
A Toolchain for Metrics-based Comparison of

COBOL and Migrated Java Systems

Jan Jelschen, Andreas Winter

Carl von Ossietzky Universität, Oldenburg, Germany

{jelschen,winter}@se.uni-oldenburg.de

Abstract

Migrating COBOL legacy systems to Java results
in functional equivalent systems expressed in the new
language, while the programming paradigm remains
that of the old systems. The quality of translated
code is therefore assumed to be inferior, if held to the
standards of the target language’s paradigm. This pa-
per presents an integrated toolchain enabling metrics-
based comparisons of original and translated systems
to substantiate or refute this hypothesis, characterize
the change in code quality, and gain insights for the
improvement of translation tools.

1 Introduction

Migrating legacy systems written in old program-
ming languages like COBOL to a more modern lan-
guage like Java often becomes a necessity, e.g. due to
required hard- or software platforms being phased out,
or a lack of qualified personnel to maintain the sys-
tem. Such migrations have to be supported by tools
automating translation. However, changing between
fundamentally different programming languages also
incurs a paradigm shift: while COBOL is procedural,
Java is designed to support object-orientation. Tools
can map a COBOL program to a functional equiva-
lent Java program, but usually cannot introduce an
object-oriented design into a program conceived pro-
cedural (cf. Terekhov and Verhoef [7]). Therefore, the
code quality of the translated system (e.g. in terms
of maintainability) is expected to be lower than that
of the original system, at least when evaluated under
quality criteria of the target language’s paradigm.

In this paper, a toolchain enabling evaluation of
code quality metrics on COBOL and translated Java
is presented, allowing direct comparisons of quality
characteristics. It facilitates the quantification and
characterization of quality differences, providing in-
sights to enhance translation tools.

In Section 2, requirements for the toolchain and its
composition are described. Section 3 discusses how to
approach comparisons of COBOL and translated Java
systems using the toolchain and appropriate metrics.
The paper concludes with an outlook in Section 4.

2 Toolchain

The toolchain has to support three workflows:
translating COBOL to Java, evaluating metrics on
COBOL, and evaluating metrics on Java. In the lat-
ter case, metrics on Java systems which have not been

translated from COBOL also have to be evaluable.
This extends the scope and flexibility of the toolchain,
particularly allowing to use other Java systems as a
reference, when direct comparisons with COBOL sys-
tems is infeasible (this is further discussed in Sec. 3).

Apart from this, it has to be easy to extend ad-
ditional functionality, e.g. visualization of metric re-
sults. An interesting experiment would be to com-
pare different COBOL-to-Java-translators on the ba-
sis of metrics evaluated over their respective output.
This requires the ability to smoothly substitute differ-
ent translator implementations while leaving the rest
of the toolchain unchanged.

Finally, metrics to be evaluated are not known in
advance, depending on each specific experiment, ne-
cessitating facile addition and modification of metrics.

To facilitate the required flexibility, the toolchain is
conceived in terms of services, abstracting from con-
crete tools.

2.1 Design and Implementation

Substantial parts of the infrastructure and individ-
ual tools have been developed and used in the context
of the SOAMIG project [3]. As a basic data struc-
ture to hold representations of the processed systems,
TGraphs have been chosen. Properties of TGraph
instances can be examined using the graph query lan-
guage GReQL [5], used here to express code metrics.

Data and control flows inside the toolchain, and
services involved are depicted in Figure 1 as activity
diagram, and explained in the following: translation
subsumes services concerned with converting Java to
COBOL, while transformation services provide the re-
quired data structures for metrics to be evaluated.

Translation. The actual COBOL-to-Java migra-
tion is realized by a series of services to parse COBOL,
translate COBOL to Java, and generate Java source
code. The implementation is provided through the
“CoJaC” tools by pro et con [1].

The result of parsing COBOL is ouput as an XML
file containing an abstract syntax tree (AST). Trans-
lating to or parsing Java results in a similar XML
(parsing Java is, again, provided by a pro et con
tool.). In Figure 1, these files are shown as datastores
COBOL-AST and Java-AST, respectively.

Transformation. The XML output of the trans-
lation tools is TGraph-compatible, and is read into
JGraLab’s internal (in-memory) representation (de-
picted twice in the diagram as XML2TG).

Figure 1: Data and control flow between services of the toolchain.

