
Delta Operation Language for Model Difference
Representation

Dilshodbek Kuryazov
Software Engineering Group

University of Oldenburg, Germany
kuryazov@se.uni-oldenburg.de

Abstract: Software models evolve over time undergoing various changes and result-
ing in several versions during their lifetime. Models are differentiated during the evo-
lution process and the differences between subsequent model versions are represented
in differences documents for further analysis and manipulations as history informa-
tion. Software models have rich data structures which differ from the code of software
systems. That is why, a representation approach for the model differences has to pro-
vide effective handling and management of difference information. Furthermore, the
model differences represented in the differences documents have to be easy to access
and reuse.

This paper introduces the Delta Operations Language (DOL), a meta-model in-
dependent and operation-based approach to model difference representations. The
approach represents the model differences in terms of DOL and provides several DOL
Services to access and reuse the DOL-based differences for further analysis and manip-
ulations. To explain ideas behind the approach, it is applied to UML activity diagrams
as a running example.

1 Motivation
Software models are designed using software modeling languages (cf. Unified Modeling
Language (UML) [UML]). Models are widely used as abstractions of systems structural
and behavioural artefacts. Abstraction of any software system is quite useful and practical
to understand and trace system aspects from different viewpoints.

Software models follow varying concepts than the code of a software because of the
paradigm shift between code and design levels. Software models have rich data structures
with different syntax and semantics. Though, like the code of software projects, software
models evolve over time undergoing various changes such extensions, corrections and im-
provements. These changes are applied to software models by a team of modellers using
Collaborative Modeling and Model Version Control tools.

Several version control systems exist for code-based software systems (e.g. Subversion
[CFP04], Git [Loe09] etc.). Software models can also be represented in the XMI (XML
Metadata Interchange) serialization [Obj]. But, it is commonly agreed that code-centric
version control systems can not completely handle the differences of software models
[Cic08], [EMF].

Subsequently applying changes to software models results in several versions of the
same model artefact. Since a model has several versions during its life time, the model

histories has to be handled and the differences between subsequent model versions have
to be represented in appropriate ways.

Representing the model differences allows to store the histories of software models.
Therefore, finding an appropriate approach for model difference representation is the best
aid to build up various applications and tools such as model versioning, model history
analysis and collaborative modeling. Considering aforementioned challenges, this thesis
addresses the problem of model difference representation.

This paper introduces the general Delta Operations Language (DOL), meta-model
generic and operation-based approach for model difference representations. Conceptu-
ally, DOL is a set of domain specific languages for model difference representation in
terms of operations. A specific DOL for a specific modeling language is derived from
the meta-model of a modeling language. A specific DOL is fully capable of representing
the differences of models conforming the given meta-model in terms of DOL operations.
Only changed elements between model versions are calculated and represented in differ-
ence documents referred to as Modeling Deltas. The operations in a modeling delta are
called Delta operations.

Additionally, the DOL approach aims at providing several DOL Services which can
access and reuse delta operations. These operative DOL services improve applicability
and re-usability of the DOL-based modeling deltas in different application areas. The
operation-based DOL approach addresses several use cases in this PhD proposal. These
are Generic Model Versioning System (GMoVerS), Model History Analysis and Collabo-
rative Modeling that are discussed in Section 5.

The paper is structured as follows: The related approaches are discussed in Section 2.
Section 3 explains a simplified difference representation example of the DOL approach.
In Section 4, the main ideas behind the thesis are portrayed. Section 5 presents application
areas of the approach. Current and ongoing works are expressed in Section 6. The paper
ends up by defining expected contributions of the thesis in Section 7.

2 Related Work
There are several approaches to model difference representations providing some ad-
ditional services. This section discusses some of related difference representation ap-
proaches which provide a support to deal with some aspects and principles of model dif-
ference representation.

