
Modeling Service Capabilities for Software Evolution Tool Integration
Jan Jelschen, Andreas Winter

Carl von Ossietzky Universität, Oldenburg, Germany
{jelschen,winter}@se.uni-oldenburg.de

1 Introduction
Software evolution activities, like reengineering or mi-

grating legacy systems, depend on tool support tailored
towards project-specific needs. Most software evolution
tools only implement a single technique, requiring the cre-
ation of toolchains by assembling individual tools. These
tools come with little to no means of interoperability,
e.g. two tools may implement the same functionality, but
offer different interfaces. They can also be implemented
using different technologies, and expecting input data in
different formats. Manual integration is therefore tedious
and error-prone, yielding brittle, non-reusable glue code.

Sensei (Software EvolutioN SErvices Integration [1])
aims to ease toolchain building, using service-oriented
principles to abstract from concrete implementations, de-
scribe software evolution techniques on a high level, and
standardize them as service catalog. On the service level,
processes are modeled as orchestrations. Sensei aims
to have actual toolchains automatically generated from
orchestrations, by having tools wrapped as components
according to an appropriate component-based framework
providing uniform interfaces, and mapping services to
implementations in a component registry. Model-driven
techniques are used to realize a code generator able to
create a toolchain as composition of components con-
forming to a given service orchestration. This avoids
having to (re-)write integration code, and facilitates ex-
perimentation and more agile processes as changing the
toolchain is eased and sped up.

Here, there are opposing requirements regarding the
granularity of service description detail, as the higher
service level demands more abstraction, while on the
lower component level much more specificity and technical
detail is needed.

The service catalog demands more general services
to facilitate standardization, e.g. specify a calculate
metrics service, not calculate McCabe metric on Java
code. Such fine-grained descriptions would lead to a
catalog cluttered with only marginally differing services,
making it hard to identify the right services for a given
task. In orchestrations, the high abstraction level hides
interoperability issues.

In contrast, service orchestrations do need to be spe-
cific about the functionality required, e.g. here it is
necessary after all to declare McCabe as the actual met-
ric to be evaluated, and Java as the data to evaluate
it on. Purely technical properties of particular imple-
mentations, e.g. that the input Java AST needs to be
encoded in a specific XML format, should still remain
hidden, though. In a component registry, both functional
and technical properties need to be described rigorously,
to enable automatic toolchain generation by matching
up provided with required functionality, and be able to
coordinate tools and accommodate for non-compatible
data formats.

Service Orchestration

Component Composition

Capability

coordinated in ▶

integrated in ▶

▼ implemented by implemented by ▼

 defines
◣required

declares
possible◢

defines ◥
provided

◤matches
req./prov.

Figure 1: Capabilities in Sensei.

To bridge between these different abstraction levels,
a means for synchronization is needed to map from
services to components, and orchestrations to component
compositions, representing an executable toolchain.

This paper proposes a simple model to explicitly rep-
resent a service’s capabilities. The model has to support
a) concise, generic service descriptions, b) implementation-
agnostic, yet functionally precise orchestrations, and
c) functionally and technically rigorous component de-
scriptions and service mappings. This allows Sensei to
provide an uncluttered software evolution service catalog,
hide interoperability issues in orchestrations, and have
sufficient technical detail on components to automati-
cally compose them into toolchains. The following Sec. 2
sketches this model and gives examples. Sec. 3 points to
ongoing work and concludes the paper.

2 Service Capability Model

Figure 1 depicts central concepts of Sensei and their
relationships with capabilities. An overview of the appli-
cations of capabilities in Sensei is given here (numbered
1 through 4), before revisiting these use cases to describe
them in more detail. A distinction is being made be-
tween services, describing encapsulated units of abstract
functionality, and components, actually realizing services.
On the level of services, capabilities are introduced as a
simple mechanism to keep them generic and only declare
possible capabilities (1) as variation points. Services are
selected and coordinated in an orchestration to model
processes in need of tool support. Here, capabilities are
used to instantiate generic services by declaring required
capabilities (2a) specifically. Components implement
the functionality defined by services. Capabilities allow
to precisely define provided capabilities (2b), which, in
contrast to orchestrations, contain additional technical in-
formation regarding concrete data types. The latter two
use cases are distinct, yet utilize capabilities in the same
manner. To create an integrated toolchain, a composition
of components needs to be derived from an orchestration.
Capabilities are leveraged to constrain component map-
ping (3) to only match components to used services which
can provide the required functionality. They are further
used to constrain component composition (4) to only
select compatible components or add data transformers
for services requiring direct interoperability.

{jelschen,winter}@se.uni-oldenburg.de

1 Declaring possible capabilities. Generic cata-
log services use capabilities to declare variation points,
establishing a domain of capabilities to choose from when
referring to services. A distinction can be made between
functional and technical capabilities. While the former
refer to what a service can do, the latter are used mostly
only with respect to component implementations, to spec-
ify how a functionality is realized, especially with respect
to used data formats. Capabilities can also restrict types
of service parameters to specific sub-types. This allows
to derive capabilities based on runtime data, and can be
leveraged during toolchain generation (see Par. 3).