Metrics can be evaluated directly on the abstract
syntax tree representations of either COBOL or Java
code. However, many relevant metrics, like cyclomatic
complexity [6], are more easily evaluated over the
control flow graph (CFG) of a program. Therefore,
two additional services (Java AST2CFG and COBOL
AST2CFG) to convert Java and COBOL ASTs to
CFGs have been implemented for the toolchain. The
CFG-representation has the added benefit of being
programming language-independent. This allows to
express each metric in a single GReQL statement,
whereas AST-based metrics have to be formulated
over each languages’ meta-model separately.

Metrics evaluation. Metrics are not “hard-wired”
into the toolchain. Instead, they are provided as an
input, expressed in GReQL. Any metric expressible in
terms of abstract syntax trees or control flow graphs
can be added without changing the infrastructure at
all, making the approach very flexible in this regard.

Measures of complexity or structuredness can of-
ten be expressed over the CFG [2, pp. 167]. This
makes this class of metrics language-independent, and
thereby suitable for a direct comparison of original
and translated software systems. In addition, the
CFG-meta-model is very simple, with only two fun-
damental concepts: basic blocks, connected by control
flows. Following is an example, showing the cyclo-
matic complexity metric as graph query over the CFG.

count (from e : E{ControlFlow} r epo r t e end) −
count (from n : V{BasicBlock } r epo r t n end) +
count (from p : V{Procedure} r epo r t p end) ∗ 2

It sums up all basic blocks and all control flows,
and subtracts the former from the latter. Then, the
number of connected components in the graph times
two is added to that (the detection of connected com-
ponents is simplified here by the fact that there is an
“auxiliary” procedure node for each of them).

The selection of metrics suitable for comparing
COBOL and Java systems has not yet been com-
pleted. It is discussed in the following section.

3 Experiments

Due to lack of industrial scale COBOL systems, so
far, only small code examples were tested, whose size
severely limit the validity of evaluated metrics.

A challenge for further experiments will be to
actually achieve comparability: On the one hand,
language-independent metrics like cyclomatic com-
plexity can be evaluated on both the original and the

translated system. The informative value of such met-
rics – e.g. whether one can directly infer code quality
from them – is disputable, though [2, p. 181].

On the other hand, it is desirable to measure
the quality of the translated system with respect to
the programming paradigm of the target language,
i.e. evaluating object-orientation metrics on Java
code. There are, however, no canonical COBOL-
counterparts for such metrics, leaving open the ques-
tion of a meaningful comparison.

One approach could be to establish mean values
for object-oriented metrics to compare against, by
running a large body of representative Java systems
through the metric evaluation. While this would still
not allow a direct comparison, the quality of a trans-
lated system could be rated to be of better, similar, or
worse quality than other systems written in the same
programming language.

4 Outlook

The toolchain presented here has been conceived
with the additional purpose of serving as a case study
for tool interoperability. Issues identified in this re-
gard include overhead caused by data format con-
version and the amount of glue code which needs
to be written, as well as platform-specific barriers.
These insights will guide ongoing work on service-
based tool interoperability, finally aimed at producing
a service-oriented, component-based interoperability
framework for software evolution tools [4].

References

[1] U. Erdmenger and D. Uhlig. Ein Translator für
die COBOL-Java-Migration. Softwaretechnik-Trends,
31(2), 2011.

[2] N. E. Fenton. Software Metrics: A Rigorous Approach.
Chapman and Hall, 1991.

[3] A. Fuhr, A. Winter, et al. Model-Driven Software Mi-
gration - Process Model, Tool Support and Applica-
tion. To appear in: A. Ionita, M. Litoiu, G. Lewis.
Migrating Legacy Applications: Challenges in Service
Oriented Architecture and Cloud Computing Environ-
ments, IGI Global, 2012.

[4] J. Jelschen and A. Winter. Towards a Catalogue of
Software Evolution Services. Softwaretechnik-Trends,
31(2), 2011.

[5] B. Kullbach and A. Winter. Querying as an enabling
technology in software reengineering. In CSMR 1999,
pages 42–50. IEEE CS, 1999.

[6] T. McCabe. A Complexity Measure. IEEE Transac-
tions on Software Engineering, (4):308–320, 1976.

[7] A. Terekhov and C. Verhoef. The realities of language
conversions. IEEE Software, 17(6):111–124, 2000.