An operation-based difference representation is introduced by Alanen and Porres [AP03]
which is also meta-model independent. It detects differences and union of models and
represents the differences as a sequence of difference operations. The approach supplies
conflict resolver service that is extended by the combination of the difference operations.
Another operation-based approach is EMF Store framework [HK13] introduced by Helm-
ing and Koegel. EMF Store is a data model repository for EMF (Eclipse Modeling Frame-
work) models [EMF]. The framework supports collaborative modeling services such as
semantic versioning, branching and conflict detection services. The EMF Store platform is
extended by Krusche and Bruegge with Model-based Real-time Synchronization [KB14].
The EMF Store provides change tracking feature for atomic changes.

A meta-model independent and model-based difference representation is introduced by
Cicchetti et al. [Cic08]. The approach uses a difference model for representing the dif-

ferences. The differences model conforms to the differences meta-model derived from the
base meta-model by automatic transformations. The approach provides a difference appli-
cation service which requires model matching between the differences and base models.
Cicchetti et. al. has conflict resolution support for differences merging. Another model-
based difference representation approach, EMF compare and merge [EMF] was introduced
for differencing EMF models.

SMOVER (Semantically enhanced Model Version Control System) [ABSK07] uses
standard SQL database approach to store the model differences and provides several stan-
dard versioning services such as add, checkout, commit and update. SMOVER mostly
addresses flexible difference merging technique and requires to have an adapter which lies
between external modeling tools and SMOVER.

DeltaEcore – A Model-Based Delta Language Generation Framework [SSA14] ad-
dresses engineering delta modeling languages for software product lines. The approach
aims at automatically derive delta operations for software architectures of software prod-
uct lines.

In contrast to the existing approaches, a number of additional contributions of the ap-
proach in this paper can be indicated. Deficiency of additional services to reuse and exploit
representation information diminishes the applicability of an approach in a wide range of
applications. Thus, the DOL-based difference representation approach aims at providing
a number of the DOL-services which can access and reuse difference representation infor-
mation. Meanwhile, the existing approaches provide only few services for exploitation and
manipulation of model difference information. The DOL-based difference representation
uses simple text-based notations instead of complex models to storage history by means of
delta operations i.e. text-based difference representation for the graphical software mod-
els. Moreover, DOL provides the specific orchestration of the DOL-services extending
application areas.

3 Example
This section describes a simple example of DOL-based model difference representation.
To explain the idea of the DOL approach, a simplified UML activity diagram [UML] is
employed in this section. The meta-model of a modeling language is required to repre-
sent the model differences in terms of DOL. The DOL operations are derived from the
simplified meta-model of UML activity diagram depicted in Figure 1. A specific DOL is
derived for this specific meta-model in this paper, but the DOL Generator is completely
independent from meta-models.

Figure 1: Simplified UML Activity Diagram meta-model

All meta-classes are of type Node or Flow. Each Flow has the target and source at-
tributes and Actions have the name attribute whereas the other classes have no attributes.

Figure 2 portrays three subsequent versions of the same UML activity diagram per-
forming an Ordering System example. All model versions conform to the same simplified
meta-model shown in Figure 1.

Version 3Version 2Version 1

g1

g2

g3

g4

g5

g1

g2

g3

g14

g5

g6
g4

g7 g8

g9

g10 g11

g13g12

g1

g2

g3

g14

g5

g4

g7

g15

g12

Figure 2: Example activity diagram in three concurrent versions
Each model element is assigned to a persistent identifier (gx). The first version has an

Action named Receive, an Initial and a Final node and (Control) Flows connecting these
nodes. In the second version, the model has Fork, Join nodes, two Actions named Fill
Order and Send Invoice. The target end of Control Flow g4 is reconnected to the fork
node, the name of the Receive action g3 is changed and several control flows are created
connecting these nodes. Finally, the model reaches into the third version. A new action
with name Close Order is created, the target ends of g4, g12, and the source end of g14
are reconnected. Fork and Join-nodes, the Send Invoice action, and the control flows g10,
g11 and g13 are deleted.

