking in-place manipulations which also makes im-
plementations more complicated. For example, some experi-
ments showed that deleting a model element is solved by an
unspecified transformation rule in the case of ATL (ATLAS



Transformation Language) [27] i.e. if a model element has to
be deleted during transformation, a rule for that deletion is not
specified so that an element supposed be deleted is not copied
into a new model.

VIII. APPLICATIONS

In order to present applicability of the approach, several
use cases are explained in this paper. These use cases are
model versioning, model history analysis and collaborative
modeling that are discussed in follow up sections in detail. The
architectures of these applications are developed by the specific
orchestrations of the DOL-services explained in Section VI
and built on the underlying principles and properties listed in
Section II.

A. Model Versioning

Model versioning aims at managing and manipulating
models as well as storing and reusing the model differ-
ences. Therefore, version management systems are important
to handle models and their histories. To this end, the Generic
Model Versioning System (GMoVerS) is established adopting a
specific orchestration of the DOL-services in this section.

The DOL-based difference representation approach is ap-
plied to versioning Sustainability Reports at companies in
[28]. As sustainability reports at companies are also subject
to constant changes and evolution, companies intend to report
and analyse sustainability information to provide sustainable
future. Thus, reports have to be versioned to analyse histories
of sustainability reports and to present changes. To derive a
specific DOL for representing differences of report versions,
the approach employed a schema of sustainability reports.

The approach is applied to UML activity diagrams in this
paper. In GMoVerS, the model differences are represented in
terms of the DOL operations and the construction of version
control activities is achieved by the amalgamation of the DOL-
services as displayed in Figure 15.

Generic Model Versioning System
External
Modeling

Tools

RSA

Adapter

PatcherCalculator

{Optimized
delta}

Export/
Import 
(XMI)

{DOL-based deltas} 

{Previous model}

{xmi model}

Repository

{TGraph model}

{TGraph model}

Optimizer

{Optimized 
delta}{Active and 

Difference 
delta}

{Delta}

Figure 15: Specific orchestration of the DOL-services for
GMoVerS

Current implementations of GMoVerS support adding
models to the versioning system, committing changes and
reverting older versions. In each of these services, relevant
DOL-services are involved in a certain order based on data-
flow.

For example, to start version control with a new model,
a model has to be added under version control. It requires
involvement of the adapter to parse a model in the exchange

format to internal representation, the calculator to produce the
active delta for the new model. Similarly, committing changes
requires the adapter to parse new versions to internal repre-
sentation, the patcher to revert the previous model version,
again the calculator to calculate the differences between the
previous and committed versions and produce the differences
and active deltas. Reverting needs the patcher firstly to revert
the recent model version, then it is involved as many times
as needed to revert a requested version. For instance, to revert
the first version form the third version, the patcher is called
three time: one time for reverting the recent model from the
active delta, two times to apply two the differences deltas to
the current version.

Figure 16 displays a screen-shot of the GMoVerS devel-
opment environment which is elaborated applying the DOL-
services.

The package explorer on the left side shows the arrange-
ment of the workspace including the meta-model in Figure
1, the models and modeling deltas of the example in Section
IV. Particularly, all DOL-based modeling deltas belong to the
GMoVerS repository. On the upper row of the right side, Figure
16 displays three subsequent versions of the example model in
Figure 2 in the exchange format. The central row of the right
shows two differences deltas and the active delta in Figures
3, 4 and 5. Finally, the most bottom of the screen-shot is a
window to type and execute aforementioned activities such as
add, commit and patch.

While committing local model changes to the main repos-
itory, conflicts might occur between differentiated models.
In such cases, conflicts have to be detected when they
arise and resolved either automatically (if possible) or semi-
automatically. If the user involvement is needed in the case
of semi-automatic way, version control system has to provide
interactive conflict resolution feature by browsing conflicts. To
this end, implementation of conflict resolver DOL-services is
an ongoing work.

B. Model History Analysis

Analyzing the model histories is the best aid in com-
prehending and understanding what changes are made by
designers or to know how a model evolves. Also, observing
the model history and its evolution process assists the users
in making important decisions about next life of model-based
software projects.

The history analysis is built on the top of the change
tracer (Figure 17). In order to detect history information of
a specific model element, the change tracer fetches a set of
modeling deltas from the repository and runs throughout these
deltas based on a persistent identifier by gathering required
information from each delta. After detecting necessary history
information, it is visualized in a tabular view.