In the service catalog, capabilities serve to keep it
uncluttered and clear-cut, which eases service selection
for software evolution practitioners.

Example: A metric service may have two classes of
capabilities: the programming language on which it can
operate, and the actual metrics it supports. Capabilities
of the former class would be Java, COBOL, C, etc., and
capabilities of the latter would be McCabe, Halstead,
inheritance tree depth (ITD), etc. The programming
language capabilities also define restrictions on the ser-
vice’s data types. E.g. the Java capability would restrict
the input parameter from a generic source code data
structure to Java source code.

2 Defining required and provided capabilities.
These two use cases refer to the activities of selecting
services for a service orchestration, and registering com-
ponents for service implementation, respectively. In both
cases, capabilities are chosen from the domain declared
in the service catalog to narrow a service’s functionality
down to specific ranges. Here, the capability mecha-
nism allows tool builders to accurately specify their tools
provided functionality, and practitioners to define and
delimit functionality as required for their projects’ tasks.
While the latter will mostly only be concerned with
functional capabilities, the former also needs to specify
technical capabilities, i.e. what concrete data types com-
ponents expect as input or make available as output
result. Technical capabilities are revisited in Par. 4.

Example: To use a metric service in an orchestra-
tion, capabilities are chosen according to project needs.
Assuming the project entails evaluating metrics on both
Java and COBOL code, and calculating McCabe on both
languages, as well as calculating inheritance tree depth
(ITD) on Java only, capabilities would look like this:(

Java
McCabe

)
,

(
COBOL
McCabe

)
,

(
Java
ITD

)
.

Capabilities are used likewise to register components
implementing a metric service. This example assumes
there are two implementing components, JMetrics and
CMetrics, with the following capabilities declared:

JMetrics :

(
Java

McCabe

)
,

(
Java
ITD

)
;CMetrics :

(
COBOL
McCabe

)
.

For toolchain generation, synchronization of required
capabilities from orchestrated services with provided
capabilities of registered components is needed. This is
covered by the following two use cases.

3 Constraining component mapping. The in-
formation provided via the previous use cases through

capabilities can be exploited to automatically find com-
ponents for services used in orchestrations, by matching
required to provided capabilities. Since components may
implement more than one service, each with the provi-
sion of multiple capabilities, the same component can be
chosen for distinct services and their required capabilities.
A single orchestrated service might also be mapped to
different components, each providing at least one of its
required capabilities.

Example: In the previous example, no single com-
ponent satisfied all required capabilities. Instead, the
JMetrics and CMetrics tools need to be combined to
match all capabilities. Also, the orchestration does not
(and need not) directly model when a specific capability
should be chosen at runtime – this information is em-
bodied in data type restrictions. Using restrictions, the
required branching logic to check input data at runtime
and select a component, can be generated automatically.

This allows to automate the creation of potentially
complex integration logic using a constraint solver,
thereby further easing the task of toolchain design.

4 Constraining component composition.
When choosing components to compose in conformance
with an orchestration, additional constraints have to
be taken into consideration, chiefly regarding concrete
input and output data types and representations.
These additional constraints are expressed by technical
capabilities in the component registry, and, if a scenario
requires using a specific data type, also in orchestrations.

Example: The metrics service’s inputs are the met-
ric to be evaluated, and the data to evaluate it over. A
component implementing this service has to take several
design decisions to concretize these abstract data struc-
tures. If the component has the capability to evaluate
metrics over Java ASTs, the actual Java meta-model
understood, and the expected data representation (e.g.
XML, JSON, or a binary format) has to be specified.

Toolchain generation can leverage these constraints to
either select components with compatible data outputs
and inputs for directly interoperating services, or place
an appropriate transformer in between. This facilitates
reuse of data transformers through the creation of a
library.

3 Outlook

This paper introduced the notion of capabilities in the
context of the Sensei software evolution tool integration
approach, to control the granularity level of service de-
scriptions, and enable automatic toolchain generation.
While Sensei focuses on the field of software evolution,
as toolchain building is of particular importance here,
the approach to tool integration is a general one.

Current work is focused on implementing a toolchain
generator based on TGraphs and the GReTL transfor-
mation language [2], solving constraints formed by capa-
bilities, for automatic creation of versatile and complex
toolchains based on clear and incisive orchestrations.

References

[1] J. Jelschen, “SENSEI: Software Evolution Service Integration,”
in Softw. Evol. Week — Conf. Softw. Maintenance,
Reengineering, Reverse Eng. Antwerp: IEEE, Feb. 2014, pp.
469—-472.

[2] J. Ebert and T. Horn, “GReTL: an extensible, operational,
graph-based transformation language,” Softw. Syst. Model.,
13(1), pp. 301–321, May 2012.

	Introduction
	Service Capability Model
	Outlook