In order to derive the specific DOL for UML activity diagrams, the meta-model in
Figure 1 is used and three atomic operations create, delete and change are applied
to the concepts of the meta-model (generation of a specific DOL is explained in Section
4.1). A delta-operation creates or deletes a model element or changes its attributes. The
DOL approach considers that three basic operations are sufficient for deriving the complete
set of the DOL operations for difference representations and the specific DOL is capable of
representing all differences by these three operations. Other change operations like moving
a group of elements from one place to another in a model can be achieved by changing one
(or several) association(s) between a part that should be moved and the rest of a model.

Like classical version management systems for source code (cf. Subversion [CFP04],
Git [Loe09]), the DOL approach follows a backward delta approach, where the most recent
version of a model and several modeling deltas are stored directly. The last version (the
third version in this example) is also represented by the DOL-operations which consists
only of the creation operations.

1 g1=createInitialNode();
2 g3=createOpaqueAction("Receive Order");
3 g7=createOpaqueAction("Fill Order");
4 g15=createOpaqueAction("Close Order");
5 g5=createActivityFinalNode();

6 g2=createControlFlow(g1,g3);
7 g4=createControlFlow(g3,g7);
8 g12=createControlFlow(g7,g15);
9 g14=createControlFlow(g15,g5);

Figure 3: Active delta

Figure 3 depicts the modeling delta named active delta which gives directly the last
model version. Each delta operation has a Do part (cf. g1=createInitialNode();) which
describes the kind of change by means of operations (one of create, change, delete) and an
Object part (with attributes if required) (cf. g1=createInitialNode();) which refers to the
modeling concept. To refer to model elements from the delta operations, unique persistent
identifiers are used as references.

Likewise, the differences deltas are directed in reverse order i.e. each change leads
from the later version to the previous. Producing delta operations in reverse order is quite
practical for implementation of applications.

1 g6 = createForkNode();
2 g7 = createOpaqueAction("Send Invoice");
3 g9 = createJoinNode();
4 g4.changeTarget(g6);
5 g12.changeTarget(g9);
6 g14.changeSource(g9);
7 g10 = createControlFlow(g6,g7);
8 g11 = createControlFlow(g6,g8);
9 g13 = createControlFlow(g8,g9);

10 g15.delete();

Figure 4: Delta between active and the
second versions

1 g3.changeName("Receive");
2 g4.changeTarget(g5);
3 g6.delete();
4 g7.delete();
5 g8.delete();
6 g9.delete();
7 g10.delete();
8 g11.delete();
9 g12.delete();

10 g13.delete();
11 g14.delete();

Figure 5: Delta between the second
and first versions

The differences delta in Figure 4 depicts the differences between the third and second
versions. Finally, Figure 5 illustrates the differences delta between the second and first
versions.

The modeling deltas in these figures are executable descriptions of the differences.
Each of the difference deltas reverts the model to the previous versions. The modeling
delta in Figure 4 reverts the model to the second version from the third and the modeling
delta in Figure 5 reverts the model to the first version from the second.

4 Approach
This section discusses a general architecture of the proposed approach as depicted in Fig-
ure 6. It has three main levels such as DOL Generation (discussed in Section 4.1), DOL
Services (Section 4.2) and DOL Applications (Section 5).

DOL Generation defines generating a specific DOL by importing the meta-model of a
modeling language. The resulting DOL is produced in form of Java Interface. The DOL
approach also provides several services that lie at the DOL Services level. These services
serve to manage, manipulate and reuse the DOL-based modeling deltas stored in the repos-
itory. The third level depicts DOL Applications developed by the specific orchestrations
of the DOL-services.

Each DOL-service has a particular task and is involved in constructing the specific or-
chestrations in the framework of the DOL applications. For instance, models are designed
in external modeling tools and parsed into the internal representations by the Adapter. The
difference calculator is used to detect the differences between the compared models and
produce the differences and active deltas by implementing the DOL interface. The differ-
ence calculator uses an Optimizer to produce the optimized modeling deltas and to write
them into the repository. After all, other DOL-services such as a Patcher and a Change

Tracer utilize the DOL operations. The patcher reverts older model versions. The change
tracer tracks a specific model element and reports the change history information of that
element. Then, these change reports can be browsed to see and analyse the change history.