History Analysis

Change Tracer
{Deltas}

Tabular View

{Change reports}

Repository

Figure 17: Specific orchestration of the DOL-services for
history analysis



Meta-models

Models

Modeling 
Deltas

Version 1
Version 2 Version 3

diff. delta diff. delta active delta 

Terminal to execute 
commands

Figure 16: A screen-shot of GMoVerS

The screen-shot in Figure 18 displays the example model
in Section IV. The user interface of the model history anal-
yser has two sections: The Model Tree section shows model
versions in a tree view including their history information and
the tabular view on the right side lists the history information
for a specific model element. To see the history information
of any model element, it has to be selected from the model
tree and click the Show History button. On the same line with
the show history button, the label shows the name of a model
element which is being traced. The history table contains three
columns: Versions – the model version number which the
change is made, Modification Type – the kind of the change
and Date – the date which the change is made.

Figure 18: A screen-shot of the history analysis application

The history analysis application firstly builds a tree for each
model version running throughout all modeling deltas to show
models as a general tree. For example, on the left side of Figure
18, all model versions are outlined in a tree view including all
model elements with their attributes. Then, the change tracer
service traces the history of selected model element based on

its persisted identifier. The table on the right side shows the
history of the g4:Control Flow which is selected from the left
tree. The change tracer queries states of the selected element
in each version and lists the detailed history of that element
including the kind of change and associated objects.

C. Collaborative Modeling

Another prominent application of DOL is collaborative
modeling which facilitates a teamwork of several designers on
a shared model at runtime. Currently, the implementation of
this application is planned as a students project. It is intended
to deliver a collaborative modeling environment which is built
on top of the DOL-based difference representation approach.

The implementation of the application will rely on repre-
senting changes (made by collaborators) in terms of the DOL-
operations and exchanging these changes by the appropriate
modeling deltas. To this end, it is planned to develop extra
DOL-service named runtime operation recorder to detect
operations embodying changes. The operation recorder will be
integrated into end-user model designing tools and it detects
changes made by modellers. While manipulating a model, the
DOL-based change operations are recorded in modeling deltas.
Since a model is manipulated by a group of modellers at
runtime, an evolving model has several development branches.
In this case, synchronization is required among various de-
velopment branches. Synchronization of changes basically is
synchronization of the DOL-based modeling deltas which
stored in various workspaces. Synchronization of changes will
be eased by exchanging small DOL-based deltas. Eventually,
various model designing tools which are running on different
platforms can communicate with each other in terms of delta
operations language.



IX. CONCLUSION AND FUTURE WORK

This paper introduced the operation-based approach to
model difference representation facilitating several additional
services. DOL and its services satisfy all the requirements
mentioned in Section II:

– Meta-model Generic. DOL is applicable to several
modeling languages with respect to their meta-models.
The DOL approach is applied to UML activity dia-
gram in this paper, to versioning Sustainability Re-
ports in [28] and the prototype experiments cover
UML state machines.

– Tool Independent. The approach has its own internal
model representations. But, the DOL-services provide
an Adapter for integration with external modeling
tools by the exchange format.

– Operation-based. A specific DOL is generated by the
DOL generator from the meta-model of a modeling
language. The model differences are represented in
terms of the operation-based DOL embodying changes
between subsequent model versions. Each DOL opera-
tion encloses all necessary information about a change,
has a meaningful syntax and completely follows com-
pound modeling concepts.

– Delta-based. Only changed model objects are referred
in modeling deltas. Also, modeling deltas are the
executable descriptions of the model differences which
allow to form older versions of a model. These de-
scriptions are implemented by in-place model trans-
formations.

– Completeness. The DOL-based representation carries
precise information about each change including the
kind of change and the referenced modeling concept.
The changed model objects are referred to according
to their persistent identifiers stored in modeling deltas.

– Reusability. DOL provides several DOL-services
which can directly access and manage the DOL-based
modeling deltas. The DOL-services make modeling
deltas straightforward and accessible fur further analy-
sis and manipulations enabling applicability to various
application areas.

A specific DOL is derived for a specific modeling language
and several DOL-services are provided which can manage
DOL-based deltas. Services relying on representation of the
GMoVerS DOL approach are applied to model versioning and
model history analysis so far, using state-based difference
calculation. The DOL-services list will be extended with a
runtime operation recorder, a difference merger and a syn-
chronizer for collaborative modeling.

REFERENCES

[1] Object Management Group, “XMI Specification, v1. 2.”
[2] A. Cicchetti, “Difference Representation and Conflict.” Ph.D. disserta-

tion, University of L’Aquila, (Italy), April 2008.
[3] EMF: Eclipse Modeling Framework (Compare),

http://www.eclipse.org/emf/compare.
[4] J. Loeliger, Version Control with Git: Powerful Tools and Techniques

for Collaborative Software Development. O’Reilly Media, 2009.

[5] B. Collins-Sussman, B. W. Fitzpatrick, and C. M. Pilato, Version
Control with Subversion. O’Reilly Media, 2004.