DOL Generation

DOL Services

DOL Applications

DOL Generator
imports generatesMeta-model

Delta
Operations
Language

DOL
Service

DOL-based
Repository

Adapter CalculatorOptimizer

Patcher Tracer

manipulates

implements

DOL
Application

Model Versioning

Model History
Analysis

Collaborative
Modeling

orchestration

Figure 6: Overall architecture of the approach

These DOL-services are employed in developing the DOL applications such as Model
Versioning, Collaborative Modeling and Model History Analysis (discussed in Section 5).

4.1 DOL Generation

The Delta Operations Language (DOL) is a family of the operation-based languages for
model difference representations. This section shows how a specific DOL is generated
for a specific modeling language. As mentioned above, the meta-model of a modeling
language is required to derive a specific DOL. The DOL Generator imports the meta-model
depicted in Figure 1 as the example and applies three basic operations to each concept of
that meta-model.

Figure 7: Meta-model of the specific DOL operations

The specific meta-model in Figure 7 depicts an abstraction of the specific DOL opera-
tions shown in Figure 8.

Each model element can be deleted and created with relevant parameters if they have at-
tributes. Only attributes can be changed and all associations are associated with attributes.
The specific DOL is generated as an Java Interface. The methods of the resulting interface
are parametrized with the meta-model concepts including one of the create, delete and
change operations (Figure 8). Implementations of these methods result in an analogous
operation with relevant parameters.

1 //------ Creations ------
2 InitialNode createInitialNode();
3 OpaqueAction createOpaqueAction(String name);
4 ForkNode createForkNode();
5 JoinNode createJoinNode();
6 DecisionNode createDecisionNode();
7 MergeNode createMergeNode();
8 ActivityFinalNode createActivityFinalNode();
9 ControlFlow createControlFlow(Node source, Node Target);

10 ObjectFlow createObjectFlow(Node source, Node Target);
11 //------ Changes ------
12 void changeName(String newName);
13 void changeSource(Node newSource);
14 void changeTarget(Node newTarget);
15 //------ Deletion ------
16 void delete();

Figure 8: Interface generated from UML Activity Diagram meta-model

The DOL Generator is completely independent from modeling languages. Eventually,
each interface method has the same structure: a Do part and an Object part. The delta
operations are produced by implementations of that interface by assigning persistent iden-
tifiers.

4.2 DOL Services

In order to reuse and exploit the DOL-based modeling deltas, the difference representation
approach introduces a set of reasonable DOL-services as depicted in Figure 6. The DOL-
services consist of an Adapter, a difference Calculator, a delta Optimizer, a Patcher and a
change Tracer which are discussed in detail, below.

Adapter. Software models are designed in model designing tools. Integrating version
management or collaborative modeling tools with model designing tools is a challenge.
But, these tools provide export/import feature for software models by XML Metadata
Interchange (XMI) [Obj] format without layout information. Therefore, the Adapter is
developed to exchange models between external modeling tools and the DOL applications.

In the DOL applications, models are represented as TGraphs internally [ERW08] to
make them generally processable. The Adapter can parse models in the XMI serializations
to TGraphs and vice versa.

Calculator. The difference calculator detects the differences between the differentiated
model versions using state-based comparison and produces modeling deltas in terms of
the DOL operations. Several approaches already exist for difference calculation. There-
fore, Küpker [Kü13] investigated existing approaches such as UMLDiff [XS05] and SiDiff
[SG08] [TBWK07] and combined them to gDiff (generic differentiating).

The difference calculator calculates the model similarities using the similarity metrics
such as a name [XS05] and a structural similarity [TBWK07]. Created, deleted or changed
elements are detected for each candidate element with the highest similarity.

The calculator produces two modeling deltas in the operation-based format by imple-
menting a specific DOL Interface: the active and the differences delta. If the first version
of a model is given, the calculator produces only the active delta without the differences
delta. The persistent identifiers are assigned to delta operations by the difference calculator
while matching model elements.

Optimizer. After the difference calculator produces the modeling deltas, they are opti-
mized to improve their efficiency. For instance, if a particular model element is created
and later deleted in the same delta, these two operations (create and delete) are registered
for one element where both have no affect. Another example might be changing one ele-
ment several times in one modeling delta. In this case, it is optimal to save only the last
change instead of several change operations for that model element.

Moreover, the order of delta operations in modeling deltas is also important to avoid
the lost and fuzziness of change information. The creation operations are placed on the
first place in a modeling delta, changes come second and deletions are dropped to the end.

Patcher. The patcher reverts a model to earlier versions by applying (sequences of) mod-
eling deltas to the last version. Modellers may need to revert a model to an older versions
in the case of lost or damage of data. The inputs for the patcher are a model and several
modeling deltas. An input delta is applied to an input model resulting in previous version
of a model.

Since the delta operations are the executable descriptions, they are implemented by
in-place model transformations [Kah06].

Tracer. To comprehend and analyse the histories of evolving models, the DOL approach
provides a Change Tracer service which contributes to detect necessary information about
each change history.

The change tracer receives the set of modeling deltas from the repository as input and
searches for change information about a considered model element based on its persistent
identifier. Detected change information is used by history analysis application (Section 5).

For instance, Figure 9 illustrates all history information of the control flow g4 in the
example in Section 3. The traced element was referred to in three versions. Information
about these states is tracked by slicing three modeling deltas, the active delta in Figure 3
and two differences deltas in Figures 4 and 5.

1 g4 = createControlFlow(g3,g7);
2 g4.changeTarget(g6);
3 g4.changeTarget(g5);

Figure 9: History information of Control Flow g4.

5 DOL Applications
As a proof of concept, the DOL-approach is being prototypically implemented. To demon-
strate its applicability, it is planned to use the approach in the context of three use cases
namely Modeling Versioning, Model History Analysis and Collaborative Modeling. The
architectures of these applications are built by the specific orchestrations of the DOL-

services.

Model Versioning. Model versioning aims at managing and manipulating models as well
as storing and reusing the model differences. Model versioning systems are essential on
handling models and their histories. To this end, the DOL difference representation ap-
proach is applied to develop Generic Model Versioning System (GMoVerS). GMoVerS
uses the DOL operations to represent the model differences.

Current implementations of GMoVerS support adding models to the versioning system,
committing changes and reverting older versions. In each of these activities, the relevant
DOL-services are involved in a certain order based on data-flow. Figure 10 displays a
screen-shot of the GMoVerS development environment.

Meta-models

Models

Modeling
Deltas

Version 1
Version 2 Version 3

diff. delta diff. delta active delta

Terminal to execute
commands

Figure 10: A screen-shot of GMoVerS

First of all, a model has to be added under version control to start model versioning.
The Adapter is required to parse a model in the exchange format to internal representation,
then the calculator is involved to produce the active delta for the new model. Similarly,
committing changes requires the adapter to parse new versions to internal representation,
the patcher to revert the previous model version, again the calculator to calculate the dif-
ferences between the previous and committed versions and produce the differences and
active deltas. Reverting needs the patcher firstly to revert the recent model version, then it
is again called to revert requested version.

The explorer on the left side of Figure 10 displays the workspace including the meta-
model in Figure 1, the models and modeling deltas in Section 3. Here, all DOL-based
modeling deltas belong to the GMoVerS repository. On the upper row of the right side,
Figure 10 displays three subsequent versions of the example model in Figure 2 in exchange
formats. The central part of the right shows two differences deltas and the active delta. Fi-
nally, the most bottom of the screen-shot is a terminal to type and execute aforementioned
version control commands such as add, commit and patch.