[6] W. F. Tichy, RCS — A System for Version Control. Software – Practice
Experience. Volume 15, Issue 7, 1985.

[7] M. Alanen and I. Porres, “Difference and union of models.” in UML
2003. LNCS. Springer, 2003, pp. 2–17.

[8] A. Cicchetti, D. Di Ruscio, and A. Pierantonio, “A metamodel in-
dependent approach to difference representation.” Journal of Object
Technology, vol. 6:9, pp. 165–185, October 2007.

[9] K. Altmanninger, A. Bergmayr, W. Schwinger, and G. Kotsis, “Seman-
tically enhanced conflict detection between model versions in SMoVer
by example.” in Proceedings of the Int. Workshop on Semantic-Based
Software Development at OOPSLA, 2007.

[10] A. Haber, K. Hölldobler, C. Kolassa, M. Look, B. Rumpe, K. Müller,
and I. Schaefer, “Engineering Delta Modeling Languages.” in Proceed-
ings of the 17th International Software Product Line Conference. ACM,
2013, pp. 22–31.

[11] T. Kehrer, U. Kelter, and G. Taentzer, “A Rule-Based Approach to
the Semantic Lifting of Model Differences in the Context of Model
Versioning.” in ASE, 2011, pp. 163–172.

[12] T. Kehrer, M. Rindt, P. Pietsch, and U. Kelter, “Generating Edit
Operations for Profiled UML Models.” in ME@MoDELS, 2013, pp.
30–39.

[13] UML: Unified Modeling Language, http://www.uml.org.
[14] Mathworks: Matlab/Simulink, http://mathworks.com/simulink.
[15] J. Helming and M. Koegel, “EMFStore.” 2013,

http://eclipse.org/emfstore.
[16] S. Krusche and B. Bruegge, “Model-based Real-time Synchronization.”

in International Workshop on Comparison and Versioning of Software
Models (CVSM’14), February 2014.

[17] Visual Paradigm, “Visual Paradigm for UML.” UML tool for software
application development, 2010.

[18] IBM Rational Software Architect, http://www.ibm.com.
[19] J. Ebert, V. Riediger, and A. Winter, “Graph Technology in Reverse

Engineering, The TGraph Approach.” in 10th Workshop Software
Reengineering (WSR 2008), R. Gimnich, U. Kaiser, J. Quante, and
A. Winter, Eds., vol. 126. GI (LNI), 2008, pp. 67–81.

[20] C. Küpker, “General Model Difference Calculation.” Bachelor Thesis,
Carl von Ossietzky University of Oldenburg, June 2013.

[21] Z. Xing and E. Stroulia, “UMLDiff: An Algorithm for Object-Oriented
Design Differencing.” ser. 6. ACM, 2005, pp. 54–65.

[22] M. Schmidt and T. Gloetzner, “Constructing Difference Tools for
Models Using the SiDiff Framework.” ICSE 2008, pp. 947–948, May
10-18 2008.

[23] C. Treude, S. Berlik, S. Wenzel, and U. Kelter, “Difference Computation
of Large Models.” in Proceedings of the the 6th Joint Meeting of the
European Software Engineering Conference. ACM Press, 2007, pp.
295–304.

[24] S. Kahle, “JGraLab: Konzeption.” Entwurf und Implementierung einer
Java-Klassenbibliothek für TGraphen, 2006.

[25] D. Varró and A. Balogh, “The Model Transformation Language
of the VIATRA2 Framework.” Sci. Comput. Program., vol. 68,
no. 3, pp. 187–207, October 2007. [Online]. Available: http:
//dx.doi.org/10.1016/j.scico.2007.05.004

[26] Object Management Group., “Meta object facility (mof) 2.0
query/view/transformation (QVT) specification.” Final Adopted Spec-
ification (November 2005), 2008.

[27] J. Frédéric, A. Freddy, B. Jean, K. Ivan, and V. Patrick, “ATL: a QVT-
like transformation language.” in Companion to the 21st ACM SIGPLAN
symposium on Object-oriented programming systems, languages, and
applications. ACM, 2006, pp. 719–720.

[28] D. Kuryazov, A. Solsbach, and A. Winter, “Versioning Sustainability
Reports.” in 5.BUIS-Tage: IT-gestütztes Ressourcen- und Energieman-
agement. Springer-Verlag, 2013, pp. 409–419.

http://dx.doi.org/10.1016/j.scico.2007.05.004
http://dx.doi.org/10.1016/j.scico.2007.05.004

	Motivation
	Requirements
	Related Work
	Example
	Delta Operation Language
	DOL Services
	Adapter
	Difference Calculator
	Delta Optimizer
	Patcher
	Change Tracer

	Implementation
	Applications
	Model Versioning
	Model History Analysis
	Collaborative Modeling

	Conclusion and Future Work
	References