Model History Analysis. Analyzing the model histories is crucial to understand what

changes are made to models and to know how a model evolves during its life-time. History
analysis is built on the top of the change history tracer. The change tracer fetches a set
of modeling deltas from the repository and detects history information from these deltas
based on persistent identifiers. After detecting necessary history information, it is browsed
as depicted in Figure 11.

Figure 11: A screen-shot of the history analysis application

The screen-shot in Figure 11 displays the example model in Section 3. The change
tracer firstly builds a tree for each model version running throughout all modeling deltas
and outlines them in Model Tree as shown on the left side of Figure 11 including all model
elements. If a specific element is selected and show history button is clicked, the tracer
detects history information of the selected model element based on its persisted identifier
and shows it in Tabular View. For example, the table on the right side shows the history of
the g4:Control Flow in Figure 9.

Collaborative Modeling. Another prominent application of DOL is collaborative mod-
eling which facilitates a teamwork of several designers on a shared model repository at
runtime.

The implementation of the application is planned to rely on representing changes in
terms of the DOL operations and exchanging these changes by the appropriate modeling
deltas. To this end, it is planned to develop extra DOL-services named runtime opera-
tion recorder to detect operations embodying changes. The operation recorder will be
integrated into end-user model designing tools and it detects changes made by modellers.
While manipulating a model, the DOL-based change operations are recorded in modeling
deltas. An evolving model has several development branches and synchronization is re-
quired among various development branches. The synchronization of changes basically is
synchronization of the DOL-based modeling deltas among various branches.

6 Current and Ongoing Work
Extensive literature research has been done to become familiar with the existing difference
representation techniques and additional services related to this thesis. A first sketch of the
DOL approach was published in 2012 [KJW12].

The DOL-based difference representation approach is applied to versioning Sustain-
ability Reports at companies in [KSW13]. As sustainability reports at companies are also
subject to constant changes and evolution, companies intend to report and analyse sustain-
ability information to provide the sustainable future. Thus, reports have to be versioned to

analyse the histories of sustainability reports.
The DOL generator and the DOL services such as the adapter, the difference calcula-

tor, the delta optimizer, the delta patcher and the change tracer (depicted in Figure 6) are
implemented so far. GMoVerS and Model History Analysis applications are elaborated by
the specific orchestrations of these DOL-services.

Building the specific orchestration of Collaborative Modeling is remaining as ongoing
work. Further services are requested to build up the collaborative modeling application.
Therefore, the DOL-services will be extended with a runtime operation recorder and a
synchronizer for collaborative modeling. A runtime operation recorder facilitates the end-
users with runtime operation registration. These modeling deltas will be synchronized by
a DOL-synchronizer.

Finalizing extension and evaluation of the model versioning and history analysis appli-
cations on the large scaled software models is expected till August 2014. Implementation
of further DOL-services and writing actual thesis is planned within the year 2014. Proof
read and submission of the thesis is scheduled for the beginning of 2015.

7 Expected Contributions
This paper proposed the PhD thesis focusing on development of an approach towards
model difference representation. The DOL approach is designed using existing software
engineering technologies. The operation-based difference representation approach facili-
tates several additional DOL services to employ and reuse the DOL-based modeling deltas.
The approach satisfies several reasonable principles and requirements: (1) Meta-model
Generic – applicable to various modeling languages with respect to their meta-models,
(2) Tool Independent – has own Adapter, (3) Operation-based – embodies all necessary
information about a change using a meaningful syntax and completely follows compound
modeling concepts, (4) Delta-based – only changed model objects are referred to in mod-
eling deltas, (5) Complete – carries precise information about each change, (6) Reusable
– provides several DOL-services which can directly access and manage the DOL-based
modeling deltas making modeling deltas straightforward and accessible.

With these principles, the DOL approach has the following contributions for its appli-
cations:
GMoVerS. The model differences are represented in terms of DOL and stored in small
modeling deltas. Only changes are referred to in modeling deltas. The delta operations are
directly executable descriptions of the model differences allowing model manipulations
when needed.
Model history analysis. The delta operations assigned to persistent identifiers allow the
change tracer to rapidly detect all necessary information about the change histories by ver-
ifying small modeling deltas.
Collaborative modeling. Synchronization of changes will be eased by exchanging small
DOL-based deltas. The various model designing tools which are running on different
platforms can communicate with each other in terms of DOL.

References

[ABSK07] K. Altmanninger, A. Bergmayr, W. Schwinger, and G. Kotsis. Semantically Enhanced
Conflict Detection between Model Versions in SMoVer by example. In Proceedings of
the Int. Workshop on Semantic-Based Software Development at OOPSLA, 2007.

[AP03] M. Alanen and I. Porres. Difference and union of models. In UML 2003. LNCS, pages
2–17. Springer, 2003.

[CFP04] B. Collins-Sussman, B. W. Fitzpatrick, and C. M. Pilato. Version Control with Subver-
sion. O’Reilly Media, 2004.

[Cic08] A. Cicchetti. Difference Representation and Conflict. PhD thesis, University of
L’Aquila, (Italy), April 2008.

[EMF] EMF: Eclipse Modeling Framework (Compare). http://www.eclipse.org/emf/compare.

[ERW08] J. Ebert, V. Riediger, and A. Winter. Graph Technology in Reverse Engineering, The
TGraph Approach. In 10th Workshop Software Reengineering (WSR 2008), volume
126, pages 67–81. GI (LNI), 2008.

[HK13] J. Helming and M. Koegel. EMFStore., 2013. http://eclipse.org/emfstore.

[Kah06] S. Kahle. JGraLab: Konzeption. Entwurf und Implementierung einer Java-
Klassenbibliothek für TGraphen, 2006.

[KB14] S. Krusche and B. Bruegge. Model-based Real-time Synchronization. In Inter. Work-
shop on Comparison and Versioning of Software Models (CVSM’14), Feb. 2014.

[KJW12] D. Kuryazov, J. Jelschen, and A. Winter. Describing Modeling Delta By Model Trans-
formation. In Softwaretechnik Trends (Issue on International Workshop on Comparison
and Versioning of Software Models (CVSM 2012)), no. Band 32 Heft 4. Gesellschaft für
Informatik, November 2012.

[KSW13] D. Kuryazov, A. Solsbach, and A. Winter. Versioning Sustainability Reports. In
5.BUIS-Tage: IT-gestütztes Ressourcen- und Energiemanagement, pages 409–419.
Springer-Verlag, 2013.

[Kü13] C. Küpker. General Model Difference Calculation. Bachelor Thesis, Carl von Ossietzky
University of Oldenburg, June 2013.

[Loe09] J. Loeliger. Version Control with Git: Powerful Tools and Techniques for Collaborative
Software Development. O’Reilly Media, 2009.

[Obj] Object Management Group. XMI Specification, v1. 2.

[SG08] M. Schmidt and T. Gloetzner. Constructing Difference Tools for Models Using the
SiDiff Framework. ICSE 2008, pages 947–948, May 10-18 2008.

[SSA14] C. Seidl, I. Schaefer, and U. Aßmann. DeltaEcore - A Model-Based Delta Language
Generation Framework. In Modellierung, pages 81–96, 2014.

[TBWK07] C. Treude, S. Berlik, S. Wenzel, and U. Kelter. Difference Computation of Large Mod-
els. In Proceedings of the the 6th Joint Meeting of the European Software Engineering
Conference, pages 295–304. ACM Press, 2007.

[UML] UML: Unified Modeling Language. http://www.uml.org.

[XS05] Z. Xing and E. Stroulia. UMLDiff: An Algorithm for Object-Oriented Design Differ-
encing., pages 54–65. 6. ACM, 2005.

	Motivation
	Related Work
	Example
	Approach
	DOL Generation
	DOL Services

	DOL Applications
	Current and Ongoing Work
	Expected Contributions

